
Evolving Sinusoidal Oscillators Using Genetic Algorithms

Varun Aggarwal
Netaji Subhas Institute of Technology, New Delhi

varun.aggarwal@vsnl.net

Abstract

In the present paper, single-opamp sinusoidal
oscillators are synthesized using genetic algorithms. The
motivation is to evolve new topologies of oscillators using
different active building blocks (ABBs) and automate the
study of their properties. A new fitness evaluation scheme
by analyzing transfer function of the circuits is used and
a learning scheme loosely inspired from Lamarckian
search is also suggested. A new problem specific
crossover operator is tested and a comparative study of
different crossover operators is done. On comparison of
the results of the GA with existing results, it was found
that the GA rediscovered all the twelve canonic single-
opamp based SFOs. Some new interesting opamp, OTRA
and DDCC based topologies of oscillators are also
presented. It is clearly explained how this study can be
extended to other ABBs or multiple ABBs.

1. Introduction

The present work focuses on synthesizing sinusoidal
oscillators using Genetic Algorithms. Traditionally,
design of sinusoidal oscillators has been carried out based
on intuition, inference or analysis. There is no
deterministic way to synthesize sinusoidal oscillators
(except by exhaustive search!) as in case of other analog
synthesis problems. It was only in 1984, when an
exhaustive study of oscillators was conducted by
Bhattacharya and Darkani [2]. But, this study was
constrained to synthesis of single-opamp oscillators with
minimum elements and two capacitors, where also it
proved to be very tedious. An exhaustive search for
oscillators with larger number of components or more
than 2 capacitors would become almost impossible
manually or highly expensive algorithmically because of
significant increase in the size and complexity of the
search space. At the same time, authors argue that other
oscillators (apart from the ones studied in [2]) may show
better properties with regard to frequency distortion,

frequency stability, amplitude of oscillation, frequency
range, total harmonic distortion, power consumption, ease
of fabrication, etc. Whether an oscillator is novel or not
depends on many other aforesaid factors rather than just
the number of components it uses, e.g., grounded
capacitor oscillators, oscillators with all elements
grounded, oscillators with effect of parasitics nullified.

In the present paper, we seek to evolve single opamp
sinusoidal oscillators, where the GA run shall only be
constrained by the number of elements in the oscillators.
It is attempted to achieve two goals. Firstly, when 6
element oscillators are evolved, the results can be
compared with the results given by Bhattacharya and
Darkani [2] to test the capability of GA to identify
multiple solutions. Secondly, by increasing the number of
elements in the GA run, new topologies of oscillators can
be found, which can then be automatically compared on
basis of their properties. Furthermore, this study can be
easily extended to search oscillators using other building
blocks or having certain topological features. These
topics are discussed in detail in Section 12.

Earlier works on oscillator synthesis using GAs
[4,8,10,13] largely differ from the present work. The
oscillators synthesized earlier were a different class of
oscillators called Non-linear oscillators [12]. One of these
studies [13] was not very successful in evolving
oscillators. In other studies, the circuit population was
rich in oscillator circuits and a GA was used to optimize
on frequency [8, 10], amplitude [13], etc. In the present
study, the aim is to design topologies of Linear
Oscillators (sinusoidal oscillators) using GAs where the
circuit population initially and in subsequent generations
does not contain any oscillator topologies. This fact
makes this problem entirely different from earlier studies.

Genetic algorithms have been used for analog circuit
synthesis earlier (using simulations for fitness
measurement) [5,6,9]. The present problem has a bumpy
fitness landscape containing low fitness areas, high
fitness plateaus and spikes, where the desired circuits
reside. The scheme to evaluate fitness by analyzing the
transfer function makes it different from earlier studies.
For reasons discussed in Section 6, a learning technique

[1] is also implemented in the algorithm and the results
are compared with the simple genetic algorithm.

Problem specific operators and techniques have been
developed to improve the performance of the algorithm.
These techniques may show merit with other circuit
synthesis problems as well. A new crossover operator is
prescribed which can be used independently and together
with the learning technique. Results from these new
techniques are compared with the results of the existing
techniques.

The paper is organized in the following way. Section 2
gives an introduction to sinusoidal oscillators. Section 3
gives the Problem Statement and objective of the
algorithm. Section 4 looks into the circuit encoding
scheme used. Section 5 and 6 present the fitness
evaluation of circuits. Section 7, 8 and 9 discuss the
Selection scheme, Reproduction operators and Repairing
Function respectively. Section 10 contains the tabulated
results of experiments. Section 11 contains a study of
experimental results, while Section 12 shows the final
result and practical usability of this study. Finally,
Section 13 concludes this study.

