
1

Rapidly Evolving Soft Robots via Action
Inheritance

Shulei Liu, Wen Yao, Handing Wang, Member, IEEE, Wei Peng, and Yang Yang

Abstract—The automatic design of soft robots characterizes as
jointly optimizing structure and control. As reinforcement learn-
ing is gradually used to optimize control, the time-consuming
controller training makes soft robots design an expensive op-
timization problem. Although surrogate-assisted evolutionary
algorithms have made a remarkable achievement in dealing
with expensive optimization problems, they typically suffer from
challenges in constructing accurate surrogate models due to
the complex mapping among structure, control, and task per-
formance. Therefore, we propose an action inheritance-based
evolutionary algorithm to accelerate the design process. Instead
of training a controller, the proposed algorithm uses inherited
actions to control a candidate design to complete a task and
obtain its approximated performance. Inherited actions are near-
optimal control policies that are partially or entirely inherited
from optimized control actions of a real evaluated robot design.
The action inheritance plays the role of surrogate models where
its input is the structure and output is the near-optimal control
actions. We also propose a random perturbation operation to
estimate the error introduced by inherited control actions. The
effectiveness of our proposed method is validated by evaluating it
on a wide range of tasks, including locomotion and manipulation.
Experimental results show that our algorithm is better than the
other three state-of-the-art algorithms on most tasks when only
a limited computational budget is available. Compared with the
algorithm without surrogate models, our algorithm saves about
half the computing cost.

Index Terms—Soft robot design, surrogate-assisted evolution-
ary algorithm, morphological optimization, error estimation

I. INTRODUCTION

In the last decade, the research on creating autonomous
robots has observed important developments [1], [2]. Inspired
from natural living systems, where body structure and brain
are two key factors for completing any task in a real environ-
ment, an intelligent soft robot typically requires optimizing
its structure and control simultaneously [3], [4]. Such a co-
design problem has been challenging in robotics and machine
learning communities [5].

The co-design of soft robots is a bi-level optimization prob-
lem [6], [7] in which the outer loop optimizes morphological
structures while the inner loop optimizes the control for a

This work was supported in part by the National Natural Science Foun-
dation of China (No. 61976165,62376202).(Corresponding author: Wen Yao,
Handing Wang)

S. Liu and H. Wang are with School of Artificial Intelligence, Xi-
dian University, Xi’an 710071, China. (e-mail: shuleiliu@126.com, hd-
wang@xidian.edu.cn). S. Liu is also with the Defense Innovation Institute,
Chinese Academy of Military Science, Beijing 100071, China. H. Wang is
also with Collaborative Innovation Center of Quantum Information of Shaanxi
Province, Xidian University, Xi’an 710071, China.

W. Yao, W. Peng, and Y. Yang are with the Defense Innovation Insti-
tute, Chinese Academy of Military Science, Beijing 100071, China (e-mail:
wendy0782@126.com, weipeng0098@126.com, bigyangy@gmail.com).

given structure. In the outer loop, the encoding strategy of
structures directly affects the expression of the morphological
design space. A reasonable encoding strategy can result in an
effective design space and maximize the retention of physical
morphology [4]. There are two types of encoding strategies:
indirect and direct encoding. Compositional pattern producing
network (CPNN) [8] is the most classical indirect encoding
scheme in which a neural network is used to learn the mapping
relation between the spatial coordinate of a robot voxel and the
type of that voxel. Through a series of perturbation operations,
including adding or deleting nodes and edges, exchanging
weights and activation functions, CPNN outputs a variety of
structures [9]. Compared with indirect encoding, direct encod-
ing takes a more intuitive scheme. A morphological structure
is always represented as a tree [4], [10], grid [11], [12], or
graph [13]. For complex robot design tasks, either the direct
or the indirect encoding strategy will lead to a combinatorially
huge search space. This poses a great challenge to the outer
optimization methods [14].

A choice for outer optimization is evolutionary algorithms
(EAs), due to their searching ability in the complex de-
sign space [15], [16]. Based on the principle of selective
reproduction of the fittest, robots are viewed as autonomous
artificial organisms that can develop their own structures by
interacting with the environment. The fittest robots survive and
reproduce until a robot that satisfies the performance criteria
is produced. Considering the discrete nature of the design
space, several improved EAs have been proposed, such as
biodiversity enhanced mechanism [17], constrained evolution
[18], neural graph evolution [19], etc.

In the optimization, the EA should allocate each newly
generated robot design a unique controller. Then, the fitness
evaluation is performed by using the actions provided by the
controller to control a robot to fulfill a specific task. The inner
control optimization directly affects the evolution direction.
Many methods have been proposed to obtain an intelligent
controller, broadly divided into two categories: model- and
learning-based approaches [20]. Model-based approaches first
find a hand-engineered mathematical model of the robot
dynamics, such as a physical [21], [22] or fuzzy approximation
[23] model. Then, model parameters are adjusted by repeatedly
executing control actions and obtaining feedback. After that,
a robot is typically derived using the re-parameterized model
[24], [25]. One drawback of such methods is assuming a basic
topology in advance, such as legged robots [26]. However,
in some complex tasks, the prior knowledge about the basic
topology is limited.

Recently, reinforcement learning (RL) has proven effective

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3327459

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on December 25,2023 at 01:07:56 UTC from IEEE Xplore. Restrictions apply.

2

at discovering control policies [4], [11], [27]. In learning-based
methods, the RL paradigm is used to learn the mapping rela-
tion between environment observations and executed actions.
Compared with model-based methods, learning-based methods
are able to learn intelligent behaviors without prior knowledge.
However, the process of RL often requires a large number of
trajectory data, leading to a computationally expensive training
procedure. The inner control optimization leads to a time-
consuming whole optimization process. For instance, a control
policy is learned after 5 million iterations in [4]. On the
premise of using the parallel technology, it takes about 16
hours to train 288 controllers. The inner control optimization
leads to a long iteration cycle of the whole optimization
process.

With the extensive application of RL techniques, especially
deep RL, the significant computational burden imposed by
training controllers has become a major factor affecting the
rapid development of robot automatic design [4], [19]. There
are generally two strategies to accelerate the evolution of
soft robots. One is to reduce the time spent on optimizing
control. The simplest method of the first strategy is to use
other control optimization methods, such as CPPN [28] and
evolution strategies [29], instead of RL algorithms. Although
these methods can reduce the time spent on optimizing control,
this is a small contribution compared to the costed total time.
Since the prolonged training process is the main reason for
the high computational cost, many acceleration strategies have
been proposed, such as model order reduction technique [30],
group training [18], model-based reinforcement learning [13],
and policy transfer [31]. However, they are only applicable to
simple tasks or the implementation of these strategies requires
a series of complex operations.

The other is to reduce the number of times to train con-
trollers. The purpose of training controllers is to obtain the
task performance of candidate robots. In the optimization
process of EAs, there are always many eliminated robots. Once
a robot is eliminated, it will not appear in the subsequent
population and will not impact the optimization process. If
these eliminated robots can be pre-selected without training
controllers, then the number of times to train controllers
can be reduced, thereby accelerating the evolution. Surrogate-
assisted evolutionary algorithms (SAEAs) are a technique that
accelerates the optimization process by reducing the number of
computationally expensive evaluations [32], [33]. One general
target of SAEAs is using a computationally cheap surrogate
model to replace the computationally expensive fitness evalu-
ations. The key in SAEAs is how to build accurate surrogate
models [33]. Many excellent machine learning methods have
been utilized, including random forest [34], radial basis func-
tion network [35], Kriging model [36], etc.

Although SAEAs have achieved good performance in deal-
ing with many practical problems [37], [38], there are several
challenges to using SAEAs to solve robot design problems.
First, in most SAEAs, some generic surrogate models are
directly trained by taking decision variables and objectives as
input and output, respectively [39]. However, the robot design
problem is a co-design or bi-level optimization problem with
the objective related to outer decision variables and inner op-

timized control [40], [41]. For dealing with expensive bi-level
problems, surrogate models can be useful to approximate the
outer objective function. One approach is to train models using
decision variables and the outer objective as input and output
without considering inner control. This method is particu-
larly effective when the inner optimization is straightforward.
[40]. The automatic design of soft robots requires the inner
controller to drive the robot to generate intelligent behavior,
so its optimization is extremely complex. Second, although
the surrogate model technology can approximate the inner
control optimization in theory, there are still some practical
difficulties. The optimized control is a series of intelligent
actions generated by a well-trained controller after the robot
interacts with the environment rather than a simple numerical
vector. Moreover, the number of actions is relatively large.
For example, in [11], controlling a robot to complete some
complex tasks requires at least 1000 actions. Without a large
amount of training data, it is not easier to train a generic model
to approximate the mapping from a low-dimensional robot
structure to its high-dimensional control actions. Generally,
the key to using SAEAs to solve robot design problems is
how to build an accurate surrogate model.

As soft robot design problems have the characteristics of
bi-level optimization and complex control, it is challenging
to build accurate generic surrogate models. Fortunately, there
are still some well-trained controllers in the optimization
process. For a real-evaluated robot, its well-trained controller
can be abstractly described as the knowledge of how to
control the robot to complete a particular task. Therefore,
besides the evaluated data (structures and rewards), we can
use this knowledge to build surrogate models. In soft robot
design problems, different controllers inputs and outputs may
differ. Without retraining, the transferred controller (a neural
network) cannot directly act on a new robot design. The
simplest way to utilize this knowledge is to use the actions
provided by a well-trained controller to control a candidate
robot and obtain its approximated task performance. Since
the actions employed to obtain approximated performance are
partially or fully inherited from these control actions of a real-
evaluated robot, we refer to the process of utilizing a well-
trained controller for evaluating candidate robot designs as
action inheritance.

In this work, we take voxel-based soft robots as the research
object and present an action inheritance-based evolutionary
algorithm (AIEA) to accelerate the automatic soft robot de-
sign. The main contributions of the paper are summarized as
follows.

1) For a candidate robot design, a rapid evaluation method
is proposed to obtain its approximated task performance.
Based on the structural similarity, a candidate robot
first finds its parent among all the real-evaluated robots.
Considering some differences between voxel positions
and types in these two robots’ structures, some easy-to-
implement adjustments are made to the parent’s control
actions, such as extracting and filling, to obtain inherited
actions. The approximated task performance is obtained
using inherited actions to control the candidate robot.
The action inheritance-based evaluation plays the role

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3327459

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on December 25,2023 at 01:07:56 UTC from IEEE Xplore. Restrictions apply.

