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ABSTRACT

As the COVID-19 pandemic continues, new SARS-CoV-2 variants with potentially dangerous features have been identified by
the scientific community. Variant B.1.1.7 lineage clade GR from Global Initiative on Sharing All Influenza Data (GISAID) was
first detected in the UK, and it appears to possess an increased transmissibility. At the same time, South African authorities
reported variant B.1.351, that shares several mutations with B.1.1.7, and might also present high transmissibility. Earlier this
year, a variant labelled P.1 with 17 non-synonymous mutations was detected in Brazil. Recently the World Health Organization
has raised concern for the variants B.1.617.2 mainly detected in India but now exported worldwide. It is paramount to rapidly
develop specific molecular tests to uniquely identify new variants. Using a completely automated pipeline built around deep
learning and evolutionary algorithms techniques, we designed primer sets specific to variants B.1.1.7, B.1.351, P.1 and
B.1.617.2 respectively. Starting from sequences openly available in the GISAID repository, our pipeline was able to deliver the
primer sets for each variant. In-silico tests show that the sequences in the primer sets present high accuracy and are based on
2 mutations or more. In addition, we present an analysis of key mutations for SARS-CoV-2 variants. Finally, we tested the
designed primers for B.1.1.7 using RT-PCR. The presented methodology can be exploited to swiftly obtain primer sets for each
new variant, that can later be a part of a multiplexed approach for the initial diagnosis of COVID-19 patients.

Introduction

SARS-CoV-2 mutates with an average evolutionary rate of 10−4 nucleotide substitutions per site each year1. As the pandemic
of SARS-CoV-2 continues to affects the globe, researchers and public health officials constantly monitor the virus for variants
of concern (VOC) with acquired mutations that may pose a treat to global health such as: a higher rate of transmissibility,
change in epidemiology, virulence, clinical presentation, mortality, vaccine/therapeutics resistance, or decrease in effectiveness
of public health measures2.

On December 14th, 2020, Public Health authorities in England reported a new SARS-CoV-2 variant, 3–5, which belongs
to the B.1.1.7 (which include all Q. lineages used for fine geographical localization of the variant) Pango lineage6, 7, GRY
clade from GISAID (Global Initiative on Sharing All Influenza Data)3, 8, 9, Nextstrain clade 20I(V1)10. This was the first VOC
raised by the World Health Organization (WHO), and was recently termed as the Alpha variant2. This variant presents 14 non-
synonymous mutations, 6 synonymous mutations, and 3 deletions. The multiple mutations present in the viral RNA encoding
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for the spike protein (S) are of most concern, such as the deletion469-70 (421765-21770), deletion4144 (421991-21993),
N501Y (A23063T), A570D (C23271A), P681H (C23604A), D614G (A23403G), T716I (C23709T), S982A (T24506G),
D1118H (G24914C)4, 9. Additional amino acid changes in the Spike domain, found only in a subset of the population, which
are being monitored by the WHO, include those in the 484K and 452R positions2. The SARS-CoV-2 S protein mutation N501Y
alters the protein interactions involved in receptor binding domain. The N501Y mutation has been shown to enhance affinity
with the host cells ACE2 receptor9, 11 and to be more infectious in mice12. The mutation P681H is adjacent to the furin cleave
site of the S protein and, although there is evidence that it might play a role in SARS-CoV-2 transmission and infection 13–15,
the effect of such mutations is still under debate16, 17. The D614G mutation has been found to enhances viral replication, viron
density and infectivity18, 19. The alpha variant has 43 to 90% higher reproduction number than pre-existing variants increasing
its transmissibility 3, 20, 21. The jury is still out on its effect on clinical severity and outcome, although there is evidence of
increased clinical severity22 and increased mortality risk when compared with previous variants23. The Alpha variant remains
susceptible to most monoclonal antibody therapy treatment targeting Spike protein for Covid-19 like: Bamlanivimab-etesevimab,
Casirivimab-imdevimab, and others 24–28. Plus it has minimal impact on neutralization by convalescent and post-vaccination
sera29–32. The presence of the Alpha variant rapidly increasing in the UK earlier this year, spreading across the globe becoming
the first major global circulating VOC 8, 9, 21, 33, 34, before the arrival of the most recent VOC, the Delta variant which is now
displacing other variants8, 35–37.

