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Abstract 

In the present paper, single-opamp sinusoidal 
oscillators are synthesized using genetic algorithms. The 
motivation is to evolve new topologies of oscillators using 
different active building blocks (ABBs) and automate the 
study of their properties. A new fitness evaluation scheme 
by analyzing transfer function of the circuits is used and 
a learning scheme loosely inspired from Lamarckian 
search is also suggested. A new problem specific 
crossover operator is tested and a comparative study of 
different crossover operators is done. On comparison of 
the results of the GA with existing results, it was found 
that the GA rediscovered all the twelve canonic single-
opamp based SFOs. Some new interesting opamp, OTRA 
and DDCC based topologies of oscillators are also 
presented. It is clearly explained how this study can be 
extended to other ABBs or multiple ABBs. 

1. Introduction 

The present work focuses on synthesizing sinusoidal 
oscillators using Genetic Algorithms. Traditionally, 
design of sinusoidal oscillators has been carried out based 
on intuition, inference or analysis. There is no 
deterministic way to synthesize sinusoidal oscillators 
(except by exhaustive search!) as in case of other analog 
synthesis problems. It was only in 1984, when an 
exhaustive study of oscillators was conducted by 
Bhattacharya and Darkani [2]. But, this study was 
constrained to synthesis of single-opamp oscillators with 
minimum elements and two capacitors, where also it 
proved to be very tedious. An exhaustive search for 
oscillators with larger number of components or more 
than 2 capacitors would become almost impossible 
manually or highly expensive algorithmically because of 
significant increase in the size and complexity of the 
search space. At the same time, authors argue that other 
oscillators (apart from the ones studied in [2]) may show 
better properties with regard to frequency distortion, 

frequency stability, amplitude of oscillation, frequency 
range, total harmonic distortion, power consumption, ease 
of fabrication, etc. Whether an oscillator is novel or not 
depends on many other aforesaid factors rather than just 
the number of components it uses, e.g., grounded 
capacitor oscillators, oscillators with all elements 
grounded, oscillators with effect of parasitics nullified. 

In the present paper, we seek to evolve single opamp 
sinusoidal oscillators, where the GA run shall only be 
constrained by the number of elements in the oscillators. 
It is attempted to achieve two goals. Firstly, when 6 
element oscillators are evolved, the results can be 
compared with the results given by Bhattacharya and 
Darkani [2] to test the capability of GA to identify 
multiple solutions. Secondly, by increasing the number of 
elements in the GA run, new topologies of oscillators can 
be found, which can then be automatically compared on 
basis of their properties. Furthermore, this study can be 
easily extended to search oscillators using other building 
blocks or having certain topological features. These 
topics are discussed in detail in Section 12. 

Earlier works on oscillator synthesis using GAs 
[4,8,10,13] largely differ from the present work. The 
oscillators synthesized earlier were a different class of 
oscillators called Non-linear oscillators [12]. One of these 
studies [13] was not very successful in evolving 
oscillators. In other studies, the circuit population was 
rich in oscillator circuits and a GA was used to optimize 
on frequency [8, 10], amplitude [13], etc. In the present 
study, the aim is to design topologies of Linear 
Oscillators (sinusoidal oscillators) using GAs where the 
circuit population initially and in subsequent generations 
does not contain any oscillator topologies. This fact 
makes this problem entirely different from earlier studies. 

Genetic algorithms have been used for analog circuit 
synthesis earlier (using simulations for fitness 
measurement) [5,6,9]. The present problem has a bumpy 
fitness landscape containing low fitness areas, high 
fitness plateaus and spikes, where the desired circuits 
reside. The scheme to evaluate fitness by analyzing the 
transfer function makes it different from earlier studies. 
For reasons discussed in Section 6, a learning technique 



[1] is also implemented in the algorithm and the results 
are compared with the simple genetic algorithm. 

Problem specific operators and techniques have been 
developed to improve the performance of the algorithm. 
These techniques may show merit with other circuit 
synthesis problems as well. A new crossover operator is 
prescribed which can be used independently and together 
with the learning technique. Results from these new 
techniques are compared with the results of the existing 
techniques. 