3

of surrogate models in the proposed algorithm.
2) Since these inherited actions are near-optimal, there is

an error between the task performance under the near-
optimal control and its actual performance. A random
perturbation operation is proposed to estimate the error
introduced by action inheritance.

3) A local search method is integrated into the proposed
algorithm to accelerate the evolution further. Combining
surrogate model approximation and local search allows
the proposed algorithm to search for more potential de-
signs without leading to additional computational costs.

The rest of this paper is organized as follows. Section II
briefly introduces the study object of this paper: voxel-based
soft robot. Section III introduces the details of the proposed
algorithm, and the experimental results of our algorithm with
the other algorithms are presented in Section IV. Finally, Sec-
tion V concludes the paper with a summary and a discussion
of future work.

II. VOXEL-BASED SOFT ROBOT

Voxel-based soft robots (VSRs) are a kind of robots com-
posed of several elastic cubic blocks (called voxels) [42].
Through the coordinated deformation among various voxels,
the robot can emerge intelligent behaviors. Following [11],
we consider a unified multi-material VSR in this work. When
a VSR attempts to fulfill a task, such as locomotion and
manipulation, it usually involves three main factors: structure,
simulation, and action.

0 Empty

1 Rigid

2 Soft

3 Vertical Actuator

4 Horizontal Actuator

(a)

0 2 4 4 0

4 0 0 4 4

2 3 4 4 3

3 3 4 4 4

0 0 0 1 2

(b)

Fig. 1. Taking a VSR with (5× 5) grid size as an example. (a) is the voxel
representation. (b) is the material matrix.

The structure of a VSR describes how the voxels are
arranged in a grid topology. A direct encoding strategy is
applied. Each robot is specified as a material matrix of voxels.
The entries of the material matrix are integers corresponding
to a voxel type. Following [11], four types of voxels are con-
sidered: soft, rigid, vertical actuator, and horizontal actuator
voxels, which are encoded as 1, 2, 3, and 4, respectively.
Besides, we also allow the presence of empty voxels in VSRs.
Correspondingly, 0 represents an empty voxel. Taking the
(5 × 5) grid size as an example, Fig. 1 shows the voxel
representation and material matrix a randomly generated VSR.

Simulation, also known as the modeling method of robot
dynamics, is a fundamental part in VSR design problems [2].
The mass-spring system is a simple and flexible method for
modeling VSRs in which robots and task environment are
converted into a set of point masses and springs by turning
each voxel into a cross-braced square [43].

At each time step, an action vector provided by the robot’s
controller is used to step the simulation. Each component of
the action vector is associated with an actuator voxel (either
horizontal or vertical) and instructs a deformation of that
voxel. In other words, the length of an action vector is the same
as the number of actuator voxels. Different robots may have
different action lengths. Each component in an action vector is
a real number that represents the ratio of the deformed length
of the spring to its original length.

The goal of VSR autonomous design problems is to find
the optimal structure s∗ and control a∗

s∗ :

s∗,a∗
s∗ = argmaxF (s,a∗

s)
s∈S

,

s.t. a∗
s ∈ argmax f(s,as)

as∈A

,
(1)

where s is the structure matrix of a robot design, S is
the design space. as ∈ Rt×l is the set of control actions
where t is the number of simulation steps and l is the action
length. F (·) represents the objective function of the outer
loop where its evaluations require the optimized control of
the inner loop. f(·) represents the objective function of the
inner loop which is usually expressed as the learning process
of intelligent controllers by RL algorithms, such as proximal
policy optimization (PPO) [44]. More specifically, the RL al-
gorithm needs to learn the mapping between the environmental
observations and the suitable actions by constantly generating
actions, executing actions, and obtaining simulation feedback.
The learning process of RL requires tremendous simulation
data, suffering from a heavy computational burden. Although
RL can train an intelligent controller, its convergence cannot
be always guaranteed. To be precise, the actions outputted by
a well-trained controller is less-than-optimal. In this article,
actions outputted by well-trained controllers are expressed as
optimized actions.

In general, the decision variable s is identified as an n×m
matrix where sij ∈ {0, 1, ..., v}(1 ≤ i ≤ n, 1 ≤ j ≤ m). 0
represents an empty voxel and v is the type of voxels. In this
work, v = 4. When the fitness of a candidate design needs to
be evaluated during evolution, the optimized or trained control
a∗
s should be provided. That is to say, a unique controller

must be trained before obtaining the performance of a robot
design. Based on the above analysis, VSR design problems
have two characteristics: the decision variable is discrete
and the fitness evaluation is time-consuming. Therefore, the
VSR design problem is a typical expensive combinatorial
optimization problem.

III. PROPOSED ALGORITHM

SAEAs generally contain two types of essential operations:
search strategies-related and surrogate models-related. In this
section, we first introduce the basic flow of AIEA and then
detail the search strategy used in AIEA, followed by the action
inheritance-based surrogate model and an error estimation
method.

A. Basic Flow
Fig. 2 illustrates the framework of AIEA, which follows the

basic process of SAEAs, including initialization, real evalua-

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3327459

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on December 25,2023 at 01:07:56 UTC from IEEE Xplore. Restrictions apply.

4

Sample
population

Stop?

…

No

Yes

Output optimal
design

Action inheritance-based Performance ApproximationError estimation

…

Structure
m c

Actions inheriting

Evaluate
offspring

designs using
inherited
actions

Evaluate
matched

designs using
perturbed

actions

Calculate
fitness of
offspring
designs

Add permutation

* * * * *
* * * * *

…
* * * * *

* * * * *
* * * * *

…
* * * * *

Extract

Optimized
actions of m

Random
actions

Fill

Inherited
actions…

*
*
.
*

*
*
.
*

* * * * *
* * * * *

…
* * * * *

* * * * *
* * * * *

…
* * * * *

Optimized
actions of m

Random
actions…

+

Evaluate new
designs using

optimized
actions

Store real-
evaluated
designs

Select top N
designs as

parents

Evaluated
design

Offspring
design

① ②

③

①

② ③

…

Create offspring by
mutation and local search

Train
controllers and
store optimized

actions

Select elites

…Start

End

matching

Fig. 2. Framework of the proposed AIEA. For a candidate robot design, action inheritance is used to rapidly evaluate its approximated performance by
matching it with a real-evaluated design based on structural similarity, inheriting optimized control actions of the matched design based on the position and
type of actuator voxels, and applying inherited actions to control the robot. Error estimation is used to make the rapidly-evaluated performance more accurate
by adding random perturbation to optimized control actions of the matched design, evaluating the matched design using perturbed actions, and re-calculating
fitness.

tion, variation, surrogate-based evaluation, and environmental
selection. The first three parts are shown on the first layer of
Fig. 2, the last two are on the second layer.

For a given task, a number of initial robot designs are
first generated in the design space by random sampling.
Before sampling a robot design, it’s essential to determine
its maximal size, such as the (n × m) grid. Once the robot
size is specified, each voxel will be randomly sampled from
all materials. This process results in a unique design every
time. After that, the sampled design will be judged if it
has actuators or is connected. Otherwise, a new design is
resampled. After sampling, their performance are evaluated
by the expensive fitness function. More specifically, the PPO
algorithm is used to learn an optimized controller for each
robot. Following that, the simulation is executed to obtain the
task reward of each robot with the participating of its well-
trained controller. Specifically, at each time step, the well-
trained controller outputs an action vector according to the
environment observation. The robot executes the action and
the simulation returns a task-specific reward. The sum of
rewards at all steps is applied as the fitness to measure the
performance of the current robot and its control. After that, all
the real-evaluated designs with their optimized control actions
are stored in archives.

In each generation of AIEA, top N designs are selected
from these stored designs to form a parent population. Next, a
mutation operator and a local search method are performed to
create offsprings (Section III-B). For each offspring, an action
inheritance-based method is used to obtain its approximated
performance (Section III-C). To make the approximated per-
formance accurate, an error estimation method is employed
(Section III-D). After that, the environmental selection is
executed by taking the sum of the approximated performance
and the error as the selection metric. The survivors are then re-
evaluated using the real fitness function. All the real-evaluated
designs are stored in archives. The above process repeats until
the termination condition is satisfied.

B. Search Algorithm

Following [11], the genetic algorithm (GA) with a simple
mutation operator is implemented to evolve the population
of robot designs. For combinatorial optimization problems, a
combination of local search and population-based search has
been widely used to improve the convergence speed [45], [46].
Considering the discrete design spaces and arbitrarily complex
tasks, we integrate a local search method into the GA to search
promising designs.

The pseudo-code of AIEA is shown in Algorithm 1. In
each generation of AIEA, N robot designs are firstly created
by iteratively selecting one of N parents and mutating its
structure (lines 11-15). N represents the population size.
These progenies are generated based on multiple high-quality
designs, which play a role in exploring the design space.
Then, other N robot designs are created by taking the best
design found so far as the only parent and iteratively mutating
its structure (lines 16-20). By limiting the parent, these final
N designs pay more attention to a local region and favor
exploitation. In the above two processes, only the selection of
parents is different. The approach of mutating parents structure
is the same. Following [11], a simple mutation strategy is used
to evolve the population of robot designs. The pseudocode
of mutation is shown in Section S.I of the supplementary
material. To avoid repeatedly exploiting a same local region,
the parent chosen for local search should be different in
different generations.

After variation, the performance of these 2N offspring
designs is evaluated by a computationally cheap approximation
method (lines 23-27). Next, the environmental selection is
executed. Only those survivors will be re-evaluated by the
expensive fitness function. Following [11], environmental se-
lection keeps the top λN designs from the current population
as survivors (lines 28, 29). λ ∈ (0, 0.6] denotes the survival
rate. All the real-evaluated designs, including their structures,
controllers, and actions, are stored. AIEA outputs the optimal
design among these stored designs when the termination
condition is satisfied.

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3327459

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on December 25,2023 at 01:07:56 UTC from IEEE Xplore. Restrictions apply.

5

In each generation, the fitness of most designs is evaluated
with low computational cost, and only a small number of
designs are evaluated using an expensive fitness function. In
the context of soft robot design problems, the computational
time required for fitness evaluations (i.e., training controllers
via reinforcement learning) is significantly longer than that of
other algorithmic steps. Therefore, compared with GA, it does
not lead to extra time costs even though AIEA creates more
designs.