In parallel, on December 18th, 2020, the WHO declared a new VOC, the Beta variant, first identified by the South
African authorities that was rapidly spreading across 3 of their provinces and displacing other variants5, 38. This variant is
also knows know as B.1.351 Pango lineage, GH/501Y.V2 GISAID clade, and 20H (V2) Nextrain clade. The B.1.351 variant
harbours 19 mutations, with 9 of them situated in the Spike protein: mutations N501Y (A23063T), E484K (G23012A), and
K417N (G22813T) are at key residues in the receptor-binding domain (RBD) domain of S protein, L18F (C21614CT), D80A
(A21801C), and D215G (A22206AG) are in the N-terminal domain, A701V (C23664T) in loop 2, and D614G (A23403G)38.
Additional amino acid changes being monitored by the WHO are those on L18F position2. Although the B.1.351 variant also
has the N501Y mutation in the Spike protein, similarly to the B.1.1.7 variant in the UK, the B.1.351 variant arose independently
in a different SARS-CoV-2 lineage, which forms part of the 20H/501Y.V2 phylogenetic clade in Nextstrain10. Although
uncommon in SARS-CoV-2 variant strains, the E484K mutation has been shown to moderately enhance binding affinity of
the ACE2 receptor11. Mutation K417N is located in a key contact between the S protein and the human ACE2 receptor: a
previous mutation in this residue has been shown to contribute to enhanced affinity of SARS-CoV-2 to the ACE2 receptor when
compared to SARS-CoV39, 40. The E484K and K417N mutations in combination with the N501Y have been shown to affect
neutralization by monoclonal antibodies and convalescent sera38, 41–46. As such the Beta variant has reduced susceptibility
to monoclonal antibody therapy like bamlanivimab and etesevimab25, 28, 47, 48 and it also shows reduced neutralization to
convalescent and post-vaccination sera27, 31, 32, 49, however it remains susceptible to casirivimab and imdevimab monoclonal
antibody therapies25, 28, 50. The Beta variant also has a 50% increase in transmission rate51, and is associated with an increase in
excess deaths per week38. The Beta variant spread across Africa becoming the main VOC in this region earlier this year6, 8, 34,
before being displaced by the Delta variant.

On early January, Japan reported a new SARS-CoV-2 variant from 4 travellers from Brazil52. This variant was later reported
to be widely circulating in Brazil33, 53. On the 11th of January the WHO assigned it as VOC, the Gamma variant2, it is also
know as P.1 Pango lineage, GR/501Y.V3 GISAID clade or 20J (V3) Nexstrain clade. The P.1 variant harbours 17 unique amino
acid changes, three deletions, four synonymous mutations, and one 4-nucleotide insertion. The P.1 Variant harbours similar
mutations in the Spike protein to those find in the B.1.1.7 and B.1.351 variant like the N501Y, E484K, K417T and D614G.
Additional amino acid changes being monitored by the WHO are those on 681H position 2. Although the rate of infection
and mortality of the Gamma variant are still being investigated, studies have shown a change in pattern of infection, as well
as a significant change in case fatality rates associated with this variant suggesting a change in pathogenicity and virulence
profile of the Gamma variant54, 55. The Gamma variant significantly reduces the susceptibility to bamlanivimab and etesevimab
monoclonal antibodies28, 47, 48, but remains susceptible to casirivimab and imdevimab monoclonal antibody therapies28, 50. The
Gamma variant is more resistant to neutralization by convalescent and post-vaccination sera56, plus an increase in reinfection
cases has been associated to this variant57–59, raising concern about the need to test monoclonal antibodies in clinical against
new VOC, and plausible updates to mRNA vaccines to avoid a potential loss of clinical efficacy60. The P.1 variant is effects still
requires further study, it has been identified in the Amazonia in Brazil, as in other countries10, 53, 57. The Gamma variant spread
across South America becoming the main VOC in this region until this day8.