The paper is organized in the following way. Section 2 
gives an introduction to sinusoidal oscillators. Section 3 
gives the Problem Statement and objective of the 
algorithm. Section 4 looks into the circuit encoding 
scheme used. Section 5 and 6 present the fitness 
evaluation of circuits. Section 7, 8 and 9 discuss the 
Selection scheme, Reproduction operators and Repairing 
Function respectively. Section 10 contains the tabulated 
results of experiments. Section 11 contains a study of 
experimental results, while Section 12 shows the final 
result and practical usability of this study. Finally, 
Section 13 concludes this study. 

2. Introduction to Sinusoidal Oscillators 

Sinusoidal Oscillators are analog circuits that oscillate 
at a fixed frequency and give a sinusoidal output. The 
criterion for oscillation is that the phase of the loop gain 
should be zero and the magnitude of the loop gain should 
be unity at the oscillation frequency, w. This is called 
Barkhausen criterion [12]. 

A typical sinusoidal oscillator has the following 
characteristic equation (CE): 

 as2 + bs + c = 0  
Condition of Oscillation (CO): b = 0 
Frequency of Oscillation (FO): f = 1/( 2π * (c/a)1/2) 
 
Those oscillators, which require readjusting of both 

the CO and FO for changing the oscillation frequency are 
called SFOs (Single Frequency Oscillators), while 
circuits whose oscillation frequency can be changed 
without disturbing the CO are called VFOs (Variable 
Frequency Oscillators). 

3. Problem Statement And Objective 

Bhattacharya and Darkani have ascertained the 
exhaustive set of Canonic single Opamp sinusoidal SFOs 
and VFOs [2]. They show that canonic SFOs shall 
contain 2 capacitors and 4 resistors, while canonic VFOs 
contain 2 capacitors and 5 resistors. 

 
Development of a Genetic Algorithm to find single-

opamp oscillator topologies containing any number of 

elements is developed. To ascertain the canonic circuits, 
the maximum number of elements is kept to the likes of 
six or seven. The number of capacitors in the circuits is 
not constrained allowing the synthesized oscillators to 
contain any number of capacitors. This helps in studying 
a new class of circuits i.e. three capacitor minimum 
element oscillators for which a systematic study has not 
been carried out so far. The possible synthesis of a VFO 
with only 6 elements containing more than two capacitors 
shall provide a better oscillator than the ones studied 
earlier. 

4. Circuit Encoding  

Circuits are represented in a spice-like netlist as used 
by Grimbleby [6]. The topology is specified by a list of 
component types together with their terminal nodes. 
Component type includes resistor, capacitor and “empty 
component”. Empty component enables us to have 
variable number of components in a circuit, though the 
size of the chromosome is fixed. Inductors are not 
included in the given class of circuits. A tabular depiction 
of the encoding is shown underneath. 

 
Element1 node11 node12 
Element2 node21 node22 
Element3 node31 node32 

  … 
 

Number of elements shall determine the number of rows. 
Elementi: Can be a resistor, capacitor or empty 
component. 
Nodei1, nodei2: Depicts the nodes to which elementi is 
connected. 

5. Fitness Evaluation 

Sinusoidal oscillators have definite topologies. Such a 
topology results in oscillations only when the element 
values satisfy the CO (given in Section 2) and also yield a 
real-valued frequency of oscillation. 

The technique to synthesize analog circuits used 
earlier [5,6,9] cannot be applied here. These techniques 
used spice simulations to assign fitness to a circuit. A 
genetic algorithm using transient response to assign 
fitness shall fail to ascertain the topology independent of 
the component values (i.e. if a fixed set of component 
values is assigned). This is so because the behavior of the 
oscillator categorically depends on its element values and 
at a particular set of values, the topology of an oscillator 
may not oscillate at all (giving zero, dc or non-linear 
output), thus misleading assignment of fitness. Circuits, 
which are not oscillators, also may give similar outputs. If 
the algorithm tries to carry out optimization (using 



another GA or hill climbing algorithm) on component 
values, the method shall again fail due to the spiked 
nature of the search space, where the circuit shall 
oscillate only at specific sets of component values. 
Therefore, we cannot determine whether a topology is 
that of an oscillator or not in the aforesaid manner. 