Algorithm 1 Pseudocode of AIEA
Input: N : Population size; Nmax: Maximum number of real fitness evalu-

ations.
Output: s∗: the optimal design; a∗

s∗ : the control action of s∗.
1: Initialize the population P = {p1, ...,pN}

Real evaluation
2: for each p in P do
3: Optimize control
4: Calculate the outer objective based the optimized control and structure
5: end for
6: Add the structures of real-evaluated designs to S
7: Add the control actions of real-evaluated designs to A
8: Set number of current used fitness evaluations Ncur = N
9: while Ncur < Nmax do

10: O1, O2 := ∅
Variation by mutation

11: while |O1| < N do
12: Randomly select a parent pr from P
13: om := mutation(pr)
14: O1 ∪ {om}
15: end while

Variation by local search
16: Set pb as the design with the best performance in S
17: while |O2| < N do
18: ol := mutate(pb)
19: O2 ∪ {ol}
20: end while
21: O := O1 ∪O2

Approximated Evaluation
22: Ω := ∅
23: for each o in O do
24: r̂o := ApproximateEvaluation(o, S, A)
25: eo := ErrorEstimation(o, S, A)
26: Ω ∪ {r̂o + eo}
27: end for
28: λ = 0.6× (1−Ncur/Nmax)
29: O′ := EnvironmentalSection(O,Ω, λN)

Real Evaluation
30: Evaluate survivors in O′ by the real fitness function
31: Ncur = Ncur + |O′|

Pool updating
32: Add the structures of re-evaluated designs to S
33: Add the control actions of re-evaluated designs to A
34: Select top N designs as the parent population P
35: end while
36: Set s∗ as the design with the best performance in S

C. Action Inheritance-based Performance Approximation

In automatic robot design problems, the performance eval-
uation of candidate robot designs is time-consuming. To ac-
celerate the design process, we use a specific surrogate model
to replace most expensive evaluations.

According to the learned mapping relation, there are gen-
erally two strategies for model construction. The first strategy
is to construct an end-to-end model in which the surrogate

model is used to approximate the mapping from structures to
their performance. It can be formulated as

r̂c = M1(sc), (2)

where M1(·) is the learned model, r̂c is the predicted task per-
formance, and sc is the structure matrix of a candidate robot
design c. According to Equation (1), the task performance of
a robot design is not only related to its structure but also to
control policies. Without considering control, it is difficult to
accurately learn this mapping using generic machine learning
models. Although this strategy is intuitive and straightforward,
the forecasting precision is limited. The second strategy uses
surrogate models to map a structure to its control actions. It
can be formulated as

âc = M2(sc), (3)

where M2(·) is the learned model, âc is the predicted control
actions. After that, the task performance can be obtained by
F (sc, âc), where F (·) is the objective function of the outer
optimization. As described in Section II, the control actions
are a series of intelligent behaviors after the robot interacts
with the environment, rather than a simple numerical vector.
With limited training data, it is challenging to implement
this process using traditional machine learning methods. To
overcome this, we propose an action inheritance-based model
construction method.

In evolution, a morphology structure is generated by chang-
ing the structure from its parent, resulting in a certain sim-
ilarity between these two structures. Given a task, the inner
control optimization only relates to structures. The robots with
a significant structural similarity show a high homologous
in control policy. For a robot, the control of its similar
robot can be seen as an approximation of its optimal con-
trol. The purpose of using the second strategy to construct
surrogate models is to obtain near-optimal control actions
quickly. Therefore, getting near-optimal control actions based
on structural similarity can act as a surrogate model. There
are two techniques to reuse the control policy of real-evaluated
robot designs. One is to transfer the well-trained controller, and
the other is to reuse actions provided by the controller. In VSR
design problems, the input and output of each controller are
different. Without retraining, the transferred controller cannot
directly act on a new robot design. On the contrary, reusing
the controller’s output is much easier.

The action inheritance-based performance approximation
mainly includes two steps: structure matching and actions
inheriting. The structure matching is to find the most similar
one to the current design from real-evaluated designs. Actions
inheriting enables control actions of the found design to act on
the current design through some easy-to-implement operations.
For a candidate robot design c, its material matrix of physical
structure is denoted as sc. The matching process can be
described as

sm = argminh(si − sc)
si∈S

, (4)

where si is the structure matrix of robot i. S is an archive.
All structures of real-evaluated designs are stored in S. h(·)

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3327459

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on December 25,2023 at 01:07:56 UTC from IEEE Xplore. Restrictions apply.

6

is used to calculate the number of non-zero elements in a
matrix. Fewer non-zero elements in the difference between
the two structure matrices show a more remarkable similarity.
sm represents the structure matrix of real-evaluated design m
which has the most similarity to sc.

Suppose that the optimized control actions of m is expressed
as a∗

m ∈ Rt×lm where t represents the number of simulation
steps and lm represents the action length. At each time step,
an action vector of a∗

m is applied to step the simulation.
Since each component of the action vector is associated with
an actuator voxel, the action length equals to the number
of actuator voxels in a structure. For different designs, their
simulation steps are identical in the same task environment,
but their action length differs. Structure matching considers the
similarity of all voxels while action inheriting focuses more
on actuator voxels, including their positions and types. Even
though the two designs, c and m, have the most significant
structural similarity, in most cases, the optimized control
actions of m cannot be directly used to control c. Take Fig. 3
as an example. If a∗

m is directly used to control c, the actions
applied on the 9th voxel of m will apply on the 12th voxel of
c (The 9th voxel of m and the 12th voxel of c are both the first
actuator voxel in their structures). It is inappropriate because
the positions of these two actuator voxels are different. The
color of the 12th voxel of m and c is blue, indicating that they
are both horizontal actuator voxels. Ideally, the actions applied
on the 12th voxel of m act on the 12th voxel of c since the
positions and types of these two actuator voxels are the same.

Real-evaluated design m Candidate design cReal-evaluated design m Candidate design c

Fig. 3. An example shows that the optimized control actions of m cannot be
directly used to control c. Blue, orange, gray, and black represent horizontal
actuator voxels, vertical actuator voxels, soft voxels, and rigid voxels.

In VSRs, the control actions only apply to actuator voxels.
Considering the difference of actuator voxels in position and
type, some adjustments need to be performed before using
optimized actions of a real-evaluated robot m to control a
candidate robot c. In a structure matrix, we use 3 or 4 to
represent a vertical or horizontal actuator voxel, respectively.
The adjustment includes the following two basic operations.

1) Extract. If the actuator voxels at some positions of sm is
the same as that of sc, then the actions applied on these
voxels of sm can be associated with the corresponding
voxels of sc. Assume that νm represents the set of
actuator positions and types in sm. Taking Fig. 4a as an
example, νm = {(8, 4), (11, 4), (12, 3), (17, 4), (22, 4)},
each element of the set is a tuple consisting of the
position number and material type. The tuple (8, 4)
indicates that the eighth voxel in sm is a horizontal

actuator. From Fig. 4a, we can observe that νc =
{(8, 4), (11, 4), (12, 3), (22, 4)} and νc ∩ νm = νc. In
this case, the actions applied on the 8th, 11th, 12th, and
22nd voxels of m can be extracted and applied to the
voxels at the corresponding positions of c. Specifically,
the first to third and fifth dimensions of a∗

m are extracted
to form a new action matrix to control c. This process
is shown in Fig. 4a.

2) Fill. For a candidate robot design, the dimension of
extracted actions is usually smaller than that of its
actual control actions. Taking Fig. 4b as an example,
νm = {(8, 4), (11, 4), (12, 3), (17, 4), (22, 4)}, νc =
{(8, 4), (11, 4), (12, 3), (22, 3)}, (νm ∩ νc) ⊆ νc. Since
the type of 22nd voxel of m is different from that of
c, the actions applied on the 22nd voxel of c cannot be
inherited from the a∗

m. Considering the time cost, we
use random actions to fill the missing part. In this case,
the first three dimensions of âc are extracted from a∗

m

and the fourth dimension is filled with random actions
where âc is the inherited actions to control c.

m

𝑎!,!, 𝑎!,#, 𝑎!,$, 𝑎!,%, 𝑎!,&

𝑎#,!, 𝑎#,#, 𝑎#,$, 𝑎#,%, 𝑎#,&

𝑎',!, 𝑎',#, 𝑎',$, 𝑎',%, 𝑎',&

…

𝑎!,!, 𝑎!,#, 𝑎!,$, 𝑎!,&

𝑎#,!, 𝑎#,#, 𝑎#,$, 𝑎#,&

𝑎',!, 𝑎',#, 𝑎',$,𝑎',&

…

Exact

𝑎!∗ "𝑎#c

(a)

m c

𝑎!,!, 𝑎!,#, 𝑎!,$, 𝑎!,%, 𝑎!,&

𝑎#,!, 𝑎#,#, 𝑎#,$, 𝑎#,%, 𝑎#,&

𝑎',!, 𝑎',#, 𝑎',$, 𝑎',%, 𝑎',&

…

𝑎!,!, 𝑎!,#, 𝑎!,$, 𝑟!,&

𝑎#,!, 𝑎#,#, 𝑎#,$, 𝑟#,&

𝑎',!, 𝑎',#, 𝑎',$,𝑟',&

…

𝑎!∗ "𝑎# 𝑎$

𝑟!,&

𝑟#,&

𝑟',&

…

Fill

(b)
Fig. 4. Action inheritance diagram. m is a real-evaluated robot design, c is
a candidate robot design. The structural similarity between m and c is the
largest. a∗

m and âc represent the optimized control actions of m and the
actions inherited from m, respectively. ar is a random action. (a) Actions
inheriting only contains extraction. (b) Actions inheriting contains extraction
and filling.

The pseudo-code of the action inheritance-based perfor-
mance approximation is shown in Algorithm 2, which includes
three parts: structure matching (lines 1-7), actions inheriting
(lines 8-20) and evaluation (line 21). It is worth noting that
in VSRs design problems, the process of training controllers
is time-consuming, and evaluating task performance based on
structure and control actions is not time-consuming.

The action inheritance is a process of applying the optimized
control policy of a real-evaluated robot to an un-evaluated
robot. Once a candidate robot is assessed as promising by
the action inheritance-based performance approximation, RL
will be used to train its controller. If the opposite situation
occurs, it will not appear in the subsequent optimization
process. Therefore, action inheritance is actually to pre-select
some promising robot designs that use RL to optimize their
controllers. It does not participate in optimizing the control

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3327459

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on December 25,2023 at 01:07:56 UTC from IEEE Xplore. Restrictions apply.