On May 11th 2021, the WHO announced a VOC, the Delta variant, which was first identified in India and linked to the
rapid and deathly second wave of the country33, 61. The Delta variant is also knows as B.1.617.2 Pango lineage (which include
all AY. lineages used for fine geographical localization of the variant and do not imply any functional biological differences)37,
G/478K.V1 GISAID clade or 21A Nexstrain clade. The B.1.617.2 harbours the next mutations in the Spike protein T19R,
4156-157, L452R, T478K, D614G, P681R,R158G and D950N33, 61–64. Additional amino acid changes being monitored by
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the WHO are those on 417N position 2. The L452R mutation has been shown to increase SARS-CoV-2 viral infectiousness
and replication65. Interestingly. L452R and E484Q have been found to disrupt the interfacial interactions of the Spike RBD
with neutralizing antibodies66, 67. Furthermore, the L452R has been found to be a positive adaptive mutation driving the
spread of similar variants with these mutations such like the ones in California68. The T478K is located at the interface of
the Spike/ACE2 interaction domain15, 69, and enhance stabilization of the Spike RBD with the ACE2 complex70. The Delta
variant has been show to lead to a 64% higher household transmission rate71, higher viral loads72, 73 and increase in hospital
and ICU admissions when compared with the Alpha variant74, 75. It has been associated to an increase in infections and excess
deaths across the globe64, 72, 76, 77. The Delta variant has been shown to be resistant to monoclonal antibody therapy treatment
with bamlanivimab25, 28, 47, 78, but remains susceptible to casirivimab, imdevimab and etesevimab25, 28, 47, 50. Furthermore, the
Delta variant has reduce neutralization by convalescent25 and modestly reduced sensitivity to Comirnaty/BNT162b2 mRNA
vaccine75, 78–80 and ChadOx-1 vaccine sera36, 75, 80 requiring two-doses for full protection. Although several cases of reinfection
from the Delta variant have been documented in partially and fully vaccinated individuals and previously Covid-19 infected
patients81, the severity of infection and risk of hospitalization remains lower in vaccinated individuals74, 82. Therefore, the main
concern remains in the greater burden seeing so far on health-care services due to outbreaks on unvaccinated population74.
The Delta variant has spread like wildfire across the globe rapidly since its explosive rise in India on May, it has now become
the major VOC globally rapidly displacing other variants8, 35, 71, 73. Given its high prevalence and clinical implications many
countries have started implemented stronger vaccine policies83, considering the need of additional doses for vulnerable
population84 and the need for vaccine updates to combat waning immunity85.

Given the rapid spread of these VOC, and their impact on global health, it has become of utmost importance for countries to
be able to rapidly identify and detect them. Several diagnostic kits have been proposed and developed to diagnose SARS-CoV-2
infections. Most kits rely on the amplification of one or several genes of SARS-CoV-2 by real-time reverse transcriptase-
polymerase chain reaction (RT-PCR)86, 87. Recently, Public Health England was able to identify the Alpha variant through their
national surveillance system which allowed them to notice the rise in Covid-19 positive cases in South Easter England. The
Alpha variant was detected through the increase in S-gene target failure (negative results) from the otherwise positive target
genes (N, ORF1ab) in the three target gene assay in their RT-PCR diagnostic tests, and random whole genome sequencing of
some of this positive samples3, 67. In the case of the Beta38, 88, 89 and Gamma53, 90 variants were identify through the increase
in positive Covid-19 cases and deaths and by random whole genome sequencing of positive Covid-19 samples, through
their national and international diagnosis and surveillance system efforts. In the case of the Delta variant, most countries
rely on the clinical differences between the variants and if the RT-PCR has a S fall out (indicating Alpha variant) or not
indicating a plausible Delta variant75. Although several PCR methods and kits for the identification of this variants have been
proposed91, 92, they usually rely on the well know Spike protein mutations, which often are shared with other VOIs and variants
of SARS-CoV-2, and rapidly get obsolete due to the virus evolution93. Making sequencing the only reliable way to diagnose it,
however this is cost prohibiting and many times not available in lower income countries.

In a previous work94, we developed a methodology based on deep learning, able to generate a primer set specific to
SARS-CoV-2 in an almost fully automated way. Then, we reduced the necessary time by half using evolutionary algorithms95.
When compared to other primers sets suggested by GISAID, our approach proved to deliver competitive accuracy and specificity.
Our results for SARS-CoV-2 detection, both in-silico and with patients, yielded 100% specificity, and sensitivity similar to
widely-used diagnostic qPCR methods. One of the main advantages of the proposed methodology was its ease of adaptation to
different viruses or mutations, given a sufficiently large number of complete viral RNA sequences. In this work, we improved
the existing semi-automated methodology, making the pipeline completely automated, and created primer sets specific for the
SARS-CoV-2 variants B.1.1.7, B.1.351, P.1, B.1.6173.*, and B.1.1.519 in under 10 hours for each case study. The developed
primer sets, tested in-silico, proved not only to be specific, but also to be able to distinguish between the different variants. In
addition, we have validated our B.1.1.7 primers by RT-PCR, finding them to be specific to B.1.1.7 and sensitive enough for
detection by this method. With this new result, we believe that our method represents a rapid and effective diagnostic tool, able
to support medical experts both during the current pandemic, as new variants of SARS-CoV-2 may emerge, and possibly during
future ones, as still unknown virus strains might surface.