To judge whether a given circuit is an oscillator, its 
CE is needed. A generalized topology for single opamp 
oscillator is given in Figure 1.  

 

 

Figure 1. General topology of single opamp 
oscillator 

Let: 
T3(s) = V3(s)/V1(s) 
T2(s) = V2(s)/V1(s) 

 
It has been shown that the characteristic equation for such 
a topology [2] is given by: 

T3(s)-T2(s) = 0 
 
A symbolic analysis software developed by James 

Grimbleby [7] was used to find the characteristic 
equation. This software can find out the transfer function 
of any given circuit containing resistors, capacitors, 
inductors, the four controlled sources or ideal opamps. 
The evolved circuit is mapped in the topology given in 
Figure 2, so that its CE can be ascertained using the 
transfer function of the mapped topology. 

 

Figure 2. Topology of circuit for simulation 

Let K = 1, 1:Input, 10:Output, 2,3:Opamp inputs 
 

The transfer function of the circuit (Figure 2) is given by: 
T(s) = V2(s)/V1(s) –V3(s)/V1(s) 

 
The numerator of this transfer function (equated to 0) 

gives the CE of the circuit. 
For the circuit to oscillate, the characteristic equation 

should only contain terms of s2 and s0, with term of s1 as 
optional. Also, there should exist a set of values of 
capacitor and resistors for which the coefficient of s1 
becomes 0 and coefficient of s2 and s0 have the same sign 
(Condition a). If these conditions are fulfilled, the circuit 
shall oscillate. 

In the present study, the following two conditions 
(Condition b) were checked.  

 
1. Whether the coefficient of s1 contains a positive and 

negative term so that it can be made 0.  
2. Whether there is at least a single term each in 

coefficient of s0 and s2, which have the same sign.  
 

If these conditions (Condition b) are true, circuit is 
accepted as an oscillator. 1 The aforesaid criterion is 
incomplete because even when these conditions 
(Condition b) are true, it may not be possible to 
simultaneously make the coefficient of s1 as 0 and get 
same sign for coefficient of s2 and s0. The need for 
simultaneously achieving these two conditions (Condition 
a) sometimes also imposes constraints on the value of 
resistors and capacitors. Hence, a higher mathematical 
statement will be needed to ascertain whether a circuit is 
an oscillator. 

Though, the argument given above is mathematically 
valid, it is generally not observed in practice.  This 
statement is supported by exhaustive search for canonic 
opamp oscillators [2], where none of the topologies 
resulted in such interference between the two criteria 
(Condition a). In general, these criteria only impose 
constraints on component values though the circuit 
remains an oscillator. Therefore we shall use Condition b 
as the criterion to judge oscillators in the present study. 

Using the aforesaid criterion, we can ascertain whether 
a circuit is an oscillator or not, but one cannot judge the 
fitness of a non-oscillator. All non-oscillators ideally 
have a fitness value of 0. Therefore, presently it seems 
the fitness landscape for the problem only contains spikes 
where the required circuits reside, whereas the fitness at 
all other points is ideally 0. 

The following scheme was used to assign fitness to 
circuits and decide upon potential high fitness plateaus in 
the fitness landscape. (Initial fitness assigned is 1) 

 
1. If the circuit is an invalid graph, i.e. CE has 0 terms 

of any coefficients, it is assigned a fitness a. (0<a<1) 

                                                           
1 An alternative is to optimize on component values to place both roots 
of CE on the jw axis. 



2. If the characteristic equation has n high order terms 
than s2, fitness assigned is 1/(b+n). (b>1) 

3. If the characteristic equation has no terms of s2, it is 
assigned a fitness c. (0<c<1) 

4. If the circuit has none of the above characteristics, 
then the following criteria are tested: 

a. If criterion 1 of Condition b is not fulfilled, 
the fitness of the circuit is multiplied by d. 
(0<d<1) 

b. If criterion of 2 of Condition b is not 
fulfilled, the fitness of the circuit is 
multiplied by e. (0<e<1)  

 
In the above statements, a, b, c, d and e are numerical 

parameters which can be set to different values for GA 
runs. The highest fitness value 1 is that of an oscillator. 
Once a circuit with fitness 1 is found, the search is 
stopped. 