2. Introduction to Sinusoidal Oscillators

Sinusoidal Oscillators are analog circuits that oscillate
at a fixed frequency and give a sinusoidal output. The
criterion for oscillation is that the phase of the loop gain
should be zero and the magnitude of the loop gain should
be unity at the oscillation frequency, w. This is called
Barkhausen criterion [12].

A typical sinusoidal oscillator has the following
characteristic equation (CE):

 as2 + bs + c = 0
Condition of Oscillation (CO): b = 0
Frequency of Oscillation (FO): f = 1/(2π * (c/a)1/2)

Those oscillators, which require readjusting of both

the CO and FO for changing the oscillation frequency are
called SFOs (Single Frequency Oscillators), while
circuits whose oscillation frequency can be changed
without disturbing the CO are called VFOs (Variable
Frequency Oscillators).

3. Problem Statement And Objective

Bhattacharya and Darkani have ascertained the
exhaustive set of Canonic single Opamp sinusoidal SFOs
and VFOs [2]. They show that canonic SFOs shall
contain 2 capacitors and 4 resistors, while canonic VFOs
contain 2 capacitors and 5 resistors.

Development of a Genetic Algorithm to find single-

opamp oscillator topologies containing any number of

elements is developed. To ascertain the canonic circuits,
the maximum number of elements is kept to the likes of
six or seven. The number of capacitors in the circuits is
not constrained allowing the synthesized oscillators to
contain any number of capacitors. This helps in studying
a new class of circuits i.e. three capacitor minimum
element oscillators for which a systematic study has not
been carried out so far. The possible synthesis of a VFO
with only 6 elements containing more than two capacitors
shall provide a better oscillator than the ones studied
earlier.

4. Circuit Encoding

Circuits are represented in a spice-like netlist as used
by Grimbleby [6]. The topology is specified by a list of
component types together with their terminal nodes.
Component type includes resistor, capacitor and “empty
component”. Empty component enables us to have
variable number of components in a circuit, though the
size of the chromosome is fixed. Inductors are not
included in the given class of circuits. A tabular depiction
of the encoding is shown underneath.

Element1 node11 node12
Element2 node21 node22
Element3 node31 node32

 …

Number of elements shall determine the number of rows.
Elementi: Can be a resistor, capacitor or empty
component.
Nodei1, nodei2: Depicts the nodes to which elementi is
connected.

5. Fitness Evaluation

Sinusoidal oscillators have definite topologies. Such a
topology results in oscillations only when the element
values satisfy the CO (given in Section 2) and also yield a
real-valued frequency of oscillation.

The technique to synthesize analog circuits used
earlier [5,6,9] cannot be applied here. These techniques
used spice simulations to assign fitness to a circuit. A
genetic algorithm using transient response to assign
fitness shall fail to ascertain the topology independent of
the component values (i.e. if a fixed set of component
values is assigned). This is so because the behavior of the
oscillator categorically depends on its element values and
at a particular set of values, the topology of an oscillator
may not oscillate at all (giving zero, dc or non-linear
output), thus misleading assignment of fitness. Circuits,
which are not oscillators, also may give similar outputs. If
the algorithm tries to carry out optimization (using

another GA or hill climbing algorithm) on component
values, the method shall again fail due to the spiked
nature of the search space, where the circuit shall
oscillate only at specific sets of component values.
Therefore, we cannot determine whether a topology is
that of an oscillator or not in the aforesaid manner.

To judge whether a given circuit is an oscillator, its
CE is needed. A generalized topology for single opamp
oscillator is given in Figure 1.

Figure 1. General topology of single opamp
oscillator

Let:
T3(s) = V3(s)/V1(s)
T2(s) = V2(s)/V1(s)

It has been shown that the characteristic equation for such
a topology [2] is given by:

T3(s)-T2(s) = 0

A symbolic analysis software developed by James

Grimbleby [7] was used to find the characteristic
equation. This software can find out the transfer function
of any given circuit containing resistors, capacitors,
inductors, the four controlled sources or ideal opamps.
The evolved circuit is mapped in the topology given in
Figure 2, so that its CE can be ascertained using the
transfer function of the mapped topology.

