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Using experiment and modeling, we show that the data set generated when a learning algorithm is used to
optimize a quantum system can help to uncover the physics behind the process being optimized. In particular,
by optimizing the process of high-harmonic generation using shaped light pulses, we generate a large data set
and analyze its statistical behavior. This behavior is then compared with theoretical predictions, verifying our
understanding of the attosecond dynamics of high-harmonic generation and uncovering an anomalous region of
parameter space.
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Experiments that study the dynamics of quantum systems,
such as optical studies of atomic and molecular dynamics,
often employ a “pump-probe” configuration where a pump
pulse perturbs a system, and a probe pulse at varying time
delay probes its evolution [1]. However, this technique cor-
responds to a simplified case of the more-general “stimuli-
response” experiment, where by observing the dynamical re-
sponse of a system to varying stimulus, one can compare
experiment with hypothesis. Often, in the case where the
physics of a system is relatively simple, a pump-probe ex-
periment can provide the most-readily interpretable data.
However, pump-probe experiments can be difficult to inter-
pret in the case of a complex quantum system, where the full
dynamics are not already understood. Therefore devising
new approaches to uncover and understand the dynamics of
quantum systems is very important, in particular in the case
of complex chemical and biological systems. Another area
that requires a more sophisticated approach is the emerging
field of “attosecond science” where subfemtosecond electron
dynamics in atoms and molecules are observed. In this area,
experimental constraints limit the applicability of a straight-
forward “pump-probe” experiment, and instead experiments
infer various light source properties and electronic dynamics,
using various comparisons of experimental observations with
theoretical models [2–5].

The more general case of a stimulus-response experiment
was discussed by Rabitz [6] for the case of optically probed
quantum (i.e., atomic, molecular, or electronic) systems. He
suggested that the use of “learning algorithms” could both

accomplish coherent control over a quantum system to ob-
tain a desirable outcome [7–12], as well as provide informa-
tion about the quantum system itself. In past work, we dem-
onstrated the power of learning algorithms to selectively
optimize the generation of coherent extreme-ultraviolet light
using high-harmonic generation (HHG) [2]. By adjusting the
phase of the laser field guided by a learning algorithm, we
manipulated and optimized the quantum interferences that
occur during the HHG process to achieve selective optimi-
zation of a single harmonic order. A comparison of theory
with experiment was used to identify the mechanism behind
the optimization: an optimally shaped light pulse allowed the
phase of the radiating electron wave function to be adjusted
on 10–20 attosecond time scales to selectively optimize a
single harmonic order [13,14]. Both the optimization result
itself that allowed selective maximization of a particular har-
monic, as well as the mechanism behind the optimization,
were not anticipated in advance of the experiment. Therefore
new approaches that allow further validation of theoretical
models used in optimal control experiments are highly desir-
able.

In this work we show that by analyzing the statistical
behavior of the trial solutions generated during the process of
optimizing high-harmonic generation, we can independently
corroborate the mechanism behind the optimization, as well
as uncover interesting behavior for a quantum system. The
learning algorithm finds and probes an interesting, unex-
pected, and previously unobserved region of parameter space
where a single harmonic order is selectively optimized, and
where the chirps of adjacent harmonics have opposite sign.
All previous work demonstrated adjacent harmonic orders to
have similar chirps [15,16]. This anomalous chirp behavior
found by the learning algorithm leads to an observed anticor-
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relation in intensity between adjacent harmonic orders that
can be used to validate theory through a statistical analysis of
the data set. More generally, our analysis [17] and recent
parallel work on other systems [18,19] show that the entire
data set acquired during an optimization process is useful for
understanding the physical system under investigation. In a
learning algorithm experiment, the algorithm iteratively per-
forms thousands of experiments and observes the results of
each. Thus in the process of training the experimental appa-
ratus to optimize a quantum process we acquire a great deal
of information about the dynamics of the quantum system.
An analysis of the optimization pathway itself thus serves to
probe the dynamics and can be used to independently com-
pare with theoretical predictions. Understanding what can be
learned from optimal control data sets is particularly useful
in the case of nonperturbative, high-field phenomena that are
not well understood.

HHG is a coherent, nonlinear, optical process. In HHG, a
large number of visible-energy photons from an intense laser
pulse are combined into a single high-energy photon. The
semiclassical theory of HHG considers an atom irradiated by
an intense, ultrashort light pulse. At intensities approaching
1014 W cm−2, the optical field is sufficiently strong that the
Coulomb barrier binding the outermost electron to the atom
is suppressed. Electrons can then tunnel through the barrier,
leading to field ionization of the atom. This process occurs
twice per optical cycle as the optical field strength peaks.
Once ionized, the electrons oscillate in the light field and
some fraction of the ionized electrons recollide with the par-
ent ion and recombine with it, releasing their kinetic energy
as a high-energy photon. The shape of the driving laser pulse
determines the trajectory of the electron as it oscillates in the
laser field, and hence the quantum phase accumulated during
its trajectory, as well as the interferences that occur between
different adjacent electron trajectories. This quantum phase
in turn determines the harmonic phase and ultimately the
spectrum of the generated high-harmonic radiation.