6. Learning Based Fitness Function 

The aforesaid fitness function transformed the fitness 
landscape to contain regions of low fitness, high fitness 
plateaus and spikes, where the oscillator reside. The high 
fitness plateaus are essentially circuits, which satisfy one 
of the criteria of Condition b. But it is arguable, whether a 
topology satisfying one of the criteria of condition b is 
similar to topology of an oscillator. The assumption that 
the spike identifying an oscillator lies on a high fitness 
plateau is surely based on intuition of an analog circuit 
designer. 

Therefore a fitness function based on learning [1] 
loosely inspired by Lamarckian search is used. In this 
technique, rather than judging the fitness of a circuit only 
by its absolute fitness, change in the fitness of the circuit 
before and after applying genetic operators is also 
considered. As mentioned in [1], this technique shall 
encourage circuits with lower absolute fitness but 
showing improvement over generations and discourage 
circuits with higher absolute fitness but showing little or 
no improvement over generations. 

In the present problem, this strategy makes sense 
because fitness should be measured as the capability of 
the circuit to become an oscillator rather than its absolute 
fitness value. The scheme shall help in smoothening the 
bumpy fitness landscape.  

The following observations support the use of the 
aforesaid strategy 

 
1. Many circuits show high fitness for many 

generations by fulfilling one of the criteria of 
Condition b, though they are unable to fulfill the 
second criterion and become an oscillator. It is highly 
probable, that these circuits lie on such high fitness 

plateaus, which don’t contain an oscillator topology. 
These circuits shall dominate the population due to 
their highest fitness value (only lower than that of an 
oscillator), while it is less probable that they will 
evolve into an oscillator. Therefore, these circuits 
should be weeded out gradually. 

2. Circuits with low absolute fitness are equal to 
circuits with high absolute fitness in respect that 
none of them are oscillators. Hence these circuits 
should also be considered if they show a tendency to 
become an oscillator.  

 
Different variants of learning technique were 

conceived and tested. Two of them, which showed better 
results, are stated underneath. 

In both the techniques, two records of fitness values 
are kept; first one being the absolute fitness calculated 
using Condition b and the second being the fitness which 
forms the basis for selection of circuits for the next 
population. In the first generation all circuits are assigned 
an equal fitness for the purpose of selection. 

In the first technique, the circuit is assigned as fitness, 
the ratio of absolute fitness of present circuit and the 
circuit before application of reproduction operators. 
There is an additional penalty to the fitness according to 
the number of generations for which the circuit has 
consistently shown a static fitness value.  

Therefore, the circuit’s fitness not only depends on its 
current absolute fitness, but also on its absolute fitness 
before application of reproduction operators. If it shows 
improvement in absolute fitness, its fitness value is more 
than 1, if it becomes worse, its fitness is less than 1 and if 
it shows a stagnant fitness, then it is assigned fitness 1 
together with a penalty (incase it shows stagnant fitness 
continuously). This fitness evaluation reflects the 
capability of the circuit to become an oscillator. 

The following MATLAB code was used. 
  

abs_fit= getfit(); 
            if(abs_fit == prev_abs_fit & oper_app==1) 
                no_gen = no_gen + 1; 
            else 
                if(oper_app==1) 
                    no_gen=0; 
                end 
            end 
            sel_fit=abs_fit/prev_abs_fit*((factor)^no_gen); 
            prev_abs_fit= abs_fit; 
 

abs_fit: The present absolute fitness of the circuit. 
prev_abs_fit: The absolute fitness of circuit before 
application of reproduction operator. 
no_gen: Number of generations for which the circuit has 
continuously shown the same fitness value. 



sel_fit: Fitness which guides the selection of circuits. 
factor: Value of penalty factor applied when circuit 
continuously shows same fitness. (factor<1) 
oper_app: It tells whether any reproduction operator was 
applied to the particular circuit. 
getfit(): The function, which returns absolute fitness 
value according to Condition b. 

