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ABSTRACT

Keywords:

PURPOSE: Bi-objective treatment planning for high-dose-rate prostate brachytherapy is a novel
treatment planning method with two separate objectives that represent target coverage and
organ-at-risk sparing. In this study, we investigated the feasibility and plan quality of this method
by means of a retrospective observer study.

METHODS AND MATERIALS: Current planning sessions were recorded to configure a bi-
objective optimization model and to assess its applicability to our clinical practice. Optimization
software, GOMEA, was then used to automatically generate a large set of plans with different
trade-offs in the two objectives for each of 18 patients treated with high-dose-rate prostate brachy-
therapy. From this set, five plans per patient were selected for comparison to the clinical plan in
terms of satisfaction of planning criteria and in a retrospective observer study. Three brachythera-
pists were asked to evaluate the blinded plans and select the preferred one.

RESULTS: Recordings demonstrated applicability of the bi-objective optimization model to our
clinical practice. For 14/18 patients, GOMEA plans satisfied all planning criteria, compared with
4/18 clinical plans. In the observer study, in 53/54 cases, a GOMEA plan was preferred over the
clinical plan. When asked for consensus among observers, this ratio was 17/18 patients. Observers
highly appreciated the insight gained from comparing multiple plans with different trade-offs
simultaneously.

CONCLUSIONS: The bi-objective optimization model adapted well to our clinical practice. GO-
MEA plans were considered equal or superior to the clinical plans. In addition, presenting multiple
high-quality plans provided novel insight into patient-specific trade-offs. © 2019 American Brachy-
therapy Society. Published by Elsevier Inc. All rights reserved.

Brachytherapy; HDR; Prostate neoplasm; Treatment planning; Bi-objective optimization; Observer study

Introduction

Current commercial treatment planning methods for
high-dose-rate (HDR) prostate brachytherapy (BT) such
as inverse planning simulated annealing (IPSA) (1, 2),
hybrid inverse treatment planning and optimization

(HIPO) (3), or graphical optimization (4) present a single
plan to the planner. This plan can then iteratively be
adapted by changing dwell times, drag-and-drop of
isodose lines, or by changing the parameters of the plan-
ning method. After each modification, the planner as-
sesses the plan quality by a set of planning criteria on
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the dose-volume indices (DVIs) stated in the clinical pro-
tocol and by visual inspection of the dose distribution.
Obtaining acceptable plans by this procedure requires
experience and is time-consuming, often taking more
than 30 min (4—06).

To efficiently obtain high-quality plans using inverse
planning methods, the underlying optimization model
should closely match the planning criteria, while computa-
tion time is still clinically acceptable. The optimization
model on which IPSA and HIPO are based—a dose-
penalty model—is fast to compute but does not always
result in plans that adhere to the planning criteria, even if
such plans do exist (7, 8). Other methods (5, 9, 10) do
model the treatment planning problem based on the DVIs
of the planning criteria. However, similar to IPSA and HI-
PO, multiple criteria are then combined into a single model
by a weighting that the planner needs to set. Tuning these
weights is a patient-dependent and nontrivial task, which
makes treatment planning a difficult and time-consuming
trial-and-error process (11, 12).

To overcome tuning of weights, the treatment planning
problem can be formulated as a multi-objective optimiza-
tion problem, where each planning criteria is an objective
(13). Typically, there are five or more objectives, depend-
ing on the treatment site and clinical protocol (14). The
optimum of a multi-objective optimization model is not
a single treatment plan, but a large set of plans, all with
a different trade-off between the objectives. A single
preferred plan then needs to be selected from this set,
either manually or automatically. However, considering
all planning criteria as separate objectives results in many
objectives, which makes fast computing of all best trade-
off plans computationally infeasible (15). In practice, an
interactive method can be used by which optimization is
steered by the planner to get to a desirable plan (16—
18). Although more intuitive than setting weights, it is
hard to get intuition about the nature of underlying
trade-offs this way.

Alternatively, approaches exist to navigate the set of
trade-off solutions without first computing them all, but ap-
proximations of the planning criteria (i.e., dose-penalty
models rather than DVI models) and plan interpolations
are then required for efficiency reasons, making it more
difficult to obtain plans that are in line with the planning
criteria (7, 8, 19, 20).