In our experiment, mJ-energy pulses from a 1-kHz
repetition-rate laser system [20] were focused into a 175
-�m-diameter argon-filled hollow waveguide. This creates a
phase-matched comb of harmonics containing the 23rd–31st
orders [21]. The waveguide geometry creates an extended
region of high laser intensity and long coherence length to
efficiently generate the high-harmonic radiation, which is ob-
served using a spectrometer–x-ray charge-coupled device
camera system. A deformable mirror pulse shaper [22] and
an evolutionary strategy algorithm were then used to selec-
tively optimize the 27th harmonic, while simultaneously sup-
pressing the 25th and 29th orders. The optimum pulse shape
is found after about 100 iterations of the learning algorithm,
each of which consists of about 100 trials.

Although the learning process is fundamentally “trial and
error,” this does not mean that the pathway the learning al-
gorithm takes toward optimization is a random one. In par-
ticular, there are very significant changes in the statistical
behavior of the “optimum” solution as the optimization pro-
ceeds, reflecting the guidance provided by the learning algo-
rithm. Figure 1(a) shows the peak intensity of the 25th, 27th,
and 29th harmonic orders for the optimal pulse shape from
each iteration of the learning algorithm, where the learning

algorithm fitness function, f =1− �b25+b29� /2b27, is con-
structed to selectively optimize the 27th harmonic, increas-
ing the intensity contrast between the 27th and the neighbor-
ing harmonic orders. Here bi is the brightness of the ith
harmonic. The correlation between the intensities of the 25th
and 29th harmonic orders is plotted in Figs. 1(b)–1(d) for the
first, second, and third fractions of the data set. Initially, [Fig.
1(b)] the pulse shapes that correspond to the trial population
are random. However, after a few iterations there exists a
population of shapes that largely do generate a high-
harmonic spectrum. Furthermore, the initial pulse shapes
generally do not selectively enhance a particular harmonic
order in comparison with the relative harmonic magnitudes
obtained from a transform-limited pulse. In this early stage,
the intensity of all harmonic orders fluctuates together; i.e.,
the intensities are correllated. However, by the end of the
optimization process [Fig. 1(d)], the intensity of the 27th
harmonic has been enhanced, and the intensities of the 25th
and 29th harmonics are strongly anticorrelated.

We can quantify this relationship by using Spearman’s
rho—a correlation function that enumerates correlated trends
in pairwise data [23]. If both monotonically increase, the
correlation is 1, while if one increases and the other de-
creases, the value is −1 (anticorrelated case). The value of
Spearmann’s rho for the first four iterations of the learning
algorithm is +0.80 and +0.54 for the first six generations,
indicating the neighboring harmonic orders exhibit a strong
positive correlation. This positive correlation between the
neighboring harmonic orders indicates that the brightness of
both of the neighboring harmonic orders either increase or
decrease in response to pulse shape perturbations. However,
as the algorithm progresses, it begins to find pulse shapes
that exhibit the desired harmonic-order selectivity, and this is
also accompanied by changes in the statistical correlations of
the HHG spectra, in which the 25th and 29th order harmon-
ics become anticorrelated. This indicates that the learning
algorithm has found a different region of parameter space for

FIG. 1. (a) Peak brightness of the 25th, 27th, and 29th, harmonic
orders from an experiment to selectively optimize the 27th order. A
correlation map of the 25th and 29th harmonic orders for the first
(b), second (c), and third (d) fractions of the learning algorithm
experiment.
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driving HHG. We can observe this transition by calculating
Spearmann’s rho for a moving window across the data set as
shown in Fig. 2(a) (triangles); note that the window width of
15 was chosen to maximize the average confidence of the
statistical analysis (most of the statistics exhibited a confi-
dence of �90% in the calculated correlation value) across
the data set. After only �ten generations, the data become
anticorrelated. This anticorrelation is accompanied by an in-
crease in the fitness [Fig. 2(a), points], indicating that the
harmonic selectivity is associated with the anticorrelated be-
havior. This relationship between the correlation and fitness
is better elucidated by plotting their relationship, as shown in
Fig. 2(b), where the color is graded from dark to light for
high to low confidence in the correlation result. We see a
steady change in the correlation from positive to negative
values that coincides with an increasing fitness value.