 
In the code given above, value of oper_app is set to 1, 

if a reproduction operator has been applied to the circuit, 
otherwise it is set to 0. Penalty is imposed on a circuit 
only when it shows static fitness even after application of 
reproduction operators. 

In the second technique, circuits were penalized if they 
showed static fitness value in the same way as done in 
case of the first technique. The circuits retained their 
absolute fitness value, together with the penalty. No other 
form of learning was implemented in this scheme. 2 

7. Selection Scheme 

The circuits for the next population were chosen using 
Stochastic Universal Selection (SUS). 

8. Reproduction Operators 

Experiments were conducted using uniform crossover 
and two point crossovers. A new crossover operator was 
also devised. In this operator, first the elements of a 
circuit are sorted according to one of their connecting 
nodes (circuit representation contains element with two 
corresponding nodes), thereafter two-point crossover 
operator is applied [1]. The steps for this crossover are 
clearly shown in figure 3. As stated earlier [1], this 
operator seems to be more realistic as it shall exchange 
nearby nodes in the two circuits chosen for crossover, 
retaining the topological features of the remaining circuit. 
It can be seen as retaining some building blocks while 
exchanging some building blocks between the two 
circuits. Though, this scheme is independently applicable, 
it shows specific merit with the learning scheme. 

 

                                                           
2 There can be more variants to this learning technique. Rather than 
using information regarding the state of circuit in the immediate 
previous generation, effect of more previous generations can be 
included. But, it has to be ascertained whether the variant of the circuit 
that existed some generations earlier has similarity in topological 
features as the present circuit [1]. Other variants of the learning 
technique may use different transformation functions to map the effect 
of fitness of the circuit in previous generations to the present one. 

 

Figure 3. A depiction of Sorting, Two-point 
crossover operator 

Quick sort was used to sort the circuits. The sorting 
operator doesn’t prove to be very expensive 
algorithmically. Once a circuit is sorted, it remains sorted 
in a piecewise fashion even after application of 
reproduction operators. For the same reason, the time to 
sort the circuits remains low after the initial generation. 

Experiments were conducted both with and without 
using the mutation operator. Actually, there is implicit 
mutation in the repairing function used, which is 
discussed in Section 9. The mutation operator used 
replaced a given element by an open circuit. 

9. Repairing Function 

A repairing function was used which attempts to 
convert a given circuit to a valid graph. While 
conceptualizing the repairing function, we tried to 
minimize the traversal of the circuit netlist. 

The repairing function attempts to remove singlely 
connected nodes. It was only for the input node (Node 1 
in Figure 2), the two outputs (inputs of opamp, Node 2,3 
in Figure 2) and the ground node, that singlely connected 
nodes were allowed. The remaining singlely connected 
nodes were repaired either by shorting them to an existing 
node (or itself) or by connecting them to an existing node 
with either a capacitor or a resistor. Both these repairing 
techniques were assigned probabilities. The repairing 



function was prevented from falling into infinite loops 
and hence wasn’t able to always repair the circuit.3 

The repairing function did not check or connect 
unconnected independent loops in the circuit. This 
needed repeated traversal of the circuit file. 

The basic aim of the repairing function was to connect 
the unconnected nodes created in a circuit as a result of 
crossovers and mutations, generation after generation. 
Replacing an element by an open circuit (Mutation 
operator) created considerable scope for implicit mutation 
through the repairing function. 

10. Experiments And Results 

All coding was done in MATLAB. After some 
experiments, the following fitness function parameters 
were used.4 

 
a= 0.2 (Kept more than 0 to achieve considerable 
diversity) 
b= 4.0 
c= 0.3 
d=0.75 
e=0.75 

 
The GA parameters used in the runs are as follows 

 
Population size: 35 circuits 
Number of elements: 7 
Maximum number of generations: 100 
Crossover Probability: 0.7 
Mutation Probability (per element): 0.05 
Mixing Ratio (for Uniform Crossover): 0.5 

The results using different crossover operators over 
100 runs of the algorithm are tabulated in Table 1. 