Results
Variant B.1.1.7
As explained in the Methods section, the first step is to run a Convolution Neural Network (CNN) classifier on the data. This
yields a classification accuracy of 99.66%. Secondly, from an analysis of the features constructed by the CNN, we extract 7,127
features, corresponding to 21-bps sequences. Next, we run a state-of-the-art stochastic feature selection algorithm 10 times, to
uncover the most meaningful ‘21-bps’ features for the identification of variant B.1.1.7. While the best result corresponds to a
set of 16 ‘21-bps’ features, using only one is enough to obtain over 99% accuracy.

These features represent good candidates for forward primers. From the 10 runs, we get 10 different ‘21-bps’ features: 5
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out of the 10 point to mutation Q27stop (C27972T), 3 point to mutation I2230T (T6954C), and 2 to a synonymous mutation
(T16176C). Using Primer3Plus we compute a primer set for each of the 10 features, using sequence EPI_ISL_601443 as the
reference sequence. Only the two ’21-bps’ features that include mutation T16176C are suitable for a forward primer. The
two features are ACCTCAAGGTATTGGGAACCT and CACCTCAAGGTATTGGGAACC: it is easy to notice that the
two features are actually part of the same sequence, just displaced by a bps, and therefore generate the same reverse primer
CATCACAACCTGGAGCATTG.

For further analysis, we check the presence of the signature mutations of B.1.1.7; T1001I, A1708D, I2230T, SGF 3675-3677
deletion, HV 69-70 deletion, Y144 deletion, N501Y, A570D, P681H, T716I, S982A, D1118H, Q27stop, R52I, Y73C, D3L and
S235F of variant B.1.1.796. To verify the presence of mutations, we generate 21-bps sequences, with 10 bps before and after
the mutation, and search for their presence: e.g., mutation N501Y (A23063T) corresponds to sequence CCAACCCACT T
ATGGTGTTGG.

Using the generated ‘21-bps’ sequences for the mutations, we can also test them as forward primers using Primer3Plus,
which yields TGATATCCTTGCACGTCTTGA in spike gene S982A as the only possible forward primer candidate, this
sequence can be used for multiplex testing (Fig. 1).

Figure 1. Frequency of appearance of characteristic mutations of B.1.1.7 Variant in 2,096,390 SARS-CoV-2 sequences
downloaded from GISAID in August 11th, 2021.
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Variant B.1.351
Again, the first step is to run a CNN classifier on the data. This yields a classification accuracy of 99.88%. Next, we
translate the CNN weights into 6,069 features, each representing a 21-bps sequence. we run the feature selection algorithm
10 times, which results in only one meaningful feature achieving over 99% accuracy. The 10 runs point to the same
mutation, K417N, with 6 different sequences but only one acceptable as a primer candidate. The resulting sequence is
CTCCAGGGCAAACTGGAAATA, with a reverse primer TGCTACCGGCCTGATAGATT.

We check whether 21-bps sequences containing the signature mutations T265I, K1655N, K3353R, SGF 3675-3677 deletion,
L18F, D80A, D215G, R246I, K417N, E484K, N501Y, A701V, 242-244 del, Q57H, S171L, P71L, and T205I of variant
B.1.35196 could function as a forward primer. From the Primer3Plus results using EPI_ISL_678597, mutations D215G
(TTAGTGCGTGGTCTCCCTCAG) and Q57H (CTGTTTTTCATAGCGCTTCCA) can be used as forwards primers
(Fig. 2).

Figure 2. Frequency of appearance of characteristic mutations of B.1.351 Variant in 2,096,390 SARS-CoV-2 sequences
downloaded from GISAID in August 11th, 2021.

Variant P.1
The CNN classifier on the data yields a classification accuracy of 100%, in the 28 samples. Next, we translate the CNN weights
into 727 features, each representing a 21-bps sequence. We run the feature selection algorithm 10 times, which results in
only one meaningful feature achieving 100% accuracy. The 10 runs point to the same sequence, around the synonymous
mutation T733C ACTGATCCTTATGAAGACTTT. The sequence cannot be used as a primer, as the Tm is too low. To
compensate, we displaced the sequence two bps to the left and added a bps to rise the Tm. This procedure gave us sequence
GGCACTGATCCTTATGAAGACT, of size 22 bps, with reverse primer TTCGGACAAAGTGCATGAAG.

