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ABSTRACT
Solving the indefinite Helmholtz equation is not only crucial for the

understanding of many physical phenomena but also represents

an outstandingly-difficult benchmark problem for the successful

application of numerical methods. Here we introduce a new ap-

proach for evolving efficient preconditioned iterative solvers for

Helmholtz problems with multi-objective grammar-guided genetic

programming. Our approach is based on a novel context-free gram-

mar, which enables the construction of multigrid preconditioners

that employ a tailored sequence of operations on each discretization

level. To find solvers that generalize well over the given domain, we

propose a custom method of successive problem difficulty adaption,

in which we evaluate a preconditioner’s efficiency on increasingly

ill-conditioned problem instances. We demonstrate our approach’s

effectiveness by evolving multigrid-based preconditioners for a

two-dimensional indefinite Helmholtz problem that outperform

several human-designed methods for different wavenumbers up to

systems of linear equations with more than a million unknowns.
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1 INTRODUCTION
Automated algorithm design is a long-standing challenge in artifi-

cial intelligence (AI) and has two essential goals: Generalization and
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efficiency. Thus, the designed algorithm should not only produce

the correct output for arbitrary inputs, but the goal is also to achieve

better performance than methods designed by a human expert. In

this work, we aim to demonstrate that this goal is attainable for the

indefinite Helmholtz equation, an important benchmark problem

from the domain of numerical mathematics. The Helmholtz equa-

tion frequently arises in the study of physical phenomena, such as

electromagnetics [47] and acoustics [41], and is given by the linear

partial differential equation (PDE)

− ∇2𝑢 − 𝑘2𝑢 = 𝑓 , (1)

where ∇2 is the Laplace operator, 𝑘 the wavenumber, and 𝑓 the

source term. In general, the analytic solution 𝑢 of this equation is

unknown, which necessitates the use of numerical methods. Un-

fortunately, for large wavenumbers, the system of linear equations

that arises from the resulting discretization becomes indefinite and

highly ill-conditioned, which means that even small perturbations,

for instance due to numerical inaccuracies, have a dramatic effect on

the overall error of the computed approximation. As a consequence,

the efficient solution of the indefinite Helmholtz equation is still an

open challenge in numerical mathematics [1, 12, 14]. Even though

various methods for solving this equation have been proposed,

many of them fail to generalize over different ranges of wavenum-

bers and are, thus, only limited to certain problem instances. There-

fore, the design of an efficient Helmholtz solver is not only of great

significance for many real-world problems [4, 20, 36, 54] but also

represents a challenging benchmark for the application of AI-based

methods.

Data-driven [28, 32] and physics-informed [25, 43] machine

learning models have recently achieved significant progress in

solving PDEs. While these approaches have shown competitive or

even improved performance compared to classical solvers, their

behavior on unseen problems is often difficult to predict, and hence

generalization is only possible to a limited degree [33]. Additionally,

many of these models require an enormous amount of training data,

whose generation still depends on the utilization of conventional

numerical methods. An alternative approach is the application of

AI-based optimization methods to improve the efficiency of an

existing solver. In contrast to a trained machine learning model, nu-

merical methods can be formulated in the language of mathematics

in a problem-independent manner, which significantly facilitates

their generalizability. Furthermore, as this formulation can be un-

derstood by a human expert, it is possible to profoundly analyze

their behavior based on existing domain knowledge and exper-

tise. A numerical method that has achieved considerable success in

solving Helmholtz problems [12, 18, 40], as well as many other com-

plex PDEs [3], is the acceleration of a slowly converging iterative

method with the application of a so-called preconditioner 𝑀 [2].
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This approach is based on the idea of considering the modified

system of linear equations

𝐴𝑀−1𝑢 = 𝑓 , (2)

where 𝐴 represents the discretized operator of the original system.