 
 
 
 
 
 
 

                                                           
3 The repairing function is not the primary operator, which makes the 
GA work. In previous works [6], four kinds of mutation operators are 
used, which broadly covers the changes my repairing function does to 
the circuit. It is shown there, that reducing the crossover probability 
reduces the performance of algorithm considerably, which is therefore 
the primary operator. In [5], once again a repairing function is used. 
Still, it will be worthwhile to study the effect of such repairing functions 
on the performance of the GA. 
4 These parameters have been set based on intuition and some initial 
experimental results. There is scope for  tuning these parameters for 
even better results using some optimzation technique (e.g., another GA). 
Moreover, using dynamic values for these parameters to vary selective 
pressure during  execution might be another interesting study. 

Table 1. Results of GA with mutation 
Crossover 
Operator 

No. of 
osc. 

evolved 

Redundant 
circuits 
per gen. 

Total 
no. of 
gen. 

Osc. 
with >2 

cap.s 
Uniform 94 8 1786 39 
Two point 83 7 2925 29 
Sort-two 
point 

90 8 2364 38 

 
Results of experiments without explicit mutation are 
tabulated in Table 2. 
 

Table 2. Results of GA without mutation 
Crossover 
Operator 

No. of 
osc. 

evolved 

Redundan
t circuits 
per gen. 

Total 
no. of 
gen. 

Osc. 
with >2 

cap.s 
Uniform 93 8 1494 43 
Two point 84 6 2517 36 
Sort-two 
point 

89 6 2244 42 

 
The GA parameters used in the algorithm with learning 
are as follows 

 
Population size: 35 circuits 
Number of elements: 7 
Maximum number of generations: 100 
Crossover Probability: 0.7 
Mutation Probability: 0.05 
Factor (for penalty): 0.9 
Crossover: Sort-two point Crossover 

 
Experimental Results are tabulated in Table 3. 
 

Table 3. Results of GA with learning 
technique 

Learn. 
Tech. 

Mut 
 

No. of 
osc. 

evolved 

Redundan
t circuits 
per gen. 

Total 
no. 
of 

gen. 

Osc. 
with 
>2 

cap.s 
Tech. 1 Yes 95 11 2664 40 
Tech. 1 No 88 10 2329 49 
Tech. 2 Yes 88 8 2399 29 
Tech. 2 No 95 8 1612 63 

 
The search space was also explored using random 

search (with circuits initially containing 2 capacitors) 
together with the repairing function. In a population of 
10,000 circuits (with maximum 7 elements), 3 oscillator 
topologies were found. 



11. Observations 

In the present experiments, no inference as to the 
quality of the evolved circuit can be made as all the 
evolved oscillators have an absolute fitness of 1. 
Therefore the number of runs that converge to an 
oscillator and the total number of circuits analyzed during 
the whole run (proportional to the number of generations) 
are used as yardsticks to measure the performance of the 
algorithm. 

In the first set of experiments (without learning), 
Uniform Crossover gives the best result. However, the 
crossover operator of sorting and two-point crossover 
gives superior results to that of two-point crossover. It is 
also evident that the mutation operator doesn’t bring any 
marked improvement in convergence of the algorithm. 

The result of the algorithm with learning (with 
crossover operator as sorting and two-point crossover) is 
superior to the simple genetic algorithm. The two 
techniques show an improvement in the number of 
oscillators evolved. Infact, the second technique with no 
explicit mutations also shows a reduction in total number 
of circuits analyzed drastically. 

The result of random search shows that the GA with 
the worst performance is around 3 times better than 
random search in regard to the ratio of number of 
oscillators synthesized and number of circuits analyzed. 
The best performance of the GA reported in Section 10 is 
6 times better than random search. 

12. Result And Practical Usability 

The evolved circuits were manually compared with 
analytical results. Some of the evolved circuits were 
invalid due to presence of closed loops connected at a 
single point of the circuit.  

All the 12 SFOs found earlier [2] were rediscovered 
by the algorithm. The topologies of some 3-capacitor, 6 
element circuits evolved are given in Appendix I. Many 
new 7 and 8 element circuits were also generated. The 
results have not been observed yet to look for VFOs. 