We check whether the sequences containing signature mutations S1188L, K1795Q, E5665D, SGF 3675-3677 deletion,
T20N/L18F, P26S, D138Y, R190S, K417T, EA84K, N501Y, H655Y, T1027I, E92K, ins28269-28273 AACA, and P80R of
variant P.153 could function as a forward primers. We put mutation T20N and L18F into the same ‘21-bps’ sequence, given their
proximity. From the Primer3Plus results using EPI_ISL_792683 , 3 of the generated sequences using mutations can be forward
primers candidates; K417T (CAAACTGGAACGATTGCTGAT), H665Y (AGGGGCTGAATATGTCAACAA) and P80R
(AATAGCAGTCGAGATGACCAA) (Fig. 3).
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Figure 3. Frequency of appearance of characteristic mutations of P.1 Variant in 2,096,390 SARS-CoV-2 sequences
downloaded from GISAID in August 11th, 2021.
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Variant B.1.617.2
Using the sequences of variant B.1.617.2 downloaded from the GISAID repository we ran an evolutionary algorithm 10
times to find the most important sequences to separate the B.1.617.2 from the rest of the sequences. From the results
4 out of 10 point to mutation D63G, 4 to mutation I82T and 2 to mutation T120I. The forward primer for mutation
I82T is (CTACCGCAATGGCTTGTCTT) and for mutation D63G is (ATGGCAAGGAAGGCCTTAAA) using sequence
EPI_ISL_1337507. Then, we make an analysis of the characteristic mutations of lineage B.1.617.2; T19R, L452R, T478K,
P681R, D950N, S26L, I82T, V82A T120I, D63G, R203M, D377Y and Del 156-15797. Where sequences of mutations T478K
(GCCGGTAGCAAACCTTGTAAT), V82A (GCCAGATCAGCTTCACCTAAA) and R203M (GGCAGCAGTATGGGAACTTCT)
can be used as forward primers in multiplex approach (Fig. 4). It is important to consider that lineage AY.3 with B.1.617.2 are
part of the Delta variant.

Figure 4. Frequency of appearance of characteristic mutations of B.1.617.2 Variant in 2,096,390 SARS-CoV-2 sequences
downloaded from GISAID in August 11th, 2021.
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Experimental evaluation of B.1.1.7 Primer specificity
The RT-PCR amplification curves obtained with B.1.1.7 specific primer set B.1.1.7-1 and SARS-CoV-2 generic primers IP2
and IP4 (following the Pasteur Institute Protocol)98 on two SARS-CoV-2 strains are shown result in Fig. 5. As expected, only
the B.1.1.7 strain is amplified the B.1.1.7-1 primers, while both the Wuhan reference strain and the B.1.1.7 strain are detected
by the generic primers. Fig. 5. Comparison between non-specific primer set IP2 and IP4 and our designed primer set B.1.1.7-1
for B.1.1.7 variant and the original Wuhan SARS-CoV-2 strain.

Figure 5. Comparison between non-specific primer set IP2 and IP4 and our designed primer set B.1.1.7-1 for B.1.1.7 variant
and others.

Discussion
A single-nucleotide mutation may not be enough to work as a specific primer for detecting SARS-CoV-2 variants. Thus, from
the analysis of the characteristics mutations for each variant and the results of our pipeline, we created a list of primer sets
based upon 2 or more mutation for each variant. For variant B.1.1.7 we created 3 primer sets, for variants B.1.351, and P.1
we created 2 options for each one, and for B.1.617.2 we created 3 different combinations (Table 1). Using Primer3Plus for
in-silico simulations, we tried to maintain acceptable levels of temperature and an 18-22 bps size. Nevertheless, it was not
always possible e.g. for P.1 variant the forward primers contain sequences size 25 bps. Another thing to consider is the product
size, depending of which primer is going to be used the size will vary, as each primer falls into at least one mutation. The
frequency of appearance for the different sequences is in Fig. 6.