Figure 2. Topology of circuit for simulation

Let K = 1, 1:Input, 10:Output, 2,3:Opamp inputs

The transfer function of the circuit (Figure 2) is given by:
T(s) = V2(s)/V1(s) –V3(s)/V1(s)

The numerator of this transfer function (equated to 0)

gives the CE of the circuit.
For the circuit to oscillate, the characteristic equation

should only contain terms of s2 and s0, with term of s1 as
optional. Also, there should exist a set of values of
capacitor and resistors for which the coefficient of s1
becomes 0 and coefficient of s2 and s0 have the same sign
(Condition a). If these conditions are fulfilled, the circuit
shall oscillate.

In the present study, the following two conditions
(Condition b) were checked.

1. Whether the coefficient of s1 contains a positive and

negative term so that it can be made 0.
2. Whether there is at least a single term each in

coefficient of s0 and s2, which have the same sign.

If these conditions (Condition b) are true, circuit is
accepted as an oscillator. 1 The aforesaid criterion is
incomplete because even when these conditions
(Condition b) are true, it may not be possible to
simultaneously make the coefficient of s1 as 0 and get
same sign for coefficient of s2 and s0. The need for
simultaneously achieving these two conditions (Condition
a) sometimes also imposes constraints on the value of
resistors and capacitors. Hence, a higher mathematical
statement will be needed to ascertain whether a circuit is
an oscillator.

Though, the argument given above is mathematically
valid, it is generally not observed in practice. This
statement is supported by exhaustive search for canonic
opamp oscillators [2], where none of the topologies
resulted in such interference between the two criteria
(Condition a). In general, these criteria only impose
constraints on component values though the circuit
remains an oscillator. Therefore we shall use Condition b
as the criterion to judge oscillators in the present study.

Using the aforesaid criterion, we can ascertain whether
a circuit is an oscillator or not, but one cannot judge the
fitness of a non-oscillator. All non-oscillators ideally
have a fitness value of 0. Therefore, presently it seems
the fitness landscape for the problem only contains spikes
where the required circuits reside, whereas the fitness at
all other points is ideally 0.

The following scheme was used to assign fitness to
circuits and decide upon potential high fitness plateaus in
the fitness landscape. (Initial fitness assigned is 1)

1. If the circuit is an invalid graph, i.e. CE has 0 terms

of any coefficients, it is assigned a fitness a. (0<a<1)

1 An alternative is to optimize on component values to place both roots
of CE on the jw axis.

2. If the characteristic equation has n high order terms
than s2, fitness assigned is 1/(b+n). (b>1)

3. If the characteristic equation has no terms of s2, it is
assigned a fitness c. (0<c<1)

4. If the circuit has none of the above characteristics,
then the following criteria are tested:

a. If criterion 1 of Condition b is not fulfilled,
the fitness of the circuit is multiplied by d.
(0<d<1)

b. If criterion of 2 of Condition b is not
fulfilled, the fitness of the circuit is
multiplied by e. (0<e<1)

In the above statements, a, b, c, d and e are numerical

parameters which can be set to different values for GA
runs. The highest fitness value 1 is that of an oscillator.
Once a circuit with fitness 1 is found, the search is
stopped.

6. Learning Based Fitness Function

The aforesaid fitness function transformed the fitness
landscape to contain regions of low fitness, high fitness
plateaus and spikes, where the oscillator reside. The high
fitness plateaus are essentially circuits, which satisfy one
of the criteria of Condition b. But it is arguable, whether a
topology satisfying one of the criteria of condition b is
similar to topology of an oscillator. The assumption that
the spike identifying an oscillator lies on a high fitness
plateau is surely based on intuition of an analog circuit
designer.

Therefore a fitness function based on learning [1]
loosely inspired by Lamarckian search is used. In this
technique, rather than judging the fitness of a circuit only
by its absolute fitness, change in the fitness of the circuit
before and after applying genetic operators is also
considered. As mentioned in [1], this technique shall
encourage circuits with lower absolute fitness but
showing improvement over generations and discourage
circuits with higher absolute fitness but showing little or
no improvement over generations.

In the present problem, this strategy makes sense
because fitness should be measured as the capability of
the circuit to become an oscillator rather than its absolute
fitness value. The scheme shall help in smoothening the
bumpy fitness landscape.