The discussion above shows that as the learning algorithm
finds pulses that preferentially enhance the 27th harmonic,
the intensity fluctuations of the 25th and 29th harmonic or-
ders due to perturbations of the trial pulse shapes become
anticorrelated. The algorithm was very effective at increas-
ing the intensity of the 27th harmonic by nearly an order of
magnitude, by means of a process we have termed intra-
atomic phase matching (IAPM), described elsewhere [14].
As explained above, the HHG emission phase is determined
by the quantum phase that the electron wave packet accumu-
lates during its free trajectory in the laser field, and depends
on the integral history of the amplitude and phase over the
fraction of the driving laser pulse when the electron is free.
Thus, by controlling the laser pulse shape with sub-optical-
cycle sensitivity, we control the recollision times of the elec-
tron wave function during different half cycles of the laser
pulse. This controls the phase of the harmonic emission from
each half cycle. A properly sculpted driving pulse will ensure
that the 27th-harmonic radiation generated in each half-cycle
of the driving field interferes constructively for the �ten half

cycles that contribute to the harmonic. This increases the
intensity of the 27th order. On the other hand, simulations
also predict that for the same optimized pulse shape, the
adjacent 25th and 29th harmonic orders are generated with a
phase variation of hundreds of attoseconds and with opposite
chirp. These calculations are shown in Fig. 3 (black points).

The ability to enhance HHG using shaped light pulses via
IAPM is consistent with our understanding of the physics of
HHG. During the leading edge of a transform-limited laser
pulse, the increasing laser intensity leads to the generation of
harmonics with increasing values of negative chirp, as a re-
sult of the intensity-dependent phase acquired by the propa-
gating electron [15,16]. This chirp can be partially compen-
sated for by adjusting the chirp of the laser. However, only
by finding a nonlinearly chirped laser pulse using the learn-
ing algorithm can a relatively flat harmonic phase and sig-
nificant enhancements of the harmonic intensity be obtained
[2,13,14]. Moreover, because the harmonic phase increases
slightly from harmonic to harmonic, the optimal laser pulse
can achieve selective optimization of a single harmonic or-
der. Finally, since the harmonic chirp varies monotonically
with increasing harmonic order, if one harmonic is optimized
for flat phase, then adjacent harmonics will have opposite
chirps. As a result, small variations in laser pulse chirp (as a
result of small variations in laser phase about the optimal

FIG. 2. (a) Correlation of the 25th and 29th experimental har-
monic brightness as a moving window (15 generations wide) is
scanned along algorithm generations (triangles) and the correspond-
ing average fitness value (points). (b) Correlations plotted vs the
average fitness value for the data in (a), where the color is graded
from dark to light for high to low confidence in the correlation
result.

FIG. 3. Physical mechanism behind the anticorrelated intensity
behavior observed for neighboring harmonic orders with small
pulse shape perturbations about the optimal pulse shape for selec-
tive optimization of the 27th order. Black points: calculated distri-
bution of the harmonic emission phases for each recollision event
for an optimal pulse shape that can select a single harmonic order.
In this case, the target harmonic order phases are well aligned
(maximum harmonic intensity) while neighboring orders have op-
posite signs of curvature (yielding lower intensity harmonics). Gray
points: a slight perturbation in the laser pulse shape has little effect
on the target harmonic. However, the higher (29th) harmonic order
emission from each recollision event becomes more in phase, which
will lead to an increase in intensity, while the lower harmonic order
(25th) will decrease in intensity. This will result in an anticorrela-
tion in the brightness of neighboring harmonic intensities in re-
sponse to optimal pulse shape perturbations.
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pulse shape to select a single harmonic order) can lead to an
anticorrelated intensity behavior for the adjacent harmonic
orders. Thus the data of Figs. 1 and 2 further validate the
IAPM mechanism.

The physical mechanism behind the anticorrelated behav-
ior for the adjacent harmonic orders is show in Fig. 3, which
shows the harmonic phases corresponding to the optimal
pulse (black points) as well as those corresponding to an
example perturbation (gray points) about the optimal point.
As the learning algorithm probes parameter space to reshape
the driving laser pulse after the optimized pulse shape is
found, it effectively shifts the relative timing of the electron
recollision events by small amounts. This timing shift is
similar for all harmonic orders. Pulse shape perturbations
that make a particular recollision event become more out of
phase for the 25th order will move the timing of that recol-
lision event more in phase for the 29th order, and vice versa
as indicated in Fig. 3 (gray points). Therefore, the intensities
of the 25th and 29th orders should be anticorrellated, for
some small pulse shape perturbations about the optimal point
for selective enhancement of the 27th order. Thus a statistical
analysis of the data can validate the mechanism for optimi-
zation. This behavior was not known or predicted previously;
but rather was discovered by the optimization process, both
experimentally and theoretically, and validated by the statis-
tical behavior of the data. Previously, there was no mecha-
nism for selective optimization of a single harmonic order, or
for imparting different phases and chirps on adjacent har-
monic orders, or for observing anticorrelated intensity be-
havior.