7

mechanism of any robots. On the other hand, inherited ac-
tions disregard the robot’s observations. However, this is not
a bad situation for AIEA. Environmental selection requires
comparing the performance of a parent and its offspring to
preserve either. Suppose an offspring performs better under
the control that disregards observations than its parent under
the optimized control. In that case, it is more likely that the
design structure of the descendant is superior to that of the
parent. It is also possible to quickly distinguish robots who can
enter the next generation without training an enormous number
of controllers. The ingenious cooperation of environmental
selection and action inheritance has achieved the goal of rapid
robot evolution.

Algorithm 2 Pseudocode of Action Inheritance
Input: S: the set of structures of real-evaluated designs; A: the set of control

actions of real-evaluated designs; c: the candidate design.
Output: r̂c: the approximated performance of c.

Structure Matching
1: D := ∅
2: sc := the structure of c
3: for each si in S do
4: D := D ∪ {h(si − sc)}
5: end for
6: m := argmin(D)
7: Set sm as the structure of m

Action Inheritance
8: Set a∗

m as the optimized control actions of m
9: âc := Initialize a random matrix

10: k1, k2 := 0
11: for each sijc in sc do

Extract
12: if sijm = sijc = 3 or sijm = sijc = 4 then
13: âc[:,k1] = am[:,k2]
14: end if

Fill
15: if (sijc = 3 or sijc = 4) and sijm ̸= sijc then
16: âc[:,k1] = random()
17: end if
18: k1 + 1 if sijc =(3 or 4)
19: k2 + 1 if sijm=(3 or 4)
20: end for

Evaluation
21: r̂c = F (sc, âc)

D. Error Estimation

In AIEA, the performance of most designs is evaluated by
an approximate method. The approximated evaluation can be
expressed as

r̂c = F (sc, âc), (5)

where c is a candidate robot design, sc is the structure, âc is
the inherited control actions, F (·) is the objective function of
the outer optimization, r̂c is the close task performance. Since
the control actions âc are near-optimum, there is an error ec
between r̂c and its actual performance rc. Intuitively, ec is
the performance difference of c under the optimal and near-
optimal control. If the difference between these two control
policies is measurable, the error can be accurately evaluated.
However, the optimal control is not available without training a
controller. In the case that the accurate method is not feasible,
we adopt an approximate method to make r̂c as close as
possible to rc.

In evolution, the candidate design c is created by a mutation
operator. There must be a parent m similar to it. Based on
structural similarity, we assume that the performance differ-
ence of m under the optimal and near-optimal control is
approximately equal to that of c. The error ec can be estimated
as

ec ≈ em = F (sm,a∗
m)− F (sm, âm), (6)

where a∗
m is the optimized control actions of m. âm is an

approximation of a∗
m which is obtained by adding random

perturbation to a∗
m. Since m is a real-evaluated design, its

optimized control actions are available. Compared with the
time cost of training a controller, the time cost of obtaining
âm is almost negligible when a∗

m is available.
If the perturbation is added to all components of a∗

m, the
obtained âm may not be an approximation of a∗

m but a matrix
entirely unrelated to a∗

m. Conversely, if the perturbation is
only added to a particular column of a∗

m, it may result in a
significant error difference when different columns are chosen.
To overcome this, we add random perturbation to each column
of a∗

m in turn and take the average as the approximate error.
For a candidate morphology design c, the perturbation-based

error estimation can be described as

ec ≈
lm × F (sm,a∗

m)−
∑lm

j=1 F (sm,a∗
m + rj)

lm
, (7)

where m is a real-evaluated robot design. sm is the structure
of m which is most similar to that of c. a∗

m is the optimized
control actions of m. t represents the number of simulation
steps and lm represents the number of actuator voxels in m,
that is, the length of each action vector. rj is a matrix in which
the values of the jth column are random numbers and the
other values are 0. F (·) is the objective function of the outer
optimization. After error estimation, the task performance of
c is calculated as r̂c + ec. After that, the value of r̂c + ec is
employed the metric for environmental selection.

IV. EXPERIMENTAL STUDY

A. Benchmark

We use Evolution Gym [11] as the test suite to empirically
validate the performance of compared algorithms. Evolution
Gym (often abbreviated to EvoGym) is a comprehensive
benchmark for co-optimizing the structure and control of
VSRs. EvoGym employs a unified multi-material voxel-based
representation which is able to construct a wide diversity of
morphologies. Each morphology is specified as a grid-like
structure composed of rigid, soft, horizontal actuator, vertical
actuator, and empty voxels. The grid size is set as (5× 5). In
EvoGym, a state-of-the-art RL algorithm, PPO, is used to train
controllers. The reward that a robot can achieve is applied as
the fitness to measure the performance of the current structure
and the control action. The larger the reward a robot achieves,
the better its structure and control are. Under the premise of
using the same number of expensive fitness evaluations, a large
reward means a fast convergence speed.

In addition to expressive structure design space and effective
integration of RL technologies, EvoGym also presents various

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3327459

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on December 25,2023 at 01:07:56 UTC from IEEE Xplore. Restrictions apply.

8

tasks with different difficulty levels that span from locomotion
to manipulation. In this work, we adopt 31 tasks, including 11
easy, 11 medium, and 9 hard tasks1. Table S.I in the supple-
mentary material summarizes the properties of these adopted
tasks. Additional information about these tasks, such as the
definition of reward functions and the values of simulation
parameters, can be found in [11].

The termination condition of all compared algorithms is
set as the maximum number of expensive fitness evaluations.
For easy, medium and hard tasks, the numbers of expensive
evaluations are set as 100, 150, and 200, respectively. The
evaluations of compared algorithms are performed on a server
with Intel Xeon Silver 4214 CPU @ 2.19GHz on Linux 4.15.0.
GPU is not required.

B. Ablation Experiment

Our proposed algorithm AIEA has two components: ac-
tion inheritance-based performance approximation and error
estimation. A detailed illustration of the effectiveness of
inheritance-based performance approximation is presented in
Section IV-C. In this section, we conduct an ablation exper-
iment to investigate the effect of error estimation. A variant
of AIEA without performing error estimation, namely AIEA-
noE, is used for performance comparison. Except for the error
estimation, the other parameters of AIEA and AIEA-noE are
the same. Nine tasks with different difficulty levels are selected
as the benchmark.

For comparing the performance of AIEA and AIEA-noE, it
is essential to focus on both the final optimization results and
the impact of error estimation on the optimization process. The
presence or absence of the error evaluation operator directly
affects the approximately evaluated fitness values. In SAEAs,
since the approximated fitness is only used to select promising
candidate designs, it is not strictly required to be infinitely
close to its actual value as long as the approximated values can
correctly distinguish the performance differences of candidate
designs [47]. Therefore, compared to the commonly used
prediction error, the rank of promising candidate designs is
more suitable to clarify the impact of error estimation on the
optimization process.

Fig. 5 shows the reward curve of AIEA and AIEA-noE.
Among the nine tasks, AIEA achieves the best performance
on seven tasks. For the remaining two tasks, AreaMinimizer-v0
and Thrower-v0, the performance between AIEA and AIEA-
noE is quite comparable. To clarify the impact of error estima-
tion, we compare the environmental selection results of AIEA
and AIEA-noE in some generations. Take the population at the
first generation as an example. There are 2N designs where
N is the population size. After the environmental selection,
λN(λ ∈ (0, 0.6]) survivals are enter the next generation.
ΨwE and ΨnoE represents the set of survivals in AIEA and
AIEA-noE, respectively. To compare the differences between
ΨwE and ΨnoE , we first re-evaluate 2N designs using real
fitness function and sort them in descending order based on
their actual rewards. Next, each design is assigned a rank that

1EvoGym consists of 32 tasks. But we found a bug in the simulation of
the task Traverser-v0. Only 31 of these tasks are used in this paper.

20 40 60 80 100

3.5

4.0

4.5

5.0

5.5

R
ew

ar
d

BridgeWalker-v0 (Easy)
AIEA
AIEA-noE

20 40 60 80 100

5

10

15

Flipper-v0 (Easy)
AIEA
AIEA-noE

20 40 60 80 100

4

5

6

7

8
Pusher-v0 (Easy)

AIEA
AIEA-noE

50 100 1501.5

2.0

2.5

3.0

R
ew

ar
d

UpStepper-v0 (Medium)
AIEA
AIEA-noE

50 100 150
0.7

0.8

0.9

1.0

Thrower-v0 (Medium)
AIEA
AIEA-noE

50 100 150

0.6

0.8

1.0

AreaMinimizer-v0 (Medium)
AIEA
AIEA-noE

0 50 100 150 200
Evaluations

0.2

0.3

0.4

0.5

R
ew

ar
d

Climber-v2 (Hard)
AIEA
AIEA-noE

0 50 100 150 200
Evaluations

1.6

1.8

2.0

2.2

2.4

2.6 BeamSlider-v0 (Hard)

AIEA
AIEA-noE

0 50 100 150 200
Evaluations

2

3

4

5

GapJumper-v0 (Hard)
AIEA
AIEA-noE

Fig. 5. The reward curve of AIEA and AIEA-noE over expensive evaluations
on 9 tasks. All the curves are averaged 5 independent runs.

represents the position in the descending order. For instance,
the rank of the best design is 0, and the rank of the worst
design is 2N . Finally, we calculate the average rank of
designs in ΨwE and ΨnoE . Considering the time cost, we
choose Pusher-v0, AreaMinimizer-v0, and GapJumper-v0 as
the analysis cases.

5 10 15
Generations

0

5

10

15

20

A
ve

ra
ge

 ra
nk

 o
f s

ur
vi

va
ls

Pusher-v0 (Easy)

AIEA
AIEA-noE

0 10 20
Generations

2

4

6

8

10

12

A
ve

ra
ge

 ra
nk

 o
f s

ur
vi

va
ls

AreaMinimizer-v0 (Medium)
AIEA
AIEA-noE

0 10 20 30 40
Generations

0

5

10

15

20

A
ve

ra
ge

 ra
nk

 o
f s

ur
vi

va
ls

GapJumper-v0 (Hard)

AIEA
AIEA-noE

Fig. 6. The average rank of survivals in AIEA and AIEA-noE.

Fig. 6 shows the average rank of survivals at different
generations. The smaller the average rank, the better the
performance of the selected designs. On tasks Pusher-v0 and
GapJumper-v0, a weak statistical test shows that these designs
selected by AIEA are better than those selected by AIEA-noE
in most generations. On task AreaMinimizer-v0, the average
rank of survivals selected by AIEA is roughly the same as
that of AIEA-noE in most generations. This result appears to
that the disparity between these survivals selected by AIEA
and AIEA-noE is less distinctive. Overall, the results in Figs.
5 and 6 illustrate that error estimation has played a positive
role in improving the performance of AIEA.