The following observations support the use of the
aforesaid strategy

1. Many circuits show high fitness for many

generations by fulfilling one of the criteria of
Condition b, though they are unable to fulfill the
second criterion and become an oscillator. It is highly
probable, that these circuits lie on such high fitness

plateaus, which don’t contain an oscillator topology.
These circuits shall dominate the population due to
their highest fitness value (only lower than that of an
oscillator), while it is less probable that they will
evolve into an oscillator. Therefore, these circuits
should be weeded out gradually.

2. Circuits with low absolute fitness are equal to
circuits with high absolute fitness in respect that
none of them are oscillators. Hence these circuits
should also be considered if they show a tendency to
become an oscillator.

Different variants of learning technique were

conceived and tested. Two of them, which showed better
results, are stated underneath.

In both the techniques, two records of fitness values
are kept; first one being the absolute fitness calculated
using Condition b and the second being the fitness which
forms the basis for selection of circuits for the next
population. In the first generation all circuits are assigned
an equal fitness for the purpose of selection.

In the first technique, the circuit is assigned as fitness,
the ratio of absolute fitness of present circuit and the
circuit before application of reproduction operators.
There is an additional penalty to the fitness according to
the number of generations for which the circuit has
consistently shown a static fitness value.

Therefore, the circuit’s fitness not only depends on its
current absolute fitness, but also on its absolute fitness
before application of reproduction operators. If it shows
improvement in absolute fitness, its fitness value is more
than 1, if it becomes worse, its fitness is less than 1 and if
it shows a stagnant fitness, then it is assigned fitness 1
together with a penalty (incase it shows stagnant fitness
continuously). This fitness evaluation reflects the
capability of the circuit to become an oscillator.

The following MATLAB code was used.

abs_fit= getfit();
 if(abs_fit == prev_abs_fit & oper_app==1)
 no_gen = no_gen + 1;
 else
 if(oper_app==1)
 no_gen=0;
 end
 end
 sel_fit=abs_fit/prev_abs_fit*((factor)^no_gen);
 prev_abs_fit= abs_fit;

abs_fit: The present absolute fitness of the circuit.
prev_abs_fit: The absolute fitness of circuit before
application of reproduction operator.
no_gen: Number of generations for which the circuit has
continuously shown the same fitness value.

sel_fit: Fitness which guides the selection of circuits.
factor: Value of penalty factor applied when circuit
continuously shows same fitness. (factor<1)
oper_app: It tells whether any reproduction operator was
applied to the particular circuit.
getfit(): The function, which returns absolute fitness
value according to Condition b.

In the code given above, value of oper_app is set to 1,

if a reproduction operator has been applied to the circuit,
otherwise it is set to 0. Penalty is imposed on a circuit
only when it shows static fitness even after application of
reproduction operators.

In the second technique, circuits were penalized if they
showed static fitness value in the same way as done in
case of the first technique. The circuits retained their
absolute fitness value, together with the penalty. No other
form of learning was implemented in this scheme. 2

7. Selection Scheme

The circuits for the next population were chosen using
Stochastic Universal Selection (SUS).

8. Reproduction Operators

Experiments were conducted using uniform crossover
and two point crossovers. A new crossover operator was
also devised. In this operator, first the elements of a
circuit are sorted according to one of their connecting
nodes (circuit representation contains element with two
corresponding nodes), thereafter two-point crossover
operator is applied [1]. The steps for this crossover are
clearly shown in figure 3. As stated earlier [1], this
operator seems to be more realistic as it shall exchange
nearby nodes in the two circuits chosen for crossover,
retaining the topological features of the remaining circuit.
It can be seen as retaining some building blocks while
exchanging some building blocks between the two
circuits. Though, this scheme is independently applicable,
it shows specific merit with the learning scheme.

2 There can be more variants to this learning technique. Rather than
using information regarding the state of circuit in the immediate
previous generation, effect of more previous generations can be
included. But, it has to be ascertained whether the variant of the circuit
that existed some generations earlier has similarity in topological
features as the present circuit [1]. Other variants of the learning
technique may use different transformation functions to map the effect
of fitness of the circuit in previous generations to the present one.

Figure 3. A depiction of Sorting, Two-point
crossover operator

Quick sort was used to sort the circuits. The sorting
operator doesn’t prove to be very expensive
algorithmically. Once a circuit is sorted, it remains sorted
in a piecewise fashion even after application of
reproduction operators. For the same reason, the time to
sort the circuits remains low after the initial generation.