A wide variety of diagnostic tests have been used by high-throughput national testing systems around the world, to monitor
the SARS-CoV-2 infection86. The arising prevalence of new SARS-CoV-2 variants such as B.1.1.7, B.1.351, P.1 and B.1.617.2
have become of great concern, as most RT-PCR tests to date are not be able to distinguish these new variants, not being designed
for such a purpose. Therefore, public health officials most rely on their current testing systems and whole viral RNA sequencing
results to draw conclusions on the prevalence of new variants in their territories. An example of such case has been seen in the
UK, where the increase of the B.1.1.7 SARS-CoV-2 variant infection in their population was identified only through an increase
in the S-gene target failure in their three target gene assay (N+, ORF1ab+, S-), coupled with sequencing of the virus and
RT-PCR amplicons products3. Researchers believe that the S-gene target failure occurs due to the failure of one of the RT-PCR
probes to bind, as a result of the469-70 deletion in the SARS-CoV-2 spike protein, present in B.1.1.73. This469-70 deletion,
which affects its N-terminal domain, has been occurring in several different SARS-CoV-2 variants around the world10, 99 and
has been associated with other spike protein receptor binding domain changes9. Due to the likeliness of mutations in the S-gene,
assays relying solely on its detection are not recommended, and a multiplex approach is required86, 87, 100. This is consistent
with other existing primer designs like CoV2R-3 in the S-gene101, that will also yield negative results for the B.1.1.7 variant, as
the reverse primer sequence is in the region of mutation P681H. A more in-depth analysis of S-dropout positive results can be
found in Kidd et al.102.

Given the concern for the increase in prevalence of the new variants SARS-CoV2 B.1.1.7, B.1.351, P.1 and B.1.617.2 and
their possible clinical implication in the ongoing pandemic, diagnosing and monitoring the prevalence of such variants in the
general population will be of critical importance to help fight the pandemic and develop new policies. In this work, we propose
possible primer sets that can be used to specifically identify the B.1.1.7, B.1.351, P.1 and B.1.617.2 SARS-CoV2 variants. In
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Table 1. Sequences of the primer sets for B.1.1.7, B.1.351, P.1 and B.1.617.2 lineages.

Mutation Sequence Target
B.1.1.7-1 (244 bp) HV 69-70 deletion F-CATGCTATCTCTGGGACCAAT B.1.1.7

Y144 deletion R-TGTTGTTTTTGTGGTAAACACC B.1.1.7
B.1.1.7-2 (437 bp) S982A F-TGATATCCTTGCACGTCTTGA B.1.1.7

D1118H R-CAGACACAAATGTGTTGTGTGTAGT B.1.1.7
B.1.1.7-3 (936 bp) C15279T F-TGATGTAGAAAACCCTCATCTTATG B.1.1.7

T16176C R-CTCAAGGTATTGGGAACCTGA B.1.1.7
B.1.351-1 (425 bp) D80A* F-AGAGGTTTGCTAACCCTGTCC B.1.351

D215G* R-CTGAGGGAGACCACGCACTAA B.1.351
B.1.351-2 (619 bp) D215G* F-TTAGTGCGTGGTCTCCCTCAG B.1.351

K417N R-AATCAGCAATATTTCCAGTTTGC B.1.351
P.1-1 (375 bp) T20N/L18F F-TTTTACAAACAGAACTCAATTACCC P.1

D138Y R-CCCAAAAATGGATAATTACAAAA P.1
P.1-2 (266 bp) ins28269-28273 AACA F-CGAACAAACAAACTAAAATGTCTGA P.1

P80R R-TTGGTCATCTCGACTGCTATT P.1
B.1.617.2-1 (879 bp) I82T F-CTACCGCAATGGCTTGTCTT B.1.617.2

V82A R-TGAAGCTGATCTGGCACGTA B.1.617.2
B.1.617.2-2 (434 bp) D63G F-ATGGCAAGGAAGGCCTTAAA B.1.617.2

R203M R-CATACTGCTGCCTGGAGTTGA B.1.617.2
B.1.617.2-3 (429 bp) T19R F-TCTTAGAACCAGAACTCAATTACCC B.1.617.2

del156-157 R-CTAGAATAAACTCCACTTTCCATCC B.1.617.2

Figure 6. Frequency of appearance of the different primer sets in 2,096,390 SARS-CoV-2 sequences downloaded from
GISAID in August 11th, 2021.
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addition, we tested the detection and specificity for the variant B.1.1.7. We believe that all the proposed primer sets can be
employed in a multiplexed approach in the initial diagnosis of Covid-19 patients, or used as a second step of diagnosis in cases
already verified positive to SARS-CoV-2, to identify individuals carrying the B.1.1.7, B.1.351, P.1 or B.1.617.2 variant. In
this way, health authorities could better evaluate the medical outcomes of this patients, and adapt or inform new policies that
could help curve the rise of variants of interest. Although the rest of the proposed primer sets delivered by our automated
methodology will still require laboratory testing to be validated, our methodology can enable the timely, rapid, and low-cost
operations needed for the design of new primer sets to accurately diagnose new emerging SARS-CoV-2 variants and other
infectious diseases.