Table 1

High-dose-rate brachytherapy protocol of a single planning-aim dose of 13 Gy

The novel treatment planning method that is used in the
present study models the treatment planning problem as a
bi-objective optimization problem, with only two objec-
tives. One objective is based on target coverage and the
other on organ-at-risk (OAR) sparing (21). The objectives
are directly based on the DVIs stated in the clinical proto-
col. As there are only two objectives, first computing a set
of high-quality trade-off plans is computationally tractable,
and visualization of these plans as a trade-off curve is
straightforward. This reduces treatment planning to a
decision-making process of selecting the preferred plan
from this trade-off curve.

In this work, we evaluate the use and plan quality of bi-
objective treatment planning for our clinical practice in a
retrospective observer study.

Methods and materials
Patient and treatment characteristics

Between February 2015 and April 2017, 18 prostate can-
cer patients were treated in our clinic according to the pro-
tocol in Table 1, receiving single-dose HDR BT of 13 Gy a
week after external beam radiation treatment with a dose
schedule of 20 x 2.2 Gy. Median age at time of treatment
was 68 (range: 58—84) years; Gleason score was between
6 and 9 (ISUP grade group 1—5). The median urinary flow
rate was 16.3 (range: 8.5—34.8) mL/s, and the median pros-
tate volume defined by MRI after catheter placement was
31.9 (range: 21.1—69.3) cm®. A median of 16 (range:
14—20) catheters were implanted with a source step of
2.5 mm, totaling to a median of 413 (range: 250—668)
dwell positions. Catheter implantation was performed using
transrectal ultrasound under general or epidural anesthesia
according to a preplan, made in the operation theater based
on ultrasound imaging, in Oncentra Prostate (Elekta AB,
Stockholm, Sweden) (22). Visibility of the urethra was
enhanced by a transurethral catheter with a bladder balloon.

After implantation, three orthogonal pelvic T2-weighted
turbo spin echo MRIs (Ingenia 3T Philips Healthcare, Best,
The Netherlands) with an in-plane resolution of 0.6 X
0.7 mm and 3.0 mm slice thickness with 0.3 mm gap were
acquired and used for treatment planning. Imaging was
taken with the patients lying on their back and legs flat,

Volume  Use Coverage criteria

Sparing criteria

Prostate  Target Vigos > 95% (42 Gy EQD23)  Dogg, > 100% (42 Gy EQD23)  Visoe, < 50% (89 Gy EQD25)

Vesicles Target Vgoq > 95% (28 Gy EQD2;3)
Bladder OAR
Rectum OAR
Urethra  OAR

Vaoos < 20% (150 Gy EQD25)

Dy < 86% (32 Gy EQD23)
Dy < 78% (27 Gy EQD23)
Dotems < 110% (50 Gy EQD23)

Doy <74% (24 Gy EQD25)
Doy <74% (24 Gy EQD25)

OAR = organ at risk; V = Volume indices in percent of the planning-aim dose; D = Dose indices in volume percentage or absolute volume (cm®) and

units gray (Gy).
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similar to the treatment position. These images were loaded
into Oncentra Brachy (version 4.3—4.5, Elekta AB, Stock-
holm, Sweden) and used for catheter reconstruction and
delineation of the regions of interest.

Initial plans of patients treated before mid-2015 were
created using IPSA, initial plans after mid-2015 were
created with HIPO. Both IPSA and HIPO were run with
a standard parameter set, that is, a class solution, as pro-
vided in the Supplementary Material Figs. 7 and 8. Plans
were then manually fine-tuned using graphical optimiza-
tion. Next, quality assurance checks were done by a medi-
cal physicist. Finally, the plans were assessed for clinical
acceptability by a physician using the criteria in Table 1
and by visual inspection of the dose distribution.

Analysis of clinical planning sessions

To gain insight into the current planning process in our
clinic and into the applicability of the bi-objective optimi-
zation model (21), clinical planning sessions were filmed,
and changes in DVIs over time were recorded during the
manual graphical optimization of five of the 18 patients.

It was measured how many of the changes were dedi-
cated to improving the DVIs and how many focused on
other aspects not explicitly mentioned in the clinical proto-
col. Based on this analysis, the bi-objective optimization
model was configured (23, 24).