Experiments were conducted both with and without
using the mutation operator. Actually, there is implicit
mutation in the repairing function used, which is
discussed in Section 9. The mutation operator used
replaced a given element by an open circuit.

9. Repairing Function

A repairing function was used which attempts to
convert a given circuit to a valid graph. While
conceptualizing the repairing function, we tried to
minimize the traversal of the circuit netlist.

The repairing function attempts to remove singlely
connected nodes. It was only for the input node (Node 1
in Figure 2), the two outputs (inputs of opamp, Node 2,3
in Figure 2) and the ground node, that singlely connected
nodes were allowed. The remaining singlely connected
nodes were repaired either by shorting them to an existing
node (or itself) or by connecting them to an existing node
with either a capacitor or a resistor. Both these repairing
techniques were assigned probabilities. The repairing

function was prevented from falling into infinite loops
and hence wasn’t able to always repair the circuit.3

The repairing function did not check or connect
unconnected independent loops in the circuit. This
needed repeated traversal of the circuit file.

The basic aim of the repairing function was to connect
the unconnected nodes created in a circuit as a result of
crossovers and mutations, generation after generation.
Replacing an element by an open circuit (Mutation
operator) created considerable scope for implicit mutation
through the repairing function.

10. Experiments And Results

All coding was done in MATLAB. After some
experiments, the following fitness function parameters
were used.4

a= 0.2 (Kept more than 0 to achieve considerable
diversity)
b= 4.0
c= 0.3
d=0.75
e=0.75

The GA parameters used in the runs are as follows

Population size: 35 circuits
Number of elements: 7
Maximum number of generations: 100
Crossover Probability: 0.7
Mutation Probability (per element): 0.05
Mixing Ratio (for Uniform Crossover): 0.5

The results using different crossover operators over
100 runs of the algorithm are tabulated in Table 1.

3 The repairing function is not the primary operator, which makes the
GA work. In previous works [6], four kinds of mutation operators are
used, which broadly covers the changes my repairing function does to
the circuit. It is shown there, that reducing the crossover probability
reduces the performance of algorithm considerably, which is therefore
the primary operator. In [5], once again a repairing function is used.
Still, it will be worthwhile to study the effect of such repairing functions
on the performance of the GA.
4 These parameters have been set based on intuition and some initial
experimental results. There is scope for tuning these parameters for
even better results using some optimzation technique (e.g., another GA).
Moreover, using dynamic values for these parameters to vary selective
pressure during execution might be another interesting study.

Table 1. Results of GA with mutation
Crossover
Operator

No. of
osc.

evolved

Redundant
circuits
per gen.

Total
no. of
gen.

Osc.
with >2

cap.s
Uniform 94 8 1786 39
Two point 83 7 2925 29
Sort-two
point

90 8 2364 38

Results of experiments without explicit mutation are
tabulated in Table 2.

Table 2. Results of GA without mutation
Crossover
Operator

No. of
osc.

evolved

Redundan
t circuits
per gen.

Total
no. of
gen.

Osc.
with >2

cap.s
Uniform 93 8 1494 43
Two point 84 6 2517 36
Sort-two
point

89 6 2244 42

The GA parameters used in the algorithm with learning
are as follows

Population size: 35 circuits
Number of elements: 7
Maximum number of generations: 100
Crossover Probability: 0.7
Mutation Probability: 0.05
Factor (for penalty): 0.9
Crossover: Sort-two point Crossover

Experimental Results are tabulated in Table 3.

Table 3. Results of GA with learning
technique

Learn.
Tech.

Mut

No. of
osc.

evolved

Redundan
t circuits
per gen.

Total
no.
of

gen.

Osc.
with
>2

cap.s
Tech. 1 Yes 95 11 2664 40
Tech. 1 No 88 10 2329 49
Tech. 2 Yes 88 8 2399 29
Tech. 2 No 95 8 1612 63

The search space was also explored using random

search (with circuits initially containing 2 capacitors)
together with the repairing function. In a population of
10,000 circuits (with maximum 7 elements), 3 oscillator
topologies were found.

11. Observations

In the present experiments, no inference as to the
quality of the evolved circuit can be made as all the
evolved oscillators have an absolute fitness of 1.
Therefore the number of runs that converge to an
oscillator and the total number of circuits analyzed during
the whole run (proportional to the number of generations)
are used as yardsticks to measure the performance of the
algorithm.