C. Comparative Experiments
In this section, we compare AIEA with the following three

algorithms.
1) Genetic algorithm (GA). Considering the characteristics

of black-box evaluation in automatic design, GAs are

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3327459

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on December 25,2023 at 01:07:56 UTC from IEEE Xplore. Restrictions apply.

9

widely used to evolve VSRs [11], [19], [48]. GAs
achieve morphological evolution by iteratively generat-
ing new designs and eliminating underperforming de-
signs. At each generation of GA, top λN performing
designs are first chosen as parents and then ⌈(1−λ)N⌉
offsprings are created by iteratively sampling and mu-
tating one of those parents. After that, the control
optimization performs and provides a unique controller
for each offspring. While the termination condition is
satisfied, GA outputs the optimal design in the current
population.

2) Bayesian optimization (BO). In VSRs design problems,
control optimization is time-consuming. Moreover, the
fitness evaluation requires optimized control as input,
which makes the process expensive. BO is well suited
when the fitness evaluations are expensive. Compared
with GA, BO uses a computationally cheap surrogate
model to replace expensive fitness evaluations. BO is se-
lected as a comparison algorithm in this work. Followed
by [49], we use Gaussian process as the surrogate model,
batch Thompson sampling for extracting the acquisition
function.

3) Random forest-assisted evolutionary algorithm (RFEA).
As mentioned in [34], [38], random forest is suitable for
directly accepting the discrete data as input. Compared
with BO, RFEA uses a random forest model as the surro-
gate model to learn the mapping between structures and
rewards. Expect for the selection of surrogate models,
other settings are same as that of GA.

BO, RFEA, and AIEA belong to SAEAs. BO and RFEA
use the modeling method mentioned in Equation (3) while
AIEA uses the modeling method mentioned in Equation (4).
For all compared algorithms, the population size is set as 20.
PPO is applied for control optimization. Followed by [11],
mutation is only applied to create offsprings. The probability
of mutation is set to 0.1. The value of survival rate λ is set
as 0.6 × (1 − Ncur/Nmax) where Ncur and Nmax are the
current and maximum number of real fitness evaluations. The
maximal real fitness evaluations on easy, medium, and hard
tasks are set as 100, 150, and 200, respectively. In RFEA, the
number of trees is set as 300. The other parameters in the
optimization are the same as those provided in [11].

TABLE I
MEAN (STANDARD DEVIATION) OF REWARDS OBTAINED BY GA, BO,

RFEA, AND AIEA ON 11 EASY TASKS. ALL THE VALUES ARE AVERAGED
5 INDEPENDENT RUNS. THE BEST RESULTS ARE HIGHLIGHTED.

Task GA BO RFEA AIEA
Walker-v0 9.37(1.09) 9.02(1.49) 9.07(1.33) 10.32(0.53)

BridgeWalker-v0 3.58(0.33) 3.60(0.35) 4.50(0.55) 5.74(1.08)
Carrier-v0 3.36(1.07) 2.80(0.76) 5.55(2.96) 8.69(1.56)
Pusher-v0 6.21(1.06) 6.46(0.67) 6.79(1.08) 8.22(0.95)

BeamToppler-v0 2.76(0.05) 3.57(1.98) 3.01(0.34) 5.86(2.49)
DownStepper-v0 4.61(0.30) 4.68(0.60) 4.85(0.68) 6.59(1.26)

AreaMaximizer-v0 1.74(0.42) 1.45(0.17) 1.56(0.15) 2.37(0.17)
WingspanMazimizer-v0 0.56(0.07) 0.50(0.11) 0.57(0.16) 0.83(0.09)

Flipper-v0 11.06(8.75) 2.97(1.03) 4.65(0.87) 18.16(10.27)
Jumper-v0 0.81(0.41) 0.43(0.11) 0.45(0.16) 0.46(0.08)

Balancer-v0 0.08(0.02) 0.08(0.01) 0.09(0.01) 0.10(0.03)
Average Rank 2.91 3.55 2.45 1.09

20 40 60 80 100
Evaluation

5

6

7

8

9

10

GA BO AIEA RFEA

20 40 60 80 100
5

6

7

8

9

10

R
ew

ar
d

Walker-v0 (Easy)

20 40 60 80 100

3

4

5

BridgeWalker-v0 (Easy)

20 40 60 80 100

2

4

6

8

Carrier-v0 (Easy)

20 40 60 80 100

4

5

6

7

8

R
ew

ar
d

Pusher-v0 (Easy)

20 40 60 80 100

3

4

5

6 BeamToppler-v0 (Easy)

20 40 60 80 100

3

4

5

6

DownStepper-v0 (Easy)

20 40 60 80 100

1.0

1.5

2.0

R
ew

ar
d

AreaMaximizer-v0 (Easy)

20 40 60 80 100
0.3

0.4

0.5

0.6

0.7

0.8
WingspanMazimizer-v0 (Easy)

20 40 60 80 100

5

10

15

Flipper-v0 (Easy)

20 40 60 80 100
Evaluation

0.2

0.4

0.6

0.8

R
ew

ar
d

Jumper-v0 (Easy)

20 40 60 80 100
Evaluation

0.02

0.04

0.06

0.08

0.10

R
ew

ar
d

Balancer-v0 (Easy)

Fig. 7. The reward curve of GA, BO, RFEA, and AIEA over evaluations on
11 easy tasks. All the curves are averaged 5 independent runs.

The average rewards and reward curves of GA, BO, RFEA,
and AIEA on easy, medium, and hard tasks are shown in
Tables I, II, III and Figs. 7, 8, 9, respectively. To clearly and
intuitively demonstrate the performance of optimal robots ob-
tained by GA, BO, RFEA, and AIEA on various tasks, we have
uploaded the simulation animation to GitHub2 and included
the boxplots of obtained final rewards in the supplementary
material. A weak statistical test shows that AIEA outperforms
the other three algorithms on most tasks, indicating that AIEA
has a faster convergence speed with fewer fitness evaluations.

A weak statistical test shown in Table I and Fig. 7 illustrates
that AIEA achieves the best performance on 10 out of 11 easy
tasks. Based on the simulation animation and the results in
Table I, we can find the optimal robot obtained by AIEA
completes most easy tasks, except for the task Jumper-v0.
Moreover, compared with GA, AIEA saves about half the
computing cost. On task Jumper-v0, we compare the perfor-
mance of the optimal robots obtained by AIEA and given in
[11], finding that these two robots did not jump to the height
mentioned in [11]. Even given an optimal physical structure,
PPO cannot obtain a well-trained controller on Jumper-v0.
Therefore, the reason for the poor performance of AIEA
on task Jumper-v0 is the need for optimal control policy
rather than AIEA cannot find an optimal physical structure. In
other tasks, AIEA evolves intelligent robots that can complete
corresponding goals. The next is RFEA, with BO performing
the worst. Overall, on easy tasks, AIEA can evolve a fully

2https://github.com/HandingWangXDGroup/AIEA/tree/main/animation

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3327459

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on December 25,2023 at 01:07:56 UTC from IEEE Xplore. Restrictions apply.

10

successful robot.

TABLE II
MEAN (STANDARD DEVIATION) OF REWARDS OBTAINED BY GA, BO,

RFEA, AND AIEA ON 11 MEDIUM TASKS. ALL THE VALUES ARE
AVERAGED 5 INDEPENDENT RUNS. THE BEST RESULTS ARE

HIGHLIGHTED.

Task GA BO RFEA AIEA
BidirectionalWalker-v0 3.44(0.52) 3.24(0.30) 4.19(0.31) 4.75(0.41)

Pusher-v1 0.41(0.24) 0.18(0.05) 0.51(0.32) 1.35(0.94)
Thrower-v0 0.97(0.11) 1.06(0.12) 1.16(0.32) 1.08(0.14)
Climber-v0 0.23(0.05) 0.20(0.02) 0.26(0.04) 0.29(0.06)
Climber-v1 0.27(0.05) 0.23(0.04) 0.31(0.09) 0.39(0.06)

UpStepper-v0 2.46(0.19) 2.31(0.16) 2.60(0.57) 3.01(0.76)
ObstacleTraverser-v0 2.45(0.30) 2.57(0.14) 3.04(0.98) 3.54(0.74)

CaveCrawler-v0 2.61(0.90) 1.90(0.01) 3.73(0.74) 5.03(0.99)
AreaMinimizer-v0 0.79(0.02) 0.61(0.03) 0.90(0.07) 1.08(0.10)

HeightMaximizer-v0 0.28(0.02) 0.28(0.03) 0.33(0.04) 0.42(0.04)
Balancer-v1 0.50(0.04) 0.42(0.03) 0.52(0.07) 0.56(0.05)

Average Rank 3.18 3.81 1.81 1.18

20 40 60 80 100
Evaluation

5

6

7

8

9

10

GA BO AIEA RFEA

50 100 150
1.5

2.0

2.5

3.0

3.5

4.0

R
ew

ar
d

BidirectionalWalker-v0 (Medium)

50 100 150

0.2

0.5

0.8

1.0

1.2

Pusher-v1 (Medium)

50 100 150
0.6

0.8

1.0

Thrower-v0 (Medium)

50 100 150
0.1

0.2

R
ew

ar
d

Climber-v0 (Medium)

50 100 1500.1

0.2

0.3

0.4
Climber-v1 (Medium)

50 100 150
1.5

2.0

2.5

3.0
UpStepper-v0 (Medium)

50 100 150

2.0

2.5

3.0

3.5

R
ew

ar
d

ObstacleTraverser-v0 (Medium)

50 100 150
2

3

4

5
CaveCrawler-v0 (Medium)

50 100 150

0.6

0.8

1.0

AreaMinimizer-v0 (Medium)

50 100 150
Evaluation

0.2

0.3

R
ew

ar
d

HeightMaximizer-v0 (Medium)

50 100 150
Evaluation

0.3

0.4

0.5

R
ew

ar
d

Balancer-v1 (Medium)

Fig. 8. The reward curve of GA, BO, RFEA, and AIEA over evaluations on
11 medium tasks. All the curves are averaged 5 independent runs.