Configuring the bi-objective optimization model

The bi-objective optimization model groups the plan-
ning criteria (Table 1) into one coverage objective and
one sparing objective. We configured the model as follows:

LCI = min{ Vig5 — 95, Ve — 95},

86 — Dbladder 74 — Dbladder

Iem3 > 2cm3 7

78 — prectum g4 _ pyrectum

Iem3 2cm3

10— Dy

LSI = 13Gy X min

The least coverage index (LCI) was constructed by
combing the coverage criteria Vs < and Vieicles in a
worst-case manner. An LCI = 1.2% should be read as
“the worst covered target is covered 1.2% more than its
aim and the other target has a higher coverage.” Thus,
when maximizing the LCI, a certain level of coverage for
both Vi and Vi&icles is guaranteed. The criterion
Dl ™" >100% has been left out of the model, as it is auto-
matically satisfied when Vi >90%. Moreover, explic-
itly maximizing it would lead to dose escalation, and it is
currently unclear whether this is desirable (25).

The least sparing index (LSI) was constructed in a
similar worst-case approach from the sparing criteria
(Table 1). An LSI = 1.4 Gy should be read as ‘“‘the worst
spared OAR is spared 1.4 Gy more than its criterion, and
all other OARs are spared even more.” Thus, the LSI

should also be maximized, and when LSI>0 Gy holds,
all sparing criteria are satisfied.

The criteria VA5 <50% and Vi< <20% are the
only sparing criteria based on volume indices. Directly add-
ing them to the LSI would result in a comparison of indices
with a different unit (percentage of volume compared with
percentage of prescribed dose). Analysis of clinical plans,
see Supplementary Table 2, showed that the criteria
ViR <50% and Vhyo'© <20% were never violated. As
the LSI uses a worst-case approach, and as these criteria
were never violated, there would be no effect of leaving
them out of the objectives. To guarantee that optimization
generates plans that satisfy these two criteria, all plans that
violate them are automatically discarded.

Automatic bi-objective BT planning

For each patient, a large set of high-quality plans was
automatically generated by optimizing plans under the bi-
objective model. For this, patient DICOM RT-Struct and
RT-Dose files were exported from Oncentra Brachy and
processed by our in-house developed TG-43 (26, 27) dose
engine. As starting point for the optimization, all dwell po-
sitions were activated within a 5-mm margin of the targets
(i.e., prostate and vesicles), excluding positions within a 1-
mm margin of the urethra. Next, the dwell times associated
with these dwell positions were initialized with a randomly
chosen value between 0 and 1 s. The aim of treatment plan-
ning is then to optimize these dwell times.

The bi-objective model is nonconvex, nonlinear, and
nonsmooth and to optimize plans according to it, a state-
of-the-art multi-objective evolutionary algorithm, GOMEA
(23, 28), was used. In GOMEA, the fact that the dose dis-
tribution can be quickly updated when only few dwell times
change is exploited. A run of GOMEA was limited to 1 h on
a low-end processor. In a 1-h run, GOMEA produced a
large set of 100—1000 treatment plans, all with different
LCI/LSI trade-offs (23, 24). As GOMEA is a stochastic al-
gorithm, it was run 30 times to assess its variance in final
results, which was shown to be small (23). From these 30
runs, a single set of plans was constructed by only retaining
plans that exhibit the best trade-offs in LCI and LSI.
Further research (29, 30) showed that using a Graphics Pro-
cessing Unit that is available in modern planning machines,
the same results can be obtained within a matter of minutes.

For each patient, the resulting set of plans consisted of
hundreds of high-quality plans. Presenting all these plans
in an observer study was infeasible as software to quickly
navigate through and compare that many plans is not yet
available. We therefore manually selected five plans (see
Fig. 1) for further analysis according to the following strat-
egy: left and right of LCI = 0, above and below LSI = 0,
and the plan in the middle. These plans are labeled from
small to large LCI values as high sparing, sparing,
coverage/sparing, coverage, and high coverage. These five
selected GOMEA plans per patient were compared to
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Fig. 1. Example of a trade-off curve for one patient. Each dot represents a
treatment plan obtained by GOMEA. The axes measure the objectives of
the bi-objective model. Both objectives should be maximized. Plans in
the upper right corner, where the values for the Least Coverage Index
and the Least Sparing Index are larger than zero, satisfy all planning
criteria (Table 1). Large black dots illustrate the plans presented in the
observer study.

clinical plans in terms of their LCI and LSI values. Differ-
ences in DVIs and LSI and LCI values were tested for sig-
nificance using a Wilcoxon matched-pair signed rank test
(oo = 0.03).

Observer study setup

A retrospective observer study was conducted with three
physicians responsible in our clinic for HDR prostate BT.
Each observer was individually presented with six plans
per patient: the plan that was clinically used to treat the pa-
tient, and the five selected GOMEA plans, without identi-
fying which plan was which. The DVIs of the six plans
were presented in a single overview, similar to Oncentra
Brachy. Then, the observer could inspect the corresponding
dose distributions in Oncentra Brachy, one at a time.

Each observer was asked the following questions: What
is the preferred plan to treat the patient with? Which plans
are clinically acceptable? What plan would you dismiss?

After answering these questions, additional patient infor-
mation was provided, and the observer was asked if this
changed their opinion on the preferred plan. The additional
information comprised patient age and Gleason score for all
patients. Urinary flow rate, available biopsy information,
tumor location information, and potential tumor invasion
of the seminal vesicles was available for the 12 most recent
patients. Furthermore, for the eight most recent patients, an
additional diffusion-weighted MRI with tumor location in-
formation was added as it had been available clinically after
a recent adaptation of the clinical workflow.

Additional patient information was provided to mimic clin-
ical practice as much as possible. IPSA or HIPO do not take
this additional patient information into account when initial-
ized by a standard parameter set, but this information is

known to the planner during manual optimization, and this in-
formation is thus incorporated into clinical plans. Similarly,
GOMEA does not take this additional information into ac-
count during optimization, but a planner might while selecting
the desired GOMEA plan. To investigate how this information
changed decision-making, we chose for this setup, where the
questions are repeated after the first evaluation.

It was recorded which aspects the observers assessed
that were not mentioned in the clinical protocol and how
they approached decision-making.

This setup of presenting multiple GOMEA plans was cho-
sen because it provides additional insight into the patient-
specific trade-off, which can be used during decision-
making. The clinical plan was added to compare quality of
GOMEA plans and to assess clinical acceptance. This setup
does however introduce a potential bias toward selecting a
GOMEA plan. We investigated statistical significance of the
preferred plan by comparing against the null hypothesis that
all plans are equally likely to be selected, at « = 0.05.
Because the number of observers is too low to perform an
observer variability study, p-values are reported per observer.

One week after the observer study, a consensus meeting
was held where patients were discussed for which each
observer selected a different preferred plan. These three
plans were again blindly presented, and observers were
asked whether they could agree on a single preferred plan.

Results
Analysis of clinical planning sessions

The five filmed planning sessions lasted for a median of
33 min (range: 9—48), with an average of four drag-and-
drop steps per minute, totaling to 525 modifications. See
Supplementary Figs. 1—5 for the transcripts. Modifications
were being performed on an iterative basis, focusing on two
conflicting criteria: 66% of the modifications on prostate vs.
urethra, 20% on vesicles vs. bladder, and 1% on prostate vs.
rectum. Fifty percent of the changes were made to improve
the least spared/covered volume. Two aspects, not included
in the clinical protocol, that were assessed, were improving
dose homogeneity and reducing hotspots, that is, volumes
with dose higher than 200% of the prescribed dose, both in
number and in size. For most of the manual plan optimization
time, both LCI and LSI had a negative value. Over time, they
were improved iteratively, which corresponds to a zigzag
pattern in the bi-objective representation (Fig. 2).

Automatic bi-objective BT planning compared with
clinical plans

Figure 3 shows the trade-off curves obtained with GO-
MEA, together with the clinical plan and the five plans that
were selected from the front for comparison. For each patient,
an overview of the DVIs associated with the clinical plan and
the five selected plans is given in Supplementary Table 2.
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Fig. 2. Manual planning process using graphical optimization visualized in the bi-objective representation for the five recordings. The trade-off curves ob-
tained with GOMEA are shown for comparison. Transcripts of the planning processes are given in Supplementary Figs 1-—5.

For all patients, the GOMEA plans had simultaneously a
better LCI and LSI than the clinical plan. For four patients
(10, 11, 16, and 17), the clinical plan satisfied the clinical
protocol, while GOMEA plans satisfied the clinical proto-
col for 14/18 of the patients. For four patients (4, 7, 14,
and 18), neither the plans optimized by our method nor
the clinical plan satisfied all planning criteria, caused by
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an unfavorable implant geometry. For some patients, the
LCI value of the clinical plan is small because of a low
vesicle coverage. For all clinical plans, the V" was
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From the set of five GOMEA plans per patient, GOMEA
plans with a similar or better LSI as the clinical plan had an
LCI that is 3.5% larger than the LCI of the clinical plan,
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Fig. 3. Trade-off curves for all 18 patients in gray small dots. Black squares represent the clinical plans. Black circles are the GOMEA plans presented in the
observer study, representing from left to right on the trade-off curve the selected high-sparing, sparing, coverage/sparing, coverage, and high-coverage plan.
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averaged over all patients (range —0.6—14.7%, SD 4.3%, p
< 0.05). GOMEA plans with a similar or better LCI as the
clinical plan had an LSI that is 0.85 Gy larger than the LSI
associated with the clinical plan, averaged over all patients
(range 0.1-2.0 Gy, SD 0.6 Gy, p < 0.001).

Observer study

Table 2 shows the results of the observer study after pre-
senting additional clinical patient data, totaling to 3 ob-
servers X 18 patients = 54 cases. Results before
providing additional patient data are given in
Supplementary Table 1. In all cases, the preferred plan
was considered clinically acceptable. Furthermore, in all
cases, one or more GOMEA plans were considered clini-
cally acceptable. In 53/54 (98%) cases, a GOMEA plan
was preferred. One observer selected a clinical plan once
(p = 0.173), the two other observers never (p = 0.038).
The coverage plan was preferred most often. Observers
had different distributions of preferred plans, as shown in
Supplementary Fig. 6. One observer checked all six dose
distributions visually, while the other two first dismissed
plans based on the DVIs, and only visually inspected the
final one or two plans. The high-sparing plan was dismissed
most often for insufficient coverage. For five patients
(28%), one or more observers dismissed the clinical plan.

The preferred plan was changed eight times after pre-
senting clinical information, of which five times by one
observer. Half the changes were to increase coverage due
to a high Gleason score, the other half to decrease coverage
due to a low Gleason score or bad urinary flow. Five of
these eight changes were made for patients who had a
diffusion-weighted MRI.

Table 2

For most of the plans, prostate coverage vs. urethra
sparing was the dominating trade-off. In that case, ob-
servers generally looked for the plan with maximum pros-
tate coverage (visually inspected or based on the V")
while satisfying the urethra sparing criterion. Although,
for some patients, prostate coverage of this plan was
deemed insufficient, and a plan was chosen that violated
the urethra sparing criterion. In the visual inspection of
the dose distribution, observers focused on locations where
the target was not covered. The whole prostate was consid-
ered to be target volume and an underdose can only be
acceptable in parts where no tumor is expected. Observers
also focused on hotspots and the activation of dwell posi-
tions in close proximity of the OARs. In a few cases, ob-
servers mentioned that they would like to try to manually
improve GOMEA plans by disabling dwell positions or
by spreading out the dose more evenly over multiple dwell
positions. Overall, observers highly appreciated to see mul-
tiple plans simultaneously to get an impression of the
achievable trade-offs. Decision-making was said to be hard-
er when none of the presented plans satisfied all planning
criteria (patients 4, 7, 14, and 18).

Three patients (5, 8, and 11) were discussed in the
consensus meeting (Table 2). Observers easily came to an
agreement. For Patient 11, the clinical plan was preferred
over the other plans by one observer and later in the
consensus meeting by all observers. For this patient, all three
presented plans satisfy all planning criteria and observers
agreed all plans are clinically acceptable. The coverage/
sparing plan was dismissed based on the DVIs. Finally, the
coverage plan was dismissed as well because of a high value
of the additionally computed D, = 186% compared
with Dig{on . = 85% of the clinical plan.

Per patient, each observer indicated which of the six plans should be dismissed (—), which was the preferred plan after all clinical information was presented
(+), and which plan was chosen in the consensus meeting for patients 5,8 and 11 ().

Presented plans in the observer study

Patient High Sparing Sparing Coverage/sparing Coverage High coverage Clinical
1 - ++ +

2 - + ++

3 - + ++ -

4 - ++ +

5 - + +* +

6 —— ++ + -

7 - +++ ——
8 —— + + +*

9 —— + ++

10 - + ++

11 - + + +*
12 - + ++

13 —— ++ + -

14 ++ + - ——
15 — +++ -
16 —— ++ +-

17 - +++

18 + + + ——=

For patients 5, 8, and 11, the resulting preferred plans after the consensus meeting are denoted by (*).
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Discussion

The novel bi-objective treatment planning method that
was clinically evaluated for the first time in this work auto-
matically generates a large set of high-quality treatment
plans, from which the planner can then select the desired
plan. This makes treatment planning an insightful
decision-making process instead of a trial-and-error optimi-
zation process.

Recordings of the clinical planning sessions showed that
the bi-objective model corresponded well to our clinical
practice. Not all planning criteria in our clinical protocol
were included in the bi-objective model. First,
Dgg?,/im’e> 100% was omitted, which is a criterion that
should be satisfied, but should not be maximized further.
This distinction is important to notice and it highlights
the importance of considering each planning criterion care-
fully when configuring the model. Second, V5" <50%
and V%%fg"e <20% could be excluded in our case, as these
criteria have loose aims that were always achieved. Alter-
natively, if these criteria would need to be included anyway
by addition to the LSI, because a different clinical protocol
is used, or when extending this method to a different treat-
ment site, they could be rewritten as Dg’gfyffm <150% and
Dhyo' ™" <200% to avoid comparing indices with different
units (e.g., percentage of volume with percentage of dose).

GOMEA is by design able to handle more than two
objectives. Additional criteria based on indices with
different unit could therefore be added as third of fourth
objective. Nevertheless, so far, for the BT treatment plan-
ning application, we limited ourselves to the use of two
objectives. The main downside of additional objectives is
that it would make it harder to visualize the trade-off curve,
which potentially complicates the decision-making.

In the recordings, and during the visual inspection of the
dose distributions in the observer study, observers focused
not only on the planning criteria but on other aspects as
well: hotspots, the activation of dwell positions near the
OARs, and the location of areas where the target was not
covered. Ensuring target coverage locally can be incorpo-
rated in optimization by, for example, indicating which sub-
volumes (e.g., quadrants) of the prostate should be fully
covered because of tumor presence. The other aspects are
not easily quantified. Earlier attempts have shown to poten-
tially deteriorate plan quality, and different attempts were
shown to be inconsistent (31).

For some plans, observers mentioned they would like to
try to manually improve the plan, mainly to satisfy criteria
that are not explicitly in the clinical protocol. By not allow-
ing further improvements, it was showed that GOMEA plans
are already clinically acceptable in their current form,
without further tuning needed. Nevertheless, the potential
to further improve the automatically generated plans by
manual graphical optimization is of interest in future studies.

Several other planning approaches (4, 9) also model the
treatment planning problem based on the (approximated)

DVIs, but in a single-objective manner, where the trade-
off is represented by weighting criteria. Fig. 3 however
shows that the trade-off is patient-dependent and
Supplementary Fig. 6 suggests that the preferred plan was
in principle observer-dependent, although observers could
come to an agreement in the consensus meeting. These
confirm the value and validity of the DVI-based multi-
objective planning approach in this work.

A limitation of the present study is that not for all patients
the same set of clinical information was available to be pre-
sented in the observer study. The two-step approach in the
observer study gives some insight into how this affected
decision-making. Most changes of the preferred plan were
made for patients who had a diffusion-weighted MRI avail-
able, which might suggest that the diffusion-weighted MRI
is of additional value for decision-making. It also suggests
that more changes would have been made when this infor-
mation was available for all patients. However, with the
small total number of changes observers made, it is unknown
if having the same information for all patients would have
led to consistent changes in plan preference.

Future work will be to evaluate applicability of the bi-
objective optimization model to other planning criteria as
used by other institutes. In addition, development of novel
software tools that can allow fast navigation of GOMEA
plans instead of preselecting five plans is of interest for the
clinical implementation of our bi-objective treatment
planning.

Conclusion

To conclude, we retrospectively evaluated a novel bi-
objective BT planning method for use in our clinic. The
analysis of current clinical planning sessions showed that
the bi-objective model was easily configured and repre-
sented our clinical practice well. The observer study
demonstrated that the bi-objective method automatically
generates plans of high quality. For all patients and by all
observers, resulting plans were preferred over the clinical
plan in 98% of the cases. The ability to compare multiple
high-quality plans was considered insightful and highly
appreciated by the observers.
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