In the first set of experiments (without learning),
Uniform Crossover gives the best result. However, the
crossover operator of sorting and two-point crossover
gives superior results to that of two-point crossover. It is
also evident that the mutation operator doesn’t bring any
marked improvement in convergence of the algorithm.

The result of the algorithm with learning (with
crossover operator as sorting and two-point crossover) is
superior to the simple genetic algorithm. The two
techniques show an improvement in the number of
oscillators evolved. Infact, the second technique with no
explicit mutations also shows a reduction in total number
of circuits analyzed drastically.

The result of random search shows that the GA with
the worst performance is around 3 times better than
random search in regard to the ratio of number of
oscillators synthesized and number of circuits analyzed.
The best performance of the GA reported in Section 10 is
6 times better than random search.

12. Result And Practical Usability

The evolved circuits were manually compared with
analytical results. Some of the evolved circuits were
invalid due to presence of closed loops connected at a
single point of the circuit.

All the 12 SFOs found earlier [2] were rediscovered
by the algorithm. The topologies of some 3-capacitor, 6
element circuits evolved are given in Appendix I. Many
new 7 and 8 element circuits were also generated. The
results have not been observed yet to look for VFOs.

The problems and limitations of GAs applied to this
problem are the following:

1. The GA evolves same circuit topology in many runs

and there is no way to eliminate this effect.
2. The GA cannot ascertain whether the set of

oscillators evolved is the complete set or not.
3. There is no way to fashion the GA to only synthesize

VFOs or SFOs. Though the final circuit can be
ascertained as a VFO or SFO.

This work of evolution of oscillators using GAs can be

used to automate the study of sinusoidal oscillators. The

following steps can be followed to build a software to
automatically produce oscillators with desired properties.

1. The circuit topologies synthesized by the GA should

be first stripped off of redundant components, such
as resistors or capacitors in parallel or series with
themselves, elements connecting the input nodes of
the opamp directly, elements connecting the output
of the opamp to ground, etc.

2. Thereafter a revised netlist should be formed to
identify and dispose off same topologies evolved by
the genetic algorithm.

3. A mathematical statement should be formulated to
recognize VFOs and SFOs. An approach similar to
the one used by Bhattacharya and Darkani [2] can be
easily mapped into an algorithm.

4. The CO and FO should be satisfied using Symbolic
Analysis techniques for the desired frequency. More
work needs to be done to realize this aspect.

5. Thereafter the circuit can be fed into SPICE or actual
hardware. The observed frequency of oscillation,
frequency distortion, frequency stability, amplitude
of oscillation, frequency range, total harmonic
distortion, power consumption, etc. of the oscillator
can be ascertained and compared through output
from SPICE or actual hardware.

In the aforesaid way, the best topology of an oscillator

with desired frequency and properties can be
automatically designed.

By making a few modifications in the topology of the
circuit fed for simulation (Figure. 2), oscillators using
other ABBs such as OTAs, CCs, multiple-opamp
oscillators, etc. can be synthesized automatically. Other
elements of the algorithm shall remain essentially the
same. Thereafter an automated comparison of properties
of all these different kind of oscillators can be conducted.

Appendix II contains detailed information about the
changes to be made in the topology (of Figure 2) to
extend this study to synthesize oscillators using other
ABBs. Recently, there has been interest in OTRA [3,11],
DDCCC [14, 15] (current-mode) based oscillators, which
show advantage over opamp-based circuits. The approach
presented in Appendix II was used to synthesize
oscillators using these building blocks. Appendix III
contains topologies of some unpublished canonic single
OTRA based SFOs and a DDCCC based current mode
VFO.

13. Conclusion

In the present study a Genetic Algorithm was
developed to automatically synthesize oscillators. The
synthesized oscillators showed approval with existing

analytical results. Also, a new set of oscillators
containing 3 capacitors was developed. Some new OTRA
and DDCCC based oscillators were also synthesized. The
practical usability of this study was established in Section
12.

A new crossover operator and learning based fitness
function have been devised, which show improved results
when applied to the present study. These techniques are
open to statistical tests and controlled experiments. They
may prove beneficial for other circuit evolution problems,
which may use simulations or actual hardware for fitness
evaluation.