A weak statistical test shown in Table II and Fig. 8 illustrates
that AIEA achieves the best performance on 10 out of 11
medium tasks, followed by RFEA and GA, BO performs
worst. On task Thrower-v0, the results in Table IV indicate
that all algorithms have the same performance. However,
by observing Fig. S.II in the supplementary material, we
can find that the upper bound of the rewards obtained by
RFEA is the largest. Thrower-v0 requires the robot to throw
a soft rectangular box as far as possible without moving
itself significantly from its original position. By querying the
information in Table S.I of the supplementary material, we
can find that Thrower-v0 is a task of medium difficulty, but its
simulation step is the smallest. That is, robots need to complete

a relatively tricky goal with few control actions. In this case,
whether the control action is optimal significantly impacts the
task performance. AIEA uses a near-optimal control for eval-
uating the performance of most robots, which results in poor
reliability of the performance approximation. However, RFEA
directly uses the surrogate model to learn the mapping between
structures and rewards, which to some extent, weakens the
influence of the optimal control. Therefore, the average reward
obtained by RFEA in five independent runs is larger than that
of AIEA on task Thrower-v0. A week statistical test shows
the outstanding performance of RFEA on task Thrower-v0.
Through the simulation animation, we can also discover that
although the best design obtained by AIEA outperforms that
of the other three algorithms on two climbing tasks, it still
needs to evolve further to find a successful robot. One reason
is that climbing is a relatively complex task requiring the
robot to climb as high as possible through a vertical channel.
The width of this channel is equal to the robot’s horizontal
width. Robots need to learn how to grasp the wall before
they can climb upwards. However, through the simulation
animation, it can be seen that even the optimal design is not
able to get traction on the wall, resulting in almost identical
performance among different designs in the population. The
lack of environmental selection pressure is the main reason
for the failure of evolution.

TABLE III
MEAN (STANDARD DEVIATION) OF REWARDS OBTAINED BY GA, BO,

RFEA, AND AIEA ON 11 HARD TASKS. ALL THE VALUES ARE AVERAGED
5 INDEPENDENT RUNS. THE BEST RESULTS ARE HIGHLIGHTED.

Task GA BO RFEA AIEA
Carrier-v1 3.49(0.28) 3.40(0.12) 3.14(0.01) 3.65(0.02)
Catcher-v0 -1.43(1.42) -0.82(1.85) -2.23(1.55) 0.19(1.48)

BeamSlider-v0 2.24(0.30) 1.62(0.05) 1.91(0.35) 2.56(0.07)
Lifter-v0 0.40(0.31) 0.08(0.09) 0.61(0.53) 0.86(0.42)

Climber-v2 0.42(0.05) 0.31(0.07) 0.46(0.04) 0.55(0.08)
ObstacleTraverser-v1 1.59(0.08) 1.66(0.12) 1.75(0.27) 1.66(0.05)

Hurdler-v0 1.36(0.11) 1.34(0.11) 1.24(0.27) 1.49(0.42)
PlatformJumper-v0 1.81(0.09) 1.73(0.04) 1.94(0.09) 2.07(0.14)

GapJumper-v0 2.77(0.65) 3.99(0.54) 3.20(0.73) 5.64(0.95)
Average Rank 3.00 3.22 2.55 1.22

A weak statistical test shown in Table III and Fig. 9
illustrates that AIEA achieves the best performance on 8 out
of 9 hard tasks, followed by RFEA. As shown in Fig. S.III
of the supplementary material, except for BO, the other three
algorithms have almost the same median reward and reward
upper bound on task Carrier-v1. The upper bound of rewards
obtained by BO is the smallest. Carrier-v1 requires the robot
to carry a box to a table and place the box on the table. The
robots obtained by the four algorithms can successfully carry
the box to the table, but none of them can place the box on the
table. This is mainly because there is a significant difference
in the morphological structures required to complete carrying
and placing. The controller first learns the control policy for
carrying, these algorithms tens to search for the structure that
completes the first half of the task. On task ObstacleTraverser-
v1, RFEA outperforms AIEA. Among all the locomotion
tasks, the terrain of ObstacleTraverser-v1 is the bumpiest. The
entire landscape is covered with many rigid protrusions of
different shapes. Especially in the first half of the terrain,
there is a major terrain depression. In this task, the robot

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3327459

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on December 25,2023 at 01:07:56 UTC from IEEE Xplore. Restrictions apply.

11

20 40 60 80 100
Evaluation

5

6

7

8

9

10

GA BO AIEA RFEA

0 50 100 150 200

2.0

2.5

3.0

3.5

R
ew

ar
d

Carrier-v1 (Hard)

0 50 100 150 200
4

3

2

1

Catcher-v0 (Hard)

0 50 100 150 200

1.6

1.8

2.0

2.2

2.4

2.6 BeamSlider-v0 (Hard)

0 50 100 150 200

0.0

0.2

0.4

0.6

0.8

R
ew

ar
d

Lifter-v0 (Hard)

0 50 100 150 200

0.2

0.3

0.4

0.5

Climber-v2 (Hard)

0 50 100 150 200
1.2

1.4

1.6

ObstacleTraverser-v1 (Hard)

0 50 100 150 200
Evaluation

0.8

1.0

1.2

1.4

R
ew

ar
d

Hurdler-v0 (Hard)

0 50 100 150 200
Evaluation

1.6

1.7

1.8

1.9

2.0

R
ew

ar
d

PlatformJumper-v0 (Hard)

0 50 100 150 200
Evaluation

2

3

4

5
R

ew
ar

d

GapJumper-v0 (Hard)

Fig. 9. The reward curve of GA, BO, RFEA, and AIEA over evaluations on
11 hard tasks. All the curves are averaged 5 independent runs.

walks through the bumpy terrain and maintains its balance as
much as possible to avoid getting stuck in a depression. The
task requires the controller to be able to apply appropriate
deformations to each actuator voxel accurately. AIEA uses
near-optimal action to control candidate robots to complete the
task-related goal, causing most candidate robots to be trapped
in a depression and unable to continue moving forward. Most
robots have the same approximated performance. AIEA cannot
find promising robots from these candidate robots. On the
contrary, RFEA uses a random forest model to learn the
mapping between structure and task performance. To some
extent, RFEA ignores the impact of optimal control on task
performance. Although the prediction error of the random
forest model may be relatively large, it can at least distinguish
these robots without causing chaos. That is why RFEA is
better than AIEA on task ObstacleTraverser-v1. Overall, on
most hard tasks, AIEA outperforms the other algorithms with
few expensive fitness evaluations.

(a) (b) (c) (d)
Fig. 10. Optimal robot designs on task ObstacleTraverser-v0. (a), (b), (c),
and (d) are the structures of optimal designs obtained by GA, BO, RFEA,
and AIEA, respectively.

In summary, we can obtain the following observations
from Tables I-III, Figs. 7-9, and the simulation animation on
GitHub.

1) Under the verification of a weak statistical test, AIEA
shows the best performance on most tasks with limited
computational resources. The optimal designs evolved
by AIEA achieve satisfying performance for all easy
tasks (The simulation animation on GitHub can illustrate

the conclusion). Although the optimal designs obtained
by AIEA did not reach the final goal for most medium
tasks, they all evolved basic features to adapt to task
environments. Taking the task ObstacleTraverser-v0 as
an example, it requires the robot to walk across in-
creasingly bumpy terrain. As shown in Fig. 10, the
optimal robot obtained by AIEA has evolved trunk-leg-
like features that can help the robot step over obstacles of
different heights while maintaining balance - much like
how humans move their legs to walk. Although AIEA
needs to evolve a fully successful robot for most hard
tasks, it achieves the best performance under the same
number of fitness evaluations.

2) We compare the performance of three SAEAs, AIEA,
BO, and RFEA. The difference is that RFEA and BO use
the surrogate model to predict the results of the outer ob-
jective function (The first modeling method introduced
in Section III-C), while AIEA uses the surrogate model
to predict the results of the inner objective function (The
second modeling method introduced in Section III-C).
In most tasks, AIEA appears to perform better than BO
and RFEA, indicating that the second modeling method
is more effective than the first one in automatic soft
robots design problems. However, the above analysis is
based on the results of 5 independent runs, and further
analysis is required.

3) In most tasks, the average reward obtained by RFEA
is larger than that of BO. This shows that random
forest is more suitable for combinatorial optimization
problems than Gaussian process. The reasons for the
poor performance of BO can be summarized as follows.
Firstly, the Gaussian process is a similarity-based model
[50]. When the decision variable is continuous, distance,
such as the Euclidean distance, is often used to measure
the similarity between two solutions in the decision
space. However, in soft robot design problems, the
decision variable is the type of voxels. Strictly speaking,
there is no concept of distance between two voxel types,
causing the inaccurate similarity measurement between
two robots in the decision space. Secondly, BO has
advantages in solving low-dimensional problems [51].
In robot design problems, the dimension of decision
variables is 25. For BO, this is already a relatively high-
dimensional problem. Last, in the evaluation process
of robots, RL is used to train controllers. Due to the
randomness in RL, the evaluation is noisy [11]. The
noise done by RL is also a reason for the deterioration
of BO.

D. Further Investigations

1) Effect of independent runs: Although we propose an
algorithm to accelerate the robot design process, its optimiza-
tion process still requires some time. Taking the simplest task
Walker-v0 as an example, on a cloud server configured with
24-core Intel Xeon Silver CPU, running the AIEA with a
single thread takes about one day, and running with multiple
threads takes about 2 hours. The running time of main steps in

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3327459

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on December 25,2023 at 01:07:56 UTC from IEEE Xplore. Restrictions apply.

12

GA and AIEA is shown in Section S.II of the supplementary
material. Considering the time cost, we set the number of
independent runs to 5, which makes it impossible to perform
statistical tests on these results.

Without statistical tests, the description of one algorithm
performing better than another is not rigorous. To more ac-
curately demonstrate the effectiveness of AIEA, all compared
algorithms are independently run 20 times on 14 tasks. The
results are analyzed by the Wilcoxon signed-rank test [52]. The
significance level is set as 0.05. The results of the statistical
test are shown in Table IV. We can find that AIEA significantly
outperforms GA and BO on 12 tasks. AIEA significantly
outperforms RFEA on 9 tasks. AIEA and RFEA perform
equally in the remaining 5 tasks. From the results of statistical
tests, AIEA shows the best performance on most tasks.

TABLE IV
MEAN OF REWARDS OBTAINED BY GA, BO, RFEA, AND AIEA ON 14
TASKS. ALL THE VALUES ARE AVERAGED 20 INDEPENDENT RUNS. THE

BEST RESULTS ARE HIGHLIGHTED.