Data and Methods
Methods
For the discovery of the regions of interest in each variant we used two methodologies, that yield similar results. For the variants
B.1.1.7, B.1.351 and P.1 we used a methodology based in Convolution Neural Networks (CNN) as explained in94. For the
variants B.1.617.2 we used a methodology based in Evolutionary Algorithms (EAs)95.

CNN
Following the procedure described in Lopez et al.94, there are 4 steps for the automated design of a specific primer for a
virus: (i) run a CNN for the classification of the target virus against other strains, (ii) translate the CNN weights into 21-bps
features, (iii) perform feature selection to identify the most promising features, and (iv) carry out a primer simulation with
Primer3Plus103 for the features uncovered in the previous step. While in94 the proposed pipeline was only partially automatic,
and still required human interventions between steps, in this work all steps have been automatized, and the whole pipeline has
been run with no human interaction. The experiments, from downloading the sequences to the final in-silico testing of the
primers, take around 16 hours of computational time on a standard end-user laptop, for each variant considered.

In a first step, we train a convolution neural network (CNN) using the training and testing sequences obtained from GISAID.
The architecture of the network is shown in Fig 7, and is the same as the one previously reported in94. Next, if the classification
accuracy of the CNN is satisfying (> 99%), using a subset of the training sequences we translate the CNN weights into ‘21-bps’
features, necessary to differentiate between the targeted variant samples and all the others. The length of the features is set
as 21 bps, as a normal length for primers to be used in PCR tests is usually 18-22 bps. Then, we apply recursive ensemble
feature selection (REFS)104, 105 to obtain a reduced set of the most meaningful features that separate the two classes. Finally,
we simulate the outcome of treating the most promising features obtained in the previous step as primers, using Primer3Plus103

in the canonical sequences EPI_ISL_601443 for B.1.1.73, EPI_ISL_678597 for B.1.351 and EPI_ISL_804814 for P.153.
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Figure 7. CNN architecture used to classify variants B.1.1.7, B.1.351, and P.1.
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Evolutionary Algorithms
Another approach to generating primers is to use EAs. This approach has the advantage that we can parallelize the procedure
and reduce the time required to get the regions of interest in comparison to the CNN-based method. In comparison to the 16
hours required to the CNN approach, each single run lasts around 62 minutes with 5 threads on a 64-bit Windows 10 laptop
with Intel Xeon E-2186M. For the EA, We create a set of individuals of size 21-bps randomly considering the available samples
of the variant of interest (e.g. B.1.1.519) and other variants. Next, we calculate what is known as cost function, which is given
by the following:

F (I) = wp ·P(I)+wc ·C (I)+wn ·N (I)+wt ·T (I) (1)

with wp,wc,wn,wt representing the weights associated to each term.

P(I) =
T

∑
i=0

P(I,si), (2)

P(I) is evaluating the presence of the sequence selected as candidate primer I inside training samples labeled with the
variant of interest, and its absence from samples of other variants, T is the number of samples in the training set, si is the i-th
sample in the training set. Function P is defined as:

P(I,si) =

{
0, if I is found inside si and L(si) == L(sk)

1, otherwise.
(3)

where L(s) returns the class label of sample s. In other words, P(I,si) equals 1 if sequence I is found inside a sample with
the same class label as sample sk, the origin of sequence I. So, if the 21-bps sequence I is found inside a sample that does not
belong to the variant of interest, or is not found in a sample that belongs to the variant of interest, the solution is penalized.

The second term of the weighted sum takes into account the GC content of the candidate primer:

C (I) = 0.5−
21

∑
i=0

C(I(i))
21

where C(b) =

{
1, if base b is C or G
0, otherwise.

(4)

where I(i) represents the base in position i inside sequence I. The following element of the weighted sum is N , defined as:

N (I ) =
21

∑
i=0

N(I(i)) where N(b) =

{
1, if base b is N
0, otherwise.

(5)

that takes into account the presence of N symbols in the sequence, indicating an error in the read. The ideal primer candidate
should only contain A, C, G, or T values.