Acknowledgement

I thank Prof. Raj Senani, AIC Lab, NSIT, Delhi for
suggesting that the present problem be solved by Genetic
Algorithms. I also acknowledge his constant support,
encouragement and guidance throughout this work. I
wish to thank Dr. Paul Layzell for reviewing this paper
and providing very useful comments. I thank Dr. James
Grimbleby for making available the symbolic analysis
software and answering my queries. Finally, I thank Drs.
C. Goh and Navid Azizi for answering my emails.

References

[1] V. Aggarwal, “Fitness evaluation based on learning for
automatic analogue circuit synthesis using Genetic Algorithms,”
in Hypothesis Papers, Varun's Griha
(www.geocities.com/mumukshu/fitllearn.html), September
2002.

[2] B. B. Bhattacharya, M. Darkani, “A Unified Approach to
Realization of Canonic RC-Active, Single as well as Variable
Frequency Oscillators using Operational Amplifiers,” in
Journal of Franklin Institute (Germany), Vol 317, No. 6, pp.
413-419, 1984.

[3] U. Cam, “A Novel Single-Resistance-Controlled Sinusoidal
Oscillator Employing Single Operational Transresistance
Amplifier,” in Analog Integrated Circuits and Signal
Processing, Vol. 32, pp. 183-186, August 2002.

[4] R. O. Canham and A. M. Tyrrell, “Evolved Fault tolerance
in Evolvable Hardware,” in Proceedings of the 2002 Congress
on Evolutionary Computation, Vol. 2, pp. 1267–1271, 2002.

[5] C. Goh and Y. Li, "GA Automated Design and Synthesis of
Analog Circuits with Practical Constraints," in Proceedings of
the 2001 Congress on Evolutionary Computation, Vol. 1, No. 1,
pp. 170-177, 2001.

[6] J. B. Grimbleby “Automatic Analogue Circuit Synthesis
Using Genetic Algorithms,” in IEE Proceedings: Circuits,
Devices and Systems, Vol 147, No 6, pp. 319-323, 2000.

[7] J. B. Grimbleby, Software for symbolic Analysis of circuits,
Available at
http://www.elec.rdg.ac.uk/Staff_PostGrads/academic/jbg/Analy
sis.html

[8] L. Huelsbergen, E. Rietman, R. Slous “Evolving Oscillators
in Silico,” in IEEE transactions on Evolutionary Computation,
Vol. 1, No. 3, pp. 197-204, September 1999.

[9] J. R. Koza, F. H Bennett, D. Andre, M. A. Keane and F.
Dunlap, “Automated synthesis of analog electrical circuits by
means of genetic programming,” in IEEE transactions on
Evolutionary Computation, Vol. 1, pp. 109-128, July 1997.

[10] P. Layzell and A. Thompson, “Understanding Inherent
Qualities of Evolved Circuits: Evolutionary History as a
Predictor of Fault Tolerance,” in Proceedings of Third Int. Conf.
on Evolvable System (ICES2000), Vol. 1801 of LNCS,
Springer, pp. 133-142, April, 2000.

[11] K. N. Salama and A. M. Soliman, “Novel oscillators using
the operational transresistance amplifier,” in Microelectronics
Journal, Vol. 31, pp. 39-47, 2000.

[12] A. S. Sedra, K. C. Smith, Microelectronic Circuits. Oxford
University Press, New York, 1982.

[13] R. S. Zebulum, M.A. Paheco, M. Vellasco, “Analog
Circuits Evolution in Extrinsic and Intrinsic Mode,” in
Proceedings of Second Conference of Evolvable Systems, Vol
1478, pp. 154-165, 1998.

[14] W. Chiu, S. I. Liu, H. W. Ivan and J. J. Chen,
“CMOS Differential Difference Current Conveyors and
their Applications”, in IEE Proc.: Circuits, Devices, Syst.,
Vol. 143, No. 2, pp. 91-96, , 1996.

[15] S. S. Gupta and R. Senani, “Comment: CMOS
Differential Difference Current Conveyors and their
Applications”, in IEE Proc.: Circuits, Devices, Syst., Vol.
148, No. 6, pp. 335-336, 2001.

Appendix I

On observing the results manually, it was found that
the algorithm has found 2 oscillator topologies, which
have a total of 6 elements and 3 capacitors. Such
oscillators were not considered earlier [2]. They form a
part of the set of minimum element single-opamp
oscillators. Their properties may show merit, which can
be ascertained by non-ideal analysis or experiments.
Their topologies are presented underneath.