Task Difficulty GA BO RFEA AIEA
Walker-v0

Easy

8.84+ 8.86+ 9.04+ 10.03
BridgeWalker-v0 3.81+ 3.61+ 4.24+ 5.69

Carrier-v0 3.80+ 2.89+ 6.02+ 8.31
Pusher-v0 6.45+ 6.54+ 7.01≈ 7.98

DownStepper-v0 4.66+ 4.25+ 5.08+ 5.93
Thrower-v0

Medium

0.95≈ 1.02≈ 1.03≈ 1.01
UpStepper-v0 2.47+ 2.35+ 2.07+ 2.97

HeightMaximizer-v0 0.30+ 0.27+ 0.31+ 0.40
Balancer-v1 0.49+ 0.46+ 0.53≈ 0.56

CaveCrawler-v0 2.63+ 1.91+ 3.32+ 5.14
Catcher-v0

Hard

-0.91≈ -1.86≈ -0.97≈ -0.74
BeamSlider-v0 2.22+ 1.63+ 2.18+ 2.47

PlatformJumper-v0 1.84+ 1.81+ 1.98≈ 2.02
Hurdler-v0 1.39+ 1.35+ 1.45+ 1.62

+/≈ 12/2 12/2 9/5
Symbols + and ≈ indicate that the result obtained by AIEA is significantly

better and similar to that obtained by other algorithms, respectively.

2) Effect of reproduction operators: In this work, offspring
designs are generated by a sample mutation operator. As
well known, the reproduction operator directly affects the
searching ability of colony evolution-based algorithms [53].
We construct a set of comparison experiments to explore the
impact of different reproduction operators on solving robot
design problems. GA and AIEA are selected as test algorithms,
which belong to EAs and SAEAs, respectively. In GA and
AIEA, only mutation is used to generate offspring designs.
In GAC and AIEAC, mutation and uniform crossover are
used to create offspring designs. The probabilities of crossover
and mutation are set to 0.9 and 0.1, respectively. In uniform
crossover, the independent probability for each voxel to be
exchanged is set to 0.3. Four tasks are chosen as the test suits.

Fig. 11 shows the reward curve of GA, GAC, AIEA, and
AIEAC. We can observe several interesting conclusions.

1) On task Flipper-v0, AIEA outperforms AIEAC, and GA
outperforms GAC. That is, algorithms without crossover
perform better than those with crossover.

2) On task Thrower-v0, AIEA beats AIEAC, while GA and
GAC perform almost identically.

3) On task Hurdler-v0, algorithms with crossover perform
better than those without crossover, which is precisely
the opposite of the conclusion obtained on Flipper-v0.

0 100 200 300 400 500

0

100

200

300

400

500

GA GAC AIEA AIEAC

20 40 60 80 100
Evaluation

5

10

15

R
ew

ar
d

Flipper-v0 (Easy)

50 100 150
Evaluation

0.6

0.7

0.8

0.9

1.0

1.1

R
ew

ar
d

Thrower-v0 (Medium)

0 50 100 150 200
Evaluation

0.6

0.8

1.0

1.2

1.4

1.6

R
ew

ar
d

Hurdler-v0 (Hard)

0 50 100 150 200
Evaluation

2

3

4

5

R
ew

ar
d

GapJumper-v0 (Hard)

Fig. 11. The reward curve of GA, GAC, AIEA, and AIEAC on 4 tasks. All
the curves are averaged 5 independent runs.

4) On task GapJumper-v0, AIEA outperforms AIEAC,
while GAC outperforms GA.

Four different conclusions are obtained on four different tasks.
On Flipper-v0 and Hurdler-v0, whether using a crossover op-
erator or not has entirely different effects. On GapJumper-v0,
the performance of GA improves by introducing a crossover
operator, which does not occur in AIEA. Overall, the simple
fusion of crossover and mutation operators can improve opti-
mization performance on some tasks, but it is only sometimes
effective. This is mainly because the decision space of robot
design problems is discrete, and sometimes blindly expanding
the search scope is not a wise choice, especially in situations
where the number of fitness evaluations is limited. To improve
optimization performance by designing effective reproduction
operators, it’s essential to carefully consider both the task and
the algorithm used to solve it. One possible solution could be
to train a generator as part of the optimization process. This
approach requires a well-designed training process that takes
into account all aspects of the task and algorithm.

20 40 60 80 100
Evaluation

5

6

7

8

9

10

GA BO AIEA RFEA

0 200 400 600
Evaluation

0.75

1.00

1.25

1.50

1.75

R
ew

ar
d

Thrower-v0 (Medium)

0 200 400 600
Evaluation

1

2

3

4

R
ew

ar
d

Hurdler-v0 (Hard)

0 200 400 600
Evaluation

2

4

6

R
ew

ar
d

GapJumper-v0 (Hard)

Fig. 12. The reward curve of GA, BO, RFEA, and AIEA over 750 evaluations
on 2 medium and 2 hard tasks. All the curves are averaged 2 independent
runs.

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3327459

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on December 25,2023 at 01:07:56 UTC from IEEE Xplore. Restrictions apply.

13

3) Effect of maximum evaluations: In soft robot design
problems, the running time of compared algorithms mainly
depends on the number of expensive fitness evaluations.
Considering the time cost, we set the maximum number
of expensive fitness evaluations to 200. In this section, we
construct a set of comparative experiments to demonstrate
whether our proposed algorithm still has superiority even with
a large number of evaluations. Four tasks are chosen as the
test suits. We set the maximum number of expensive fitness
evaluations to 750, a value suggested in [11]. From the reward
curve shown in Fig. 12 and the simulation animation uploaded
to GitHub, we can obtain two observations.

1) On task Balancer-v1, although all the compared al-
gorithms have found the optimal design (the obtained
average reward is greater than 0.6 and the simulation
animation on Github can support the conclusion), AIEA
converges the fastest. More specifically, AIEA obtains its
maximum reward around 400 fitness evaluations while
other algorithms obtain their maximum rewards after
600 evaluations.

2) On the other three tasks, the average reward obtained
by AIEA is always the largest. Compared with the other
three algorithms, AIEA fins a better design using the
same number of fitness evaluations.

By comparing the results of Figs.7, 8, 9 and 12, it can be
found that whether the maximum number of evaluations is set
to 200 or 750, the superiority of AIEA can be reflected.

5 10 15
Generations

0.1

0.2

0.3

0.4

0.5

0.6

A
ve

ra
ge

 C
oe

ff
ic

ie
nt

BridgeWalker-v0 (Easy)
Act_Inh
RF

0 5 10 15 20
Generations

0.2

0.4

0.6

A
ve

ra
ge

 C
oe

ff
ic

ie
nt

CaveCrawler-v0 (Medium)

Act_Inh
RF

0 10 20
Generations

0.2

0.0

0.2

0.4

A
ve

ra
ge

 C
oe

ff
ic

ie
nt

Thrower-v0 (Medium)

Act_Inh
RF

0 10 20
Generations

0.1

0.0

0.1

0.2

0.3

0.4

A
ve

ra
ge

 C
oe

ff
ic

ie
nt

ObstacleTraverser-v1 (Hard)

Act_Inh
RF

Fig. 13. Approximation accuracy with respect to different surrogate models.
Two models are tested: random forest (RF) and action inheritance (Act Inh).
All the curves are averaged 5 independent runs.

4) Approximation accuracy of surrogate models: The com-
parison with RFEA demonstrates that AIEA improves over
RFEA in terms of final policy and morphology, however
that is not necessarily caused by AIEA being a more accu-
rate surrogate of fitness. To illustrate whether the accuracy
of surrogate models is the main reason AIEA outperforms
RFEA, we compare the correlation coefficients between the
values predicted by different surrogate models and the actual
objective values. Specifically, in each generation, we first use
an RF model and the action inheritance process to predict all
candidate designs objective values. Then, we use the expensive

objective function to evaluate their actual objective values.
Finally, we calculate the Kendall rank correlation coefficient
between the values predicted by RF and actual values and the
coefficient between the values predicted by action inheritance
and actual values. τ is used to represent the correlation
coefficient, with a value range of -1 to 1. The higher the value
of τ is, the stronger the correlation between different ranking
results for the same population.

We select four tasks that can be simply divided into two
categories. AIEA is superior to RFEA on tasks BridgeWalker-
v0 and CaveCrawler-v0, while the opposite is true on tasks
Thrower-v0 and ObstacleTraverser-v1. The average coeffi-
cients of five independent runs are shown in Fig. 13. We can
find that the action inheritance has a higher approximation
accuracy than RF on tasks BridgeWalker-v0 and CaveCrawler-
v0, consistent with the conclusion that AIEA is superior
to RFEA. Moreover, the accuracy gradually increases with
the training data. On the other two tasks, the accuracy of
RF is higher than that of action inheritance. As analyzed
earlier, Thrower-v0 and ObstacleTraverser-v1 are two tasks
that require extremely precise control policies. RFEA uses a
random forest model to learn the mapping between structure
and task performance. To some extent, RFEA ignores the
impact of optimal control on task performance. Although the
prediction error of RF may be relatively large, it can at least
distinguish these robots without causing chaos.

V. CONCLUSION

In this paper, we propose an action inheritance-based evo-
lutionary algorithm (AIEA) 3 to accelerate the automatic
soft robots design. For a candidate design, AIEA uses an
inheritance method to obtain a group of near-optimal actions.
Then, these inherited actions are employed to control the
robot to complete the task and the reward achieved by this
robot is taken as the approximated fitness value. The action
inheritance-based performance approximation plays the role
of surrogate models. Its input and output are the structure of
the robot and the near-optimal action, respectively. During the
optimization process, the reward of most candidate designs
are evaluated using the action inheritance-based approximate
method, while only a small number of candidate designs use
the reinforcement learning-based real evaluation method. In
addition, we also propose an error estimation method to make
the approximated rewards close to their actual values.

To evaluate the performance of the proposed algorithm,
we compare it with three state-of-the-art algorithms on 31
tasks with various difficulty levels. The experimental results
show the effectiveness of our proposed method. However,
we can also observe that AIEA is not able to evolve a
fully successful robot on some tasks, such as Climber-v2
and BeamSlider-V0. This is mainly because we only used a
simple mutation operator to generate new designs during the
evolution, resulting in a limited search ability. From the results
in Fig.11 we can find that the simple fusion of crossover and
mutation operators can improve optimization performance on

3The source code of AIEA is available at
https://github.com/HandingWangXDGroup/AIEA.

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3327459

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on December 25,2023 at 01:07:56 UTC from IEEE Xplore. Restrictions apply.

14

some tasks, but it is only sometimes effective. For our future
research, we will consider introducing a self-guided variation
operator in AIEA to increase its search efficiency, such as
using a generator to generate new designs, extracting implicit
features of promising designs, and multitask optimization of
simple and hard tasks. Another research direction is to realize
transfer learning between different control networks, including
parameter sharing, structural fine-tuning, etc.

REFERENCES

[1] H. Oh, A. Ramezan Shirazi, C. Sun, and Y. Jin, “Bio-inspired self-
organising multi-robot pattern formation: A review,” Robotics and Au-
tonomous Systems, vol. 91, pp. 83–100, 2017.

[2] C. Armanini, F. Boyer, A. T. Mathew, C. Duriez, and F. Renda,
“Soft robots modeling: A structured overview,” IEEE Transactions on
Robotics, 2023.

[3] Y. Jin and Y. Meng, Morphogenetic Robotics: A New Paradigm for De-
signing Self-Organizing, Self-Reconfigurable and Self-Adaptive Robots,
pp. 61–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

[4] A. Gupta, S. Savarese, S. Ganguli, and L. Fei-Fei, “Embodied intel-
ligence via learning and evolution,” Nature communications, vol. 12,
no. 1, p. 5721, 2021.

[5] D. Jin and L. Zhang, “Embodied intelligence weaves a better future,”
Nature Machine Intelligence, vol. 2, no. 11, pp. 663–664, 2020.

[6] G. Zardini, D. Milojevic, A. Censi, and E. Frazzoli, “Co-design of
embodied intelligence: A structured approach,” in 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pp. 7536–7543, IEEE, 2021.

[7] P.-Q. Huang, Q. Zhang, and Y. Wang, “Bilevel optimization via collab-
orations among lower-level optimization tasks,” IEEE Transactions on
Evolutionary Computation, pp. 1–1, 2022.

[8] K. O. Stanley, “Compositional pattern producing networks: A novel
abstraction of development,” Genetic programming and evolvable ma-
chines, vol. 8, pp. 131–162, 2007.

[9] N. Cheney, J. Bongard, V. SunSpiral, and H. Lipson, “Scalable co-
optimization of morphology and control in embodied machines,” Journal
of The Royal Society Interface, vol. 15, no. 143, p. 20170937, 2018.

[10] G. Lan, M. De Carlo, F. van Diggelen, J. M. Tomczak, D. M. Roijers,
and A. Eiben, “Learning directed locomotion in modular robots with
evolvable morphologies,” Applied Soft Computing, vol. 111, p. 107688,
2021.

[11] J. Bhatia, H. Jackson, Y. Tian, J. Xu, and W. Matusik, “Evolution gym:
A large-scale benchmark for evolving soft robots,” Advances in Neural
Information Processing Systems, vol. 34, pp. 2201–2214, 2021.

[12] F. Pigozzi, Y. Tang, E. Medvet, and D. Ha, “Evolving modular soft
robots without explicit inter-module communication using local self-
attention,” in Proceedings of the Genetic and Evolutionary Computation
Conference, pp. 148–157, 2022.

[13] J. Whitman, M. Travers, and H. Choset, “Learning modular robot control
policies,” arXiv preprint arXiv:2105.10049, 2021.

[14] D. Howard, A. E. Eiben, D. F. Kennedy, J.-B. Mouret, P. Valencia,
and D. Winkler, “Evolving embodied intelligence from materials to
machines,” Nature Machine Intelligence, vol. 1, no. 1, pp. 12–19, 2019.

[15] S. G. R. Prabhu, R. C. Seals, P. J. Kyberd, and J. C. Wetherall, “A survey
on evolutionary-aided design in robotics,” Robotica, vol. 36, no. 12,
pp. 1804–1821, 2018.

[16] N. Bredeche, E. Haasdijk, and A. Prieto, “Embodied evolution in
collective robotics: a review,” Frontiers in Robotics and AI, vol. 5, p. 12,
2018.

[17] E. Medvet, A. Bartoli, F. Pigozzi, and M. Rochelli, “Biodiversity in
evolved voxel-based soft robots,” in Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 129–137, 2021.

[18] Z. Wang, B. Benes, A. H. Qureshi, and C. Mousas, “Co-design of
embodied neural intelligence via constrained evolution,” arXiv preprint
arXiv:2205.10688, 2022.

[19] T. Wang, Y. Zhou, S. Fidler, and J. Ba, “Neural graph evolution: Towards
efficient automatic robot design,” arXiv preprint arXiv:1906.05370,
2019.

[20] R. J. Alattas, S. Patel, and T. M. Sobh, “Evolutionary modular robotics:
Survey and analysis,” Journal of Intelligent & Robotic Systems, vol. 95,
pp. 815–828, 2019.

[21] D. Bruder, A. Sedal, R. Vasudevan, and C. D. Remy, “Force generation
by parallel combinations of fiber-reinforced fluid-driven actuators,” IEEE
Robotics and Automation Letters, vol. 3, no. 4, pp. 3999–4006, 2018.

[22] D. Bruder, X. Fu, R. B. Gillespie, C. D. Remy, and R. Vasudevan,
“Data-driven control of soft robots using koopman operator theory,”
IEEE Transactions on Robotics, vol. 37, no. 3, pp. 948–961, 2021.

[23] Y. Pan, P. Du, H. Xue, and H.-K. Lam, “Singularity-free fixed-time
fuzzy control for robotic systems with user-defined performance,” IEEE
Transactions on Fuzzy Systems, vol. 29, no. 8, pp. 2388–2398, 2020.

[24] D. Bruder, B. Gillespie, C. D. Remy, and R. Vasudevan, “Modeling and
control of soft robots using the koopman operator and model predictive
control,” arXiv preprint arXiv:1902.02827, 2019.

[25] G. Bravo-Palacios, A. Del Prete, and P. M. Wensing, “One robot for
many tasks: Versatile co-design through stochastic programming,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 1680–1687, 2020.

[26] G. Bledt and S. Kim, “Extracting legged locomotion heuristics with
regularized predictive control,” in 2020 IEEE International Conference
on Robotics and Automation (ICRA), pp. 406–412, 2020.

[27] J. Whitman, R. Bhirangi, M. Travers, and H. Choset, “Modular robot
design synthesis with deep reinforcement learning,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 34, pp. 10418–
10425, 2020.

[28] F. Corucci, N. Cheney, F. Giorgio-Serchi, J. Bongard, and C. Laschi,
“Evolving soft locomotion in aquatic and terrestrial environments: ef-
fects of material properties and environmental transitions,” Soft robotics,
vol. 5, no. 4, pp. 475–495, 2018.

[29] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, “Evolution
strategies as a scalable alternative to reinforcement learning,” 2017.

[30] C. Schaff, A. Sedal, and M. R. Walter, “Soft robots learn to crawl:
Jointly optimizing design and control with sim-to-real transfer,” arXiv
preprint arXiv:2202.04575, 2022.

[31] X. Liu, D. Pathak, and K. M. Kitani, “Revolver: Continuous evo-
lutionary models for robot-to-robot policy transfer,” arXiv preprint
arXiv:2202.05244, 2022.

[32] H. Wang, Y. Jin, and J. O. Jansen, “Data-driven surrogate-assisted
multiobjective evolutionary optimization of a trauma system,” IEEE
Transactions on Evolutionary Computation, vol. 20, no. 6, pp. 939–952,
2016.

[33] M. Cui, L. Li, M. Zhou, and A. Abusorrah, “Surrogate-assisted
autoencoder-embedded evolutionary optimization algorithm to solve
high-dimensional expensive problems,” IEEE Transactions on Evolu-
tionary Computation, vol. 26, no. 4, pp. 676–689, 2022.

[34] Y. Sun, H. Wang, B. Xue, Y. Jin, G. G. Yen, and M. Zhang, “Surrogate-
assisted evolutionary deep learning using an end-to-end random forest-
based performance predictor,” IEEE Transactions on Evolutionary Com-
putation, vol. 24, no. 2, pp. 350–364, 2020.

[35] S. Liu, H. Wang, W. Peng, and W. Yao, “A surrogate-assisted evolu-
tionary feature selection algorithm with parallel random grouping for
high-dimensional classification,” IEEE Transactions on Evolutionary
Computation, vol. 26, no. 5, pp. 1087–1101, 2022.

[36] Z. Song, H. Wang, C. He, and Y. Jin, “A kriging-assisted two-
archive evolutionary algorithm for expensive many-objective optimiza-
tion,” IEEE Transactions on Evolutionary Computation, vol. 25, no. 6,
pp. 1013–1027, 2021.

[37] X. Ji, Y. Zhang, D. Gong, and X. Sun, “Dual-surrogate-assisted co-
operative particle swarm optimization for expensive multimodal prob-
lems,” IEEE Transactions on Evolutionary Computation, vol. 25, no. 4,
pp. 794–808, 2021.

[38] H. Wang and Y. Jin, “A random forest-assisted evolutionary algorithm
for data-driven constrained multiobjective combinatorial optimization of
trauma systems,” IEEE Transactions on Cybernetics, vol. 50, no. 2,
pp. 536–549, 2020.

[39] Y. Jin, “Surrogate-assisted evolutionary computation: Recent advances
and future challenges,” Swarm and Evolutionary Computation, vol. 1,
no. 2, pp. 61–70, 2011.

[40] L. Chen, H.-L. Liu, K. Li, and K. C. Tan, “Evolutionary bi-level op-
timization via multi-objective transformation-based lower level search,”
IEEE Transactions on Evolutionary Computation, pp. 1–1, 2023.

[41] R. Said, M. Elarbi, S. Bechikh, C. A. C. Coello, and L. B. Said,
“Discretization-based feature selection as a bi-level optimization prob-
lem,” IEEE Transactions on Evolutionary Computation, pp. 1–1, 2022.

[42] E. Medvet, A. Bartoli, A. De Lorenzo, and S. Seriani, “2d-vsr-sim: A
simulation tool for the optimization of 2-d voxel-based soft robots,”
SoftwareX, vol. 12, p. 100573, 2020.

[43] A. Nealen, M. Müller, R. Keiser, E. Boxerman, and M. Carlson, “Phys-
ically based deformable models in computer graphics,” in Computer
graphics forum, vol. 25, pp. 809–836, Wiley Online Library, 2006.

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3327459

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on December 25,2023 at 01:07:56 UTC from IEEE Xplore. Restrictions apply.