The problems and limitations of GAs applied to this 
problem are the following: 

 
1. The GA evolves same circuit topology in many runs 

and there is no way to eliminate this effect. 
2. The GA cannot ascertain whether the set of 

oscillators evolved is the complete set or not. 
3. There is no way to fashion the GA to only synthesize 

VFOs or SFOs. Though the final circuit can be 
ascertained as a VFO or SFO. 

 
This work of evolution of oscillators using GAs can be 

used to automate the study of sinusoidal oscillators. The 

following steps can be followed to build a software to 
automatically produce oscillators with desired properties.  

 
1. The circuit topologies synthesized by the GA should 

be first stripped off of redundant components, such 
as resistors or capacitors in parallel or series with 
themselves, elements connecting the input nodes of 
the opamp directly, elements connecting the output 
of the opamp to ground, etc.  

2. Thereafter a revised netlist should be formed to 
identify and dispose off same topologies evolved by 
the genetic algorithm.  

3. A mathematical statement should be formulated to 
recognize VFOs and SFOs. An approach similar to 
the one used by Bhattacharya and Darkani [2] can be 
easily mapped into an algorithm.  

4. The CO and FO should be satisfied using Symbolic 
Analysis techniques for the desired frequency. More 
work needs to be done to realize this aspect.  

5. Thereafter the circuit can be fed into SPICE or actual 
hardware. The observed frequency of oscillation, 
frequency distortion, frequency stability, amplitude 
of oscillation, frequency range, total harmonic 
distortion, power consumption, etc. of the oscillator 
can be ascertained and compared through output 
from SPICE or actual hardware.  

 
In the aforesaid way, the best topology of an oscillator 

with desired frequency and properties can be 
automatically designed.  

By making a few modifications in the topology of the 
circuit fed for simulation (Figure. 2), oscillators using 
other ABBs such as OTAs, CCs, multiple-opamp 
oscillators, etc. can be synthesized automatically. Other 
elements of the algorithm shall remain essentially the 
same. Thereafter an automated comparison of properties 
of all these different kind of oscillators can be conducted.  

Appendix II contains detailed information about the 
changes to be made in the topology (of Figure 2) to 
extend this study to synthesize oscillators using other 
ABBs. Recently, there has been interest in OTRA [3,11], 
DDCCC [14, 15] (current-mode) based oscillators, which 
show advantage over opamp-based circuits. The approach 
presented in Appendix II was used to synthesize 
oscillators using these building blocks. Appendix III 
contains topologies of some unpublished canonic single 
OTRA based SFOs and a DDCCC based current mode 
VFO. 

13. Conclusion 

In the present study a Genetic Algorithm was 
developed to automatically synthesize oscillators. The 
synthesized oscillators showed approval with existing 



analytical results. Also, a new set of oscillators 
containing 3 capacitors was developed. Some new OTRA 
and DDCCC based oscillators were also synthesized. The 
practical usability of this study was established in Section 
12. 

A new crossover operator and learning based fitness 
function have been devised, which show improved results 
when applied to the present study. These techniques are 
open to statistical tests and controlled experiments. They 
may prove beneficial for other circuit evolution problems, 
which may use simulations or actual hardware for fitness 
evaluation. 
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Appendix I 
 

On observing the results manually, it was found that 
the algorithm has found 2 oscillator topologies, which 
have a total of 6 elements and 3 capacitors. Such 
oscillators were not considered earlier [2]. They form a 
part of the set of minimum element single-opamp 
oscillators. Their properties may show merit, which can 
be ascertained by non-ideal analysis or experiments. 
Their topologies are presented underneath. 
 
Topology 1: 



 

Figure 4. Topology 1, Spice Simulation 
Results for f = 63.66KHz 

FO: f = 1/ (2π  * (C1C3R1R2 )1/2) 
CO: R3(C1R1 + C3R2) – C2R1R2 = 0 
 
Topology 2: 

 

Figure 5. Topology 2, Spice Simulation 
Results for f = 63.66KHz 

FO: f = 1/ (2π  * (C1C3R1R3)1/2) 
CO: R2(C1R3 + C3R1) – C2R1R3 = 0 
 
Appendix II 
 

This section explains how the present study can be 
expanded to other building blocks. The basic change in 
the algorithm will be in the topology of the circuit fed to 
the software for finding the CE. For opamp oscillators, 
the topology of Figure 2 was used. 