Themain requirement is then to have an efficientmethod for solving

the system

𝑀𝑢 = 𝑢, (3)

such that 𝑢 ≈ 𝑀−1𝑢. Multigrid methods are a class of numerical

methods for solving discretized PDEs that can fulfill this require-

ment [6, 22, 53]. If properly constructed, these methods achieve

ℎ-independent convergence while only requiring O(𝑛) operations,
which means that the number of iterations required for solving a

system of linear equations with 𝑛 unknowns is independent of the

discretization width ℎ. While a suitable preconditioning matrix𝑀

can often be obtained by analyzing the properties of the system ma-

trix 𝐴, constructing an efficient multigrid method for its inversion

is usually less intuitive and can, thus, be considered a problem of

optimal algorithm design. Since their invention by Federenko and

Brandt [5, 16], multigrid solvers have been designed predominantly

by hand. Only in recent decades, the automated optimization of

these methods has become an active field of research.

Related Work on Multigrid Solver Design. In principle, a multigrid

method is characterized by a finite number of components and de-

sign choices that determine its computational structure: The choice

of the smoother, prolongation and restriction operator, coarse grid
solver and cycle type [6, 53]. A common approach to automate multi-

grid solver design is to formulate the task as a discrete optimization

problem, which is then solved, for instance, using an evolutionary

algorithm [39], branch-and-bound [52], or minimax approach [7].

A different direction is the application of machine learning methods

either to optimize the individual components of a multigrid solver,

as the prolongation operator [21, 26, 35] and smoother [15, 24],

or by replacing certain steps within the method altogether by a

machine learning system [51]. All these approaches have in com-

mon that they consider a multigrid method’s algorithmic structure

immutable. Each step of the method employs a fixed sequence of

operations in the form of a particular cycle. Multigrid cycles are

commonly classified into three different categories, V-, W-, and

F-cycles, where each cycle type exhibits a distinct computational

pattern that represents a compromise between the amount of work

performed and the expected speed of convergence [53]. In [49, 50]

we have proposed a context-free grammar that allows alternat-

ing each step of a multigrid solver independently. Consequently,

the search space produced by this grammar includes methods that

do not fit into any of the known categories. While until recently,

solvers of such unconventional structure have not been considered,

in [50] it could be demonstrated that multigrid methods evolved

by a grammar-based genetic programming approach can achieve

higher efficiency in solving certain PDEs than traditional variants.

However, in contrast to the indefinite Helmholtz equation, the PDEs

considered in this work can already be efficiently solved with stan-

dard multigrid cycles without requiring any further optimization.

Furthermore, while we have demonstrated that the solvers obtained

by this approach can also function for larger problem instances

than those considered within the search, a systematic approach

to generalize a multigrid method to a family of problem instances

that share common characteristics is still missing. To overcome

these limitations and extend the context-free grammar introduced

in [49, 50] to the domain of multigrid preconditioners, we make the

following contributions.

Our Contributions. We introduce a multi-objective grammar-

guided evolutionary search method for finding multigrid precondi-

tioners that generalize well over a sequence of increasingly difficult

problem instances and demonstrate its effectiveness by evolving

preconditioners for the discretized Helmholtz equation with in-

creasingly high wavenumbers.

• To apply our evolutionary search method to the domain

of multigrid preconditioners, we adapt the class of context-

free grammars presented in [49, 50] such that the generated

methods can be integrated into an existing iterative solver

as a preconditioner. To our knowledge, this is the first for-

mal system that enables the application of grammar-guided

genetic programming (GGGP) [37, 55] to the design of pre-

conditioned iterative solvers in a generalizable way.

• Since our grammar-based representation of multigrid pre-

conditioners is problem-size independent, each method can

be ported and applied to similar problem instances without

the need to adapt its internal structure.

• Our evolutionary search method is based on classical tree-

based GGGP but copes with the high computational demands

for solving PDEs numerically by combining multi-objective

optimization with a custom method of successive problem

difficulty adaption based on the ℎ-independent convergence

of multigrid methods.

• We demonstrate that our implementation of GGGP can be

scaled up to recent clusters and supercomputers by running

our experiments on multiple nodes of SuperMUC-NG, cur-

rently one of the largest supercomputing systems in Europe.