The final term tackles the requirement of having a melting temperature Tm centered around 60◦. Specialized literature103

provides an equation to compute Tm for a sequence I:

Tm(I) = 81.5+16.6∗ log10([Na+])+41∗C (I)−600/l(I) (6)

where C (I) is the content of C and G bases in sequence I, as described in Equation 4, [Na+] is the molar sodium
concentration, and l(I) is the length of sequence I, in bps. We used the value of [Na+] = 0.2 as described in103, while l(I) = 21
by design. The term taking into account Tm will then be:

T (I) = |60−Tm(I)| (7)

The EA is set with a population of size µ = 200, generating offspring of size λ = 200. The entire population is replaced
by its offspring at each generation, using a (λ ,µ) replacement strategy, with a tournament selection of size τ = 2, a mutation
acting on integer values, a one-point crossover, and a stop condition set on 100 generations. For more details, please refer to95.
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Experimental evaluation of B.1.1.7 Primers
Amplification efficiency of the designed primer sets were evaluated using viral RNA extracts from two sequenced SARS-
CoV-2 strains: the original Wuhan strain 210207 (GISAID N° EPI_ISL_437689) and VOC B.1.1.7 strain (GISAID N°
EPI_ISL_683466). Viral RNA were extracted from infected cell culture supernatants using the NucleoSpin Dx Virus kit
(Macherey-Nagel), following the manufacturers’ protocol. Viral RNA extracts (5 µL) were analyzed either using the IP2/IP4
dualplex real-time reverse-transcriptase (RT)–PCR assay, developed by following the Pasteur Institute and targeting conserved
regions of the SARS-CoV-2 RdRP gene98, or primer set B.1.1.7-1 (Table 1), using the LightCycler EvoScript RNA SYBR
Green I Master kit (Roche). Both RT-PCR assays were conducted on a LightCycler® 480 System (Roche), using the thermal
cycling program described in the Pasteur Institute protocol98.

Data
Variant B.1.1.7
From the GISAID repository we downloaded 10,712 SARS-CoV-2 sequences on December 23, 2020. After removing repeated
sequences, we obtained a total of 2,104 sequences labeled as B.1.1.7, and 6,819 sequences from other variants, for a total
of 8,923 samples. B.1.1.7 variant samples were assigned label 1, and the rest were assigned label 0 for the CNN discovery
described in detail in94. Next, from the found combinations and known mutations we generated primer sets and test them
in 2,096,390 SARS-CoV-2 sequences downloaded in August 11th, 2021, where 1,051,740 sequences are B.1.1.7. The total
number of sequences by lineage is in the Table 2 on the supplemenatary material.

Variant B.1.351
From the GISAID repository, we downloaded 326 sequences of the B.1.351 variant on January 7, 2021. We added the 326
sequences to the 8,923-sample dataset from the B.1.1.7 experiment, obtaining a total of 9,249 sequences, where we assigned
the label 1 for sequences belonging to variant B.1.351, and 0 to the rest of the samples using CNN to find the primers. Next, we
generated primer sets and test them in 2,096,390 SARS-CoV-2 sequences downloaded in August 11th, 2021 where 30,650
sequences are B.1.351.

Variant P.1
From the GISAID repository, we downloaded 28 non-repeated sequences of the P.1 variant on January 19, 2021. We added the
28 sequences to the 8,323 sequences of several other variants, including B.1.1.7 and B.1.351, for a total of 8,351 sequences. We
assigned label 1 to sequences belonging to variant P.1, and 0 to the rest of the samples using CNN to find the primers. Next, we
generated primer sets and test them in 2,096,390 SARS-CoV-2 sequences downloaded in August 11th, 2021 where 59,692
sequences are P.1.

Variant B.1.617.2
From the GISAID repository, we downloaded 836 sequences of the B.1.617.2 variant on May 5th, 2021. We added sequences to
6,819 sequences of other variants, and we assigned label 1 to sequences belonging to variant B.1.617.2, and 0 to the rest of the
samples using EAs to find the primers. Finally, we generated primer sets and test them in 2,096,390 SARS-CoV-2 sequences
downloaded in August 11th, 2021 where 366,831 sequences are B.1.617.2.
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Supplementary Material

Table 2. Number of sequences by lineage downloaded from the GISAID repository on August 11th, 2021.

Lineage Number of Sequences
AY.3 17504
B.1 82953
B.1.1 47373
B.1.1.7 1051740
B.1.1.214 18066
B.1.1.519 23376
B.1.2 101442
B.1.160 27353
B.1.177 74475
B.1.177.21 13048
B.1.221 13510
B.1.243 12841
B.1.258 14061
B.1.351 30650
B.1.427 18239
B.1.429 39345
B.1.526 49786
B.1.596 10939
B.1.617.2 366831
D.2 12772
P.1 59692
R.1 10394
Total 2096390
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