Opamp has a very high gain (ideally infinite) and 
therefore the voltages at the two inputs are ideally equal. 
Using this fact, we equate the voltage at the input nodes 
of the opamp to find the characteristic equation. 

Similarly, in OTRA based circuits, the input terminals 
are grounded and input currents are forced to have the 
same value. This is used to find the CE of OTRA based 
oscillators. The topology given in Figure 6 is thus used. 

 

FIGURE 6. Topology to find CE of OTRA 
based oscillator 

Let K = 1, 1:Input, 10:Output (2,3: OTRA inputs) 
 
The transfer function of the circuit is given by: 
 
T(s) = I2(s)/V1(s) –I3(s)/V1(s); CE: T(s)=0 
 

Using similar approach, the general topology for 
circuits with single building blocks with infinite gain can 
be developed. For circuits containing active elements 
with finite gain or multiple building blocks, the following 
concept can be used. 

Figure 7 depicts any general oscillator. The nodes n1, 
n2,…,nk  (k>0) are connected to ground. The output 
terminal is also shown. 

 

FIGURE 7. A general oscillator 

The CE for the oscillator can be found in the following 
way. Unground one or more nodes (t<k) connected to 
ground terminals and connect it to a new terminal. This 
new terminal forms the input terminal.  The transfer 
function of the resulting circuit is the closed loop gain. 
The denominator of the transfer function gives the CE. 
This is depicted in Figure 8. 

 
 



 

FIGURE 8. Topology to find CE 

There are two ways to implement this in GA. In the 
first way, the genetic algorithm evolves topologies which 
don’t have an input node and one ground node is 
ungrounded to form the input node for simulation (fitness 
evaluation and the denominator of the transfer function is 
the CE. In the second approach, the circuits evolved have 
both input and output nodes and the denominator of the 
transfer function is the CE. Finally, the input node is 
grounded, when the result is presented. 

This approach can be used for oscillators containing a 
single finite gain building block (like OTA, CC). The 
topology can be built around the fixed nodes of the 
building block as done in case of opamp oscillators. For 
circuits containing multiple building blocks, the terminals 
of the active element will not be explicitly fixed by the 
GA. Therefore a higher statement of repairing function 
will be needed.  
 
Appendix III 
 

As an illustration of the ideas presented in Appendix 
II, some oscillator topologies using newer ABBs have 
been included, though spice simulations have not been 
carried out. Therefore, no inference regarding the stability 
of these oscillators can be made. 

Using the modified topology of Figure 4, OTRA based 
oscillators were synthesized. The algorithm was able to 
synthesize the canonic VFO [3] and its CR transform. 
Apart from these and many more oscillators, the 
algorithm found 3 canonic SFOs. To the best of my 
knowledge only the first topology given underneath is 
published [11]. The results are being searched manually 
to recognize more topologies. Though topology 2 and 
circuit 3 are CR transforms of each other, the GA has 
independently synthesized them. 

 
1: Output of OTRA; 2,3: Inputs of OTRA 
 

 

Figure 9. a, b and c depict Topology 1, 2 and 3 
respectively 

Topology 1 
FO: f = 1/( 2π * (C1C2R1R2)1/2) 
CO: R2(C1 - C2) – C1R1 = 0 
 
Topology 2 
FO: f = 1/ ( 2π  * (C1C2R1R2)1/2) 
CO: C1(R1 + R2) – C2R2 = 0 
 
Topology 3 
FO: f = 1/ (2π  * (C1C2R1R2)1/2) 
CO: C2(R1 - R2) – C1R2 = 0 
 

This study applied to DDCCC [14] is near completion 
and results will be soon presented. A new canonic current 
mode VFO has been included here for illustration (Figure 
10). 

 

Figure 10. A DDCCC based VFO 

FO: f = 1/ (2π  * ( C1C2 (R1R3 – R2(R1+R3))1/2 ) 
CO: R2(C1 + C2) – 2C2R3 = 0 
 
 

 

(a) (b) 

(c) 