Topology 1:

Figure 4. Topology 1, Spice Simulation
Results for f = 63.66KHz

FO: f = 1/ (2π * (C1C3R1R2)1/2)
CO: R3(C1R1 + C3R2) – C2R1R2 = 0

Topology 2:

Figure 5. Topology 2, Spice Simulation
Results for f = 63.66KHz

FO: f = 1/ (2π * (C1C3R1R3)1/2)
CO: R2(C1R3 + C3R1) – C2R1R3 = 0

Appendix II

This section explains how the present study can be
expanded to other building blocks. The basic change in
the algorithm will be in the topology of the circuit fed to
the software for finding the CE. For opamp oscillators,
the topology of Figure 2 was used.

Opamp has a very high gain (ideally infinite) and
therefore the voltages at the two inputs are ideally equal.
Using this fact, we equate the voltage at the input nodes
of the opamp to find the characteristic equation.

Similarly, in OTRA based circuits, the input terminals
are grounded and input currents are forced to have the
same value. This is used to find the CE of OTRA based
oscillators. The topology given in Figure 6 is thus used.

FIGURE 6. Topology to find CE of OTRA
based oscillator

Let K = 1, 1:Input, 10:Output (2,3: OTRA inputs)

The transfer function of the circuit is given by:

T(s) = I2(s)/V1(s) –I3(s)/V1(s); CE: T(s)=0

Using similar approach, the general topology for
circuits with single building blocks with infinite gain can
be developed. For circuits containing active elements
with finite gain or multiple building blocks, the following
concept can be used.

Figure 7 depicts any general oscillator. The nodes n1,
n2,…,nk (k>0) are connected to ground. The output
terminal is also shown.

FIGURE 7. A general oscillator

The CE for the oscillator can be found in the following
way. Unground one or more nodes (t<k) connected to
ground terminals and connect it to a new terminal. This
new terminal forms the input terminal. The transfer
function of the resulting circuit is the closed loop gain.
The denominator of the transfer function gives the CE.
This is depicted in Figure 8.

FIGURE 8. Topology to find CE

There are two ways to implement this in GA. In the
first way, the genetic algorithm evolves topologies which
don’t have an input node and one ground node is
ungrounded to form the input node for simulation (fitness
evaluation and the denominator of the transfer function is
the CE. In the second approach, the circuits evolved have
both input and output nodes and the denominator of the
transfer function is the CE. Finally, the input node is
grounded, when the result is presented.

This approach can be used for oscillators containing a
single finite gain building block (like OTA, CC). The
topology can be built around the fixed nodes of the
building block as done in case of opamp oscillators. For
circuits containing multiple building blocks, the terminals
of the active element will not be explicitly fixed by the
GA. Therefore a higher statement of repairing function
will be needed.

Appendix III

As an illustration of the ideas presented in Appendix
II, some oscillator topologies using newer ABBs have
been included, though spice simulations have not been
carried out. Therefore, no inference regarding the stability
of these oscillators can be made.

Using the modified topology of Figure 4, OTRA based
oscillators were synthesized. The algorithm was able to
synthesize the canonic VFO [3] and its CR transform.
Apart from these and many more oscillators, the
algorithm found 3 canonic SFOs. To the best of my
knowledge only the first topology given underneath is
published [11]. The results are being searched manually
to recognize more topologies. Though topology 2 and
circuit 3 are CR transforms of each other, the GA has
independently synthesized them.

1: Output of OTRA; 2,3: Inputs of OTRA

Figure 9. a, b and c depict Topology 1, 2 and 3
respectively

Topology 1
FO: f = 1/(2π * (C1C2R1R2)1/2)
CO: R2(C1 - C2) – C1R1 = 0

Topology 2
FO: f = 1/ (2π * (C1C2R1R2)1/2)
CO: C1(R1 + R2) – C2R2 = 0

Topology 3
FO: f = 1/ (2π * (C1C2R1R2)1/2)
CO: C2(R1 - R2) – C1R2 = 0

This study applied to DDCCC [14] is near completion
and results will be soon presented. A new canonic current
mode VFO has been included here for illustration (Figure
10).

Figure 10. A DDCCC based VFO

FO: f = 1/ (2π * (C1C2 (R1R3 – R2(R1+R3))1/2)
CO: R2(C1 + C2) – 2C2R3 = 0

(a) (b)

(c)