• The multigrid preconditioners evolved with our method out-

perform all common multigrid cycles [6, 53] with optimized

relaxation factors for representative instances of the indefi-

nite Helmholtz equation with different wavenumbers. Fur-

thermore, a subset of these methods yields a converging

solver for a problem of higher difficulty and size than those

considered within the optimization and for which all com-

mon multigrid cycles fail to achieve convergence.

2 A FORMAL GRAMMAR FOR GENERATING
MULTIGRID PRECONDITIONERS

We can derive a formal grammar for generating multigrid precondi-

tioners from the one formulated in [49, 50] by replacing the system

matrix 𝐴 with the respective preconditioning matrix 𝑀 and the

right-hand side 𝑓 with 𝑢. Table 1a contains the resulting produc-

tions for generating a multigrid preconditioner that operates on a

hierarchy of three grids, where a spacing of ℎ is used on the finest

grid and the only operation allowed on the coarsest grid is the

application of a direct solver, denoted by the multiplication with

the inverse of𝑀
4ℎ . Each rule then defines the set of expressions by

which a certain variable, denoted by ⟨·⟩, can be replaced. Starting

with the symbol ⟨𝑆⟩, each expression can be substituted recursively
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Table 1: Context-free grammar for generating three-grid pre-
conditioners.

(a) Productions

⟨𝑆⟩ |= ⟨𝑠ℎ⟩
⟨𝑠ℎ⟩ |= iterate(𝜔, ⟨𝑃⟩, apply(⟨𝐵ℎ⟩, ⟨𝑐ℎ⟩)) |

iterate(𝜔, 𝜆, cgc(𝐼ℎ
2ℎ
, ⟨𝑠

2ℎ⟩)) | (𝑢0ℎ, 𝑢ℎ, 𝜆, 𝜆)
⟨𝑐ℎ⟩ |= residual(𝑀ℎ, ⟨𝑠ℎ⟩)
⟨𝐵ℎ⟩ |= inverse(𝑀+

ℎ
) with 𝑀ℎ = 𝑀+

ℎ
+𝑀−

ℎ

⟨𝑐
2ℎ⟩ |= residual(𝑀

2ℎ, ⟨𝑠2ℎ⟩) |
cocy(𝑀

2ℎ, 𝑢
0

2ℎ
, apply(𝐼2ℎ

ℎ
, ⟨𝑐ℎ⟩))

⟨𝑠
2ℎ⟩ |= iterate(𝜔, ⟨𝑃⟩, apply(⟨𝐵

2ℎ⟩, ⟨𝑐2ℎ⟩)) |
iterate(𝜔, 𝜆, apply(𝐼2ℎ

4ℎ
, ⟨𝑐

4ℎ⟩))
⟨𝐵

2ℎ⟩ |= inverse(𝑀+
2ℎ
) with 𝑀

2ℎ = 𝑀+
2ℎ
+𝑀−

2ℎ

⟨𝑐
4ℎ⟩ |= apply(𝑀−1

4ℎ
, apply(𝐼4ℎ

2ℎ
, ⟨𝑐

2ℎ⟩))
⟨𝑃⟩ |= partitioning | 𝜆

(b) Semantics

function iterate(𝜔 , 𝑃 , (𝑢,𝑢, 𝛿, 𝑠𝑡𝑎𝑡𝑒))
𝑢̃ ← 𝑢 + 𝜔 · 𝛿 with 𝑃

return (𝑢̃, 𝑢, 𝜆, 𝑠𝑡𝑎𝑡𝑒)
end function
function apply(𝐵, (𝑢,𝑢, 𝛿, 𝑠𝑡𝑎𝑡𝑒))

˜𝛿 ← 𝐵 · 𝛿
return (𝑢, 𝑢, ˜𝛿 , 𝑠𝑡𝑎𝑡𝑒)

end function
function residual(𝑀 , (𝑢,𝑢, 𝜆, 𝑠𝑡𝑎𝑡𝑒))

𝛿 ← 𝑢 −𝑀𝑢

return (𝑢,𝑢, 𝛿, 𝑠𝑡𝑎𝑡𝑒)
end function
function cocy(𝑀𝐻 , 𝑢0

𝐻
, (𝑢ℎ, 𝑢ℎ, 𝛿𝐻 , 𝑠𝑡𝑎𝑡𝑒ℎ))

𝑢𝐻 ← 𝑢0
𝐻

𝑢𝐻 ← 𝛿𝐻
˜𝛿𝐻 ← 𝑢𝐻 −𝑀𝐻𝑢𝐻
𝑠𝑡𝑎𝑡𝑒𝐻 ← (𝑢ℎ, 𝑢ℎ, 𝜆, 𝑠𝑡𝑎𝑡𝑒ℎ)
return (𝑢𝐻 , 𝑢𝐻 , ˜𝛿𝐻 , 𝑠𝑡𝑎𝑡𝑒𝐻 )

end function
function cgc(𝐼ℎ

𝐻
, (𝑢𝐻 , 𝑢𝐻 , 𝜆, 𝑠𝑡𝑎𝑡𝑒𝐻 ))

(𝑢ℎ, 𝑢ℎ, 𝜆, 𝑠𝑡𝑎𝑡𝑒ℎ) ← 𝑠𝑡𝑎𝑡𝑒𝐻
𝛿ℎ ← 𝐼ℎ

𝐻
· 𝑢𝐻

return (𝑢ℎ, 𝑢ℎ, 𝛿ℎ, 𝑠𝑡𝑎𝑡𝑒ℎ)
end function

according to the specified rules until it contains either exclusively

terminal symbols or the empty string 𝜆 [34]. The resulting deriva-

tion tree uniquely represents a multigrid preconditioner on the

specified hierarchy of grids. To obtain a grammar for generating

multigrid preconditioners that operate on an extended hierarchy,

for instance a four or five-grid method, we have to replicate the

production rules formulated on the second finest level (2ℎ) in Ta-

ble 1a for each subsequent one. Similar as in [49, 50] we can then

(a) Grammar derivation tree

(b) Computational graph

(c) Algorithmic representation

Parallel C++ Code

Figure 1: Visualization of the process of mapping the gram-
mar derivation tree of a three-grid V-cycle with a single step
of Jacobi post-smoothing on the second finest level (2ℎ) to an
algorithmic representation.

formulate semantic evaluation rules, which are shown in Table 1b.

These rules guide the derivation of the corresponding sequence of

multigrid operations obtained in form of a directed acyclic graph

(DAG). Figure 1 illustrates the resulting process of algorithm gen-

eration with the example of a three-grid V-cycle that performs

a single underrelaxed Jacobi post-smoothing step on the second

finest discretization level. The resulting algorithm is formulated

in Figure 1c, while Figure 1a shows the corresponding derivation

tree based on the productions formulated in Table 1a. Through

recursive application of the rules in Table 1b the computational

DAG shown in Figure 1b is obtained. Note that the recursive ap-

plication of these rules in the end always returns a tuple of the

form (𝑢ℎ, 𝑢ℎ, 𝜆, 𝜆), whereas𝑢ℎ is the resulting computational graph.

Based on this intermediate representation, we can obtain an algo-

rithmic formulation of the corresponding multigrid preconditioner

by introducing variables for the approximate solution 𝑢, right-hand

side𝑢 and residual 𝑟 on each discretization level, which, again, leads

to Figure 1c. By making use of recent code generation techniques, it

is then possible to automate the generation of optimized C++ code

for a given multigrid-based solver specified in an algorithm-like

fashion [27, 31].

Finally, note that while Table 1a fixes the number of coarsening

steps until the respective problem can be solved directly, all oper-

ations are formulated relative to the discretization width ℎ. As a
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consequence, the computational structure of the resulting precon-

ditioner is independent of the actual size of the grid. It is, therefore,

possible to translate a multigrid preconditioner formulated on a

hierarchy of grids with a certain depth to another one consisting

of different-sized grids of the same depth. For this purpose, we

only have to replace the initial approximate solution 𝑢0
ℎ
, operator

𝑀ℎ and right-hand side 𝑢ℎ in Table 1a by their counterparts and

reformulate each operator on the respective grid within the new

hierarchy. For instance, the derivation tree in Figure 1a can be trans-

lated to the computational DAG of a structurally similar multigrid

preconditioner for a different problem discretized on a hierarchy

of three grids. Consequently, every multigrid method produced by

a grammar formulated on a particular hierarchy of grids is gener-

alizable over the set of all structurally equivalent grammars that

employ the same number of coarsening steps. We can thus apply

a multigrid preconditioner obtained on a specific instance of the

Helmholtz equation to similar problems. In the following, we utilize

this principle to evolve efficient multigrid-based preconditioners

that can be generalized to a whole class of Helmholtz problems.

3 EVOLUTIONARY SEARCH METHOD
After establishing a generalizable representation for multigrid pre-

conditioners of arbitrary structure, the next task is to formulate a

search method that can identify those leading to an efficient solver

for different Helmholtz problem instances. While the branching

factor of the productions formulated in Table 1a may seem small at

first, it has already been shown in [50] that, in practice, the result-

ing search space exceeds any size for which a simple exhaustive

search is applicable. In [50] we have provided 3 · 1014 as a lower
bound for the size of the search space of a three-grid method with

a limited number of choices for smoothing on each level. Since

the construction of a multigrid preconditioner comprises a similar

number of choices, this lower bound also applies in the present case,

rendering a mere brute-force search unfeasible. Search heuristics

can often find an acceptable approximation for the global optimum

when the search space is too large to evaluate all possible solutions.

In principle, the quality of a preconditioner can be assessed by

considering two objectives. First of all, preconditioning aims to

minimize the condition number of the matrix 𝐴𝑀−1. Since, in prac-

tice, the inverse𝑀−1 is not computed explicitly, the effectiveness

of a preconditioner depends on its approximation accuracy, which

directly affects the number of iterations required by an iterative

method to achieve a certain error reduction. On the other hand, a

method that achieves the same quality of approximation but can be

executed faster on modern computer architectures achieves a lower

execution time per iteration. The task of finding an optimal multigrid

preconditioner can thus be considered as a multi-objective search

problem.

Fitness Evaluation and Generalization. As shown in [12] the num-

ber of iterations required for solving Equation (1) using a precon-

ditioned solver grows with the wavenumber 𝑘 . This work aims to

obtain multigrid methods that can be generalized over different

problem instances. Therefore, before evaluating a given precondi-

tioner on problems with a large wavenumber, we first consider an

instance of the same problemwith a smaller wavenumber and hence

lower difficulty. When we start with a random initialization, the

Algorithm 1 Evolutionary Search

Construct the grammar 𝐺0 for the initial problem

Initialize the population 𝑃0 based on 𝐺0

Evaluate 𝑃0 on the initial problem

for 𝑖 := 0, . . . , 𝑛 do
if 𝑖 > 0 and 𝑖 mod 𝑚 = 0 then

𝑗 := 𝑖/𝑚
Increase the problem difficulty

Construct the corresponding grammar 𝐺 𝑗

Adapt the current population 𝑃𝑖 to 𝐺 𝑗

Evaluate 𝑃𝑖 on the new problem

end if
Generate new solutions 𝐶𝑖 based on 𝑃𝑖 and 𝐺 𝑗

Evaluate 𝐶𝑖 on the current problem

Select 𝑃𝑖+1 from 𝐶𝑖 ∪ 𝑃𝑖
end for

probability of generating multigrid methods that do not represent

effective preconditioners is high, even for a problem instance that

is, in principle, comparably easy to solve. As the search progresses,

the average quality of the obtained preconditioners is expected to

improve. Hence, the probability that they can also be successfully

applied to instances with higher difficulty increases. On the other

hand, most multigrid methods that are efficient in preconditioning

a problem instance with a large wavenumber can be expected to

function also on a problem with a smaller wavenumber. We, there-

fore, propose a stepwise adaption of the difficulty of the evaluated

problem. To perform the actual search, we employ a multi-objective

GGGP-based algorithm that operates on a population of derivation

trees [37, 55]. Each tree represents a certain point in the search

space considered at the current step of the method. In every new

step, the search progresses by creating a new population of trees

based on the current one. The resulting procedure is summarized

in Algorithm 1, in which the difficulty of the problem considered

for evaluation is adjusted in every𝑚th iteration of the search.

The question that remains to be answered is how a new popu-

lation 𝑃𝑖+1 should be generated in each step of Algorithm 1 based

on the current one. In principle, the current population 𝑃𝑖 repre-

sents the subspace of possible multigrid preconditioners considered

within step 𝑖 of the search. Accordingly, the generation of 𝑃𝑖+1 rep-
resents moving the search to a new subspace, which is expected to

contain solutions that, according to both objectives, correspond to

multigrid methods representing more efficient preconditioners for

the given problem than those located in the current subspace. Con-

sequently, we need to evaluate the quality of a subspace represented

by the current population in terms of its potential to obtain efficient

preconditioners from it. In principle, the number of iterations re-

quired to achieve a particular error reduction with a preconditioned

iterative method could be predicted with local Fourier analysis [9].

However, there has been only a limited amount of research on the

accuracy of this method for evaluating nonstandard multigrid meth-

ods. In particular, the experiments performed in [49] indicate that

the predictions obtained with this method are not always consistent

with experimentally determined behavior. Alternatively, we can ob-

tain all relevant performance characteristics of a solver through its

direct application to a representative test problem. For this purpose,



Evolving Generalizable Multigrid-Based Helmholtz Preconditioners with Grammar-Guided Genetic Programming GECCO ’22, July 9–13, 2022, Boston, MA, USA

it is necessary to automatically generate an implementation based

on the algorithmic representation of those multigrid precondition-

ers obtained through semantical evaluation of the derivation trees

produced by the respective grammar. ExaStencils [31] is a frame-

work that has been specifically designed for the automatic gen-

eration of scalable multigrid implementations based on a tailored

domain-specific language (DSL) called ExaSlang [48]. It enables

the specification of solvers in a discretization level-independent

manner. At the same time, the actual size of the problem can be

controlled utilizing simple configuration files, which grants us the

possibility to automatically generate implementations for a specific

solver that are executable on a wide range of different computer

architectures. These can then be evaluated on the target platform

for the two objectives, i.e., number of iterations and execution time

per iteration.

Implementation of Grammar-Guided Genetic Programming. In
each iteration of the search, we create a new population based on

the existing one using GGGP, where each individual represents a

derivation tree of the form of Figure 1a. To apply this method to the

grammar formulated in Table 1a, we first need to consider its unique

structure. Note that except for the variables ⟨𝑠ℎ⟩, ⟨𝐵ℎ⟩, ⟨𝐵2ℎ⟩ and
⟨𝑃⟩ none of the expressions generated by any of the productions

of a variable exclusively consists of terminals. Consequently, the

grammar does not permit the construction of a derivation tree with

branches of equal length. We, therefore, employ the grow strategy

as described in [29, 42] to initialize the population. A derivation tree

is extended by randomly choosing a production from the combined

set of terminal and non-terminal productions until the longest

path within the tree exceeds a certain depth. Since the grammar

comprises an even branching factor of two for all non-terminal

productions, there is no need to adapt the probability of selecting a

particular production, but choosing uniformly from the combined

set already results in a sufficient diversity in the population.

To create new individuals based on an existing population, we

employ mutation and recombination. For this purpose, we first se-

lect several individuals using a binary tournament selection based

on the dominance relation and crowding distance between indi-

viduals, as described in [11]. Mutation is performed by randomly

selecting a variable node within the given derivation tree. The sub-

tree for which this variable represents the root node is then replaced

by a new randomly generated tree, which is created using the grow
initialization operator. However, we also permit the insertion of

the replaced subtree as a branch within the new one. Note that this

insertion, which is only allowed once, is only possible if the variable

that represents the root node of the original subtree occurs within

the new one. Consequently, if this condition is never fulfilled, the

original subtree is replaced without insertion. Therefore, our muta-

tion operator can either perform subtree replacement or insertion

in case the newly generated subtree can connect the original one to

its root node. While mutation is performed on a single individual,

within recombination we create two new individuals by combin-

ing the derivation trees of two individuals selected as parents. For
this purpose, we employ standard subtree crossover as described

in [42], whereby we choose the crossover point uniformly among

all possible nodes within both trees. Finally, after the creation and

evaluation of a certain number of novel solutions, we employ the

sorting procedure described in [17] to identify the non-dominated

solutions in the combined set of the newly created and existing

ones. These individuals then form the new population 𝑃𝑖+1 in the

next step of Algorithm 1.

4 EXPERIMENTAL EVALUATION
To evaluate the effectiveness of our evolutionary search method

in finding multigrid methods that act as efficient preconditioners,

we consider the two-dimensional Helmholtz equation on a unit

square with Dirichlet boundary conditions at the top and bottom,

and Robin radiation conditions at the left and right, as defined by

(−∇2 − 𝑘2)𝑢 = 𝑓 in (0, 1)2

𝑢 = 0 on (0, 1) × {0}, (0, 1) × {1}
𝜕n𝑢 − 𝑖𝑘𝑢 = 0 on {0} × (0, 1) , {1} × (0, 1)

𝑓 (𝑥,𝑦) = 𝛿 (𝑥 − 0.5, 𝑦 − 0.5),

where 𝛿 (x) represents the Dirac delta function. We discretize this

equation on a uniform Cartesian grid using the classical five-point

stencil

1

ℎ2


−1

−1 4 − (𝑘ℎ)2 −1
−1

 ,
while the Dirac delta function is approximated with a second-order

Zenger correction [30]. The step size ℎ of the grid is chosen to fulfill

the second-order accuracy requirement ℎ𝑘 = 0.625 as suggested

in [13]. Since the analytic solution of this equation is not known

in advance, we consider an approximate solution to be sufficient if

the initial residual has been reduced by a factor of 10
−7

for 𝑘 ≤ 160

and 10
−6

for all larger wavenumbers. The resulting complex-valued

system of linear equations is indefinite, and the required number

of iterations for solving it with a non-preconditioned Krylov sub-

space method increases drastically with the wavenumber 𝑘 [12, 13].

As a solver, we, therefore, employ a biconjugate gradient stabi-

lized method (BiCGSTAB) [46], right-preconditioned with a shifted

Laplacian

𝑀 = −∇2 − (𝑘2 + 0.5𝑖𝑘2),
which is among the suggested solvers in [12]. In each step of this

iterative scheme, it is necessary to compute an approximate solution

for two systems of linear equations of the form 𝑀𝑢 = 𝑢, each of

which is achieved through the application of a single multigrid

iteration.

4.1 Optimization Settings
To evaluate the behavior of our GGGP-based search method, we

perform a total number of ten randomized optimization runs. While

we are aware that this number is insufficient for a reasonable sta-

tistical evaluation of an evolutionary algorithm’s behavior, it still

enables us to demonstrate that our method is capable of repeatedly

evolving generalizable preconditioners for the given test problem.

Even though a more accurate assessment of our method’s behavior

would be desirable, the high computational and temporal costs of

each run, which each take between 24 and 48 hours, put a strict limit

on the number of experiments. Within all optimization runs, we

choose a step size of ℎ = 1/2𝑙 on each level 𝑙 , whereby we employ a

range of 𝑙 ∈ [𝑙𝑚𝑎𝑥 − 4, 𝑙𝑚𝑎𝑥 ]. Accordingly, our goal is to construct
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an optimal five-grid preconditioner for the given problem. For this

purpose, we consider the following components:

Smoothers: Pointwise and block Jacobi with rectangular blocks up
to a maximum number of six terms, red-black Gauss-Seidel

Restriction: Full-weighting restriction

Prolongation: Bilinear interpolation
Relaxation factors: (0.1 + 0.05𝑖)36𝑖=0 = (0.1, 0.15, 0.2, . . . , 1.9)
Coarse-grid solver: BiCGSTAB for 𝑙 = 𝑙𝑚𝑎𝑥 − 4
To generate block Jacobi smoothers, we define a splitting 𝑀ℎ =

𝐿ℎ + 𝐷ℎ +𝑈ℎ where 𝐷ℎ is a block diagonal matrix, such that we

have to solve a local system whose size corresponds to the size of a

block at every grid point. For a more detailed treatment of block

relaxation methods, the reader is referred to [46, 53]. The relaxation

factor 𝜔 for each smoothing and coarse-grid correction step is

chosen from the above sequence. By employing the same code

generation-based optimizations for each component of a solver,

we ensure that the resulting measurements are comparable for

all multigrid variants considered in this work. All experiments

are performed on the SuperMUC-NG cluster, where each node

represents an Intel Skylake Xeon Platinum 8174 processor that

consists of eight islands, each with six physical cores. While within

the optimization, we evaluate each individual’s fitness on a single

island, the final evaluation is performed on a full node of the system

with 48 cores. We employ GCC 7.5 as a compiler, using the -O3

optimization level and an OpenMP-based parallelization in both

cases. To assess each preconditioner’s generalizability, we consider

the three different wavenumbers 160, 320, and 640, together with a

discretization width of ℎ = 0.625/𝑘 .

4.2 Reference Methods
To establish a baseline, we consider several well-known and com-

monly used multigrid cycles [53] that are all based on the applica-

tion of a certain smoother for a fixed number of times. The resulting

solver is translated to ExaStencils’ DSL, based on which a multi-

threaded C++ implementation is generated and executed on a full

SuperMUC-NG node using 48 OpenMP threads. To optimize each

multigrid cycle’s effectiveness as a preconditioner, we experimen-

tally obtain the optimum relaxation factor for 𝑘 = 320 from the

mentioned interval. While in [8, 12] a damped Jacobi is employed

as a smoother, in the given case, it does not result in a convergent

solver for 𝑘 > 80. We have verified this assumption by considering

every possible relaxation factor value from the given interval. In

contrast, red-black Gauss-Seidel represents an effective smoother

for the considered range of 𝑘 . The second column of Table 2 con-

tains the optimum red-black Gauss-Seidel relaxation factor (𝜔) for

each cycle. For instance, V(2, 1) represents a V-cycle that performs

two pre- and one post-smoothing step on each discretization level.

Using the same relaxation factor, we employ each cycle as a pre-

conditioner for the three wavenumbers considered. For consistent

measurements, each solver is executed ten times to compute the

average solving time of all runs, which reduces the deviations to a

negligible level. The results are shown in the remaining columns

of Table 2. Here omitted values imply that the corresponding pre-

conditioned BiCGSTAB method did not achieve the required error

reduction within 20,000 iterations. Additionally, we have evaluated

each resulting cycle on a problem with wavenumber 𝑘 = 640, which

Table 2: Reference methods - Optimum relaxation factors 𝜔
for 𝑘 = 320, number of iterations and average time required
for solving a problem with the particular wavenumber.

𝜔 Iterations Solving Time (s)

𝑘 160 320 160 320

V(0, 1) 1.25 2078 6297 6.38 35.11

V(1, 1) 0.6 1880 6297 7.66 44.27

V(2, 1) 0.6 − 5532 − 47.0

V(2, 2) 0.5 1627 5115 9.93 50.54

V(3, 3) 0.4 1753 5168 13.97 76.00

F(0, 1) 1.15 1467 4028 8.15 42.87

F(1, 1) 0.75 1546 3988 11.21 54.51

F(2, 1) 0.55 1146 3934 10.87 67.62

F(2, 2) 0.65 1060 3213 13.92 65.06

F(3, 3) 0.45 1085 3464 18.88 92.97

W(0, 1) 0.75 1265 4215 8.67 72.08

W(1, 1) 0.8 1208 3570 13.08 76.22

W(2, 1) 0.6 1313 3074 17.71 79.67

W(2, 2) 0.5 1069 3376 17.14 101.6

W(3, 3) 0.45 942 2976 19.65 117.8

Table 3: Best preconditioners according to the product of both
objectives - Number of iterations and average time required
for solving a problem with the particular wavenumber.

Iterations Solving Time (s)

𝑘 160