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LLaEA in Detail

LLM Driven Optimization loop
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« Beating expert humans on a variety of
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« Beating expert humans on a variety of
real-world Photonics problems. Rt
Showing great generalization power to larger
problem instances.

Hemant Singh SigeVO & s Xiaodong Li

General Chair

* Winning the Many-Affine BBOB competition
GECCO 2024.



Why It Beats Humans

e LLMs can exploit domain-knowledge and
coding-knowledge.

« Evolutionary Search enables LLMs to ground
the generated solutions with evaluations and LLaMEA Framework
steer the code-level-search.
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With LLaMEA, everyone can design good optimizers
specific to their problems



Human-Competitive Checklist

B. Better than peer reviewed result
Beats TEVC-published CMA-ES, DE and others on full benchmarking suite.

D. Publishable Results

First fully automatic design of complete SOTA optimisers.
Accepted ACM TELO, IEEE TEVC & 3 GECCO’25 papers

E. Long standing problem
Photonics problems are long studied and have recent

domain-specific optimizers (that we beat).

G. Difficult problem

Black-box optimization is GECCO’s flagship benchmark.
RWAs BBO such as photonics are NP-hard.

H. Wins competition
LLaMEA won the GECCO’24 competition on Any-time performance algorithm design.



Why choose us?

1. Generalizable results
LLaMEA has shown excellent performance in evolving algorithms for:
- BBO, Bayesian and Combinatorial Optimization

2. Impact
Used for a variety of RWAs including Photonics.
- LLaMEA Already downloaded 4000+ times from pypi.

3. Accessibility
MIT-licensed GitHub repo. Fully documented and open-source.

4. Efficiency and modularity

Small LLM API budgets (~100) versus 4.5 million of DeepMind’s FunSearch.
Works with any LLM and multiple EC strategies.




Vision & Future

« Benchmarking tooling for LLM-driven algorithm discovery (BLADE [1])
« Novel selection and code-diversity control mechanisms
« Kitc.

« Evolving Bayesian Optimization algorithms (LLaMEA-BO, under review)
« Evolving AutoML methods

« GPU kernel tuning
Speeding up GPU execution by 100%+ vs baseline (early results)

« Domain specific solvers
Leveraging expert knowledge by prompting and RAG.

[1] van Stein, N., Kononova, A. V., Yin, H., & Back, T. (2025). BLADE: Benchmark suite for LLM-driven
Automated Design and Evolution of iterative optimisation heuristics. arXiv preprint arXiv:2504.20183.



Why Gold?

We leverage LLMs with Evolutionary Computation to
out-design the field’s best human algorithm designers —
and opened the tool-chain for everyone.
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