We also carried out numerical simulation of the learning
experiment and performed identical statistics on the simu-
lated data, in order to show that both experiment and theory
reproduce the same statistical behavior and to further vali-
date the IAPM mechanism. Our numerical models for high
harmonic generation are described elsewhere [14]. Figure
4(a) shows the calculated peak intensity of the 25th, 27th,
and 29th harmonic orders for each trial pulse shape from
each iteration of the learning algorithm simulation. The cor-
relation between the 25th and 29th harmonic orders from the
entire set of simulated data is plotted in Figs. 4(b)–4(d) for
the first, second, and third fractions of the data set. These
data demonstrate that the statistical changes in the 25th and
29th harmonic intensities are similar to that observed experi-
mentally. Note that because of the different number of theory
data points, different initial conditions, noise levels and mu-
tation rates in the experiment and theory, the appearance of
Figs. 1 and 4 are somewhat different. This is also expected
because the theoretical phases that are added to the pulse can
be more varied than the experimental values, because of the
imperfect nature of the pulseshaper that likely limits the
available pulse shapes to those with relatively low-order
phase variations. This will lead to a more pronounced anti
correlation behavior for the experimental data, since many
high-order phase variations will not lead to flatter phase for
one harmonic and thus will not exhibit any anticorrelation in
the intensities.

Figure 5(a) shows the moving window Spearmann’s rho
for the simulated data; note the window width of 100 was
chosen to maximize the average confidence value across the

data set. The anticorrelated behavior [Fig. 5(a), triangles], is
evident in the simulation as the optimization proceeds, and is
again accompanied by an increase in the fitness [Fig. 5(a),
points], indicating selectivity of harmonic orders occurs for
pulse shapes that exhibit anticorrelated behavior. The rela-
tionship between the correlation and fitness for the simulated
data is shown in Fig. 5(b), where again the color is graded
from dark to light for high to low confidence in the correla-
tion result. The agreement between the statistical behavior of
experiment and theory in Figs. 2 and 5 demonstrates the use
of learning algorithms to uncover interesting and unexpected
dynamics in complex quantum systems.

When comparing experiment and theory from Figs. 2(b)

FIG. 4. (a) Peak brightness of the 25th, 27th, and 29th, harmonic
orders from a learning algorithm simulation designed to selectively
optimize the 27th harmonic. A correlation map of the 25th and 29th
harmonic orders for the first (b), second (c), and third (d) fractions
of the learning algorithm simulation.

FIG. 5. (a) Correlation of the 25th and 29th theoretical harmonic
brightness as a moving window is scanned along algorithm genera-
tions (triangles) and the corresponding average fitness value
(points). (b) Correlations plotted vs the average fitness value for the
data in (a), where the color is graded from dark to light for high to
low confidence in the correlation result.
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and 5(b), the dark data points should be used. These are the
data points for which there is a high degree of confidence in
the correlation result. Experimentally in Fig. 2(b), the 25th
and 29th harmonic orders start out slightly correlated, and
become strongly anticorrelated. Theoretically in Fig. 5(b),
the 25th and 29th harmonic orders start out correlated, and
become anticorrelated. The difference between theory and
experiment at the start of the optimization can be explained
by varying initial conditions, and small positive correlations
could be due to overall pulse duration and intensity fluctua-
tions. At the end of the optimization (which can occur over a
different number of iterations for theory and experiment),
when the fitness is high indicating selective optimization, the
25th and 29th harmonics show anticorrelated behavior for
both theory and experiment for those points (dark) that have
a high degree of confidence in the correlation results. Thus
there is good agreement between theory and experiment,
even in the detailed statistical behavior of the optimization.
One would not expect perfect agreement because the noise

levels, mutation rates, and accessible pulse shapes are not the
same for theory and experiment.

In conclusion, this analysis represents a different demon-
stration of extracting the temporal dynamics of a high-field
quantum process by studying the ensemble behavior of the
populations involved in a learning control optimization pro-
cedure. Analyses of the complete data sets were used to
study the global behavior of the attosecond dynamics and
control of free electron wave packets and to validate the
mechanism behind selective optimization of high-harmonic
generation. Moreover, the learning control algorithm auto-
mates the study of the parameter space, and selects an inter-
esting and useful region for investigation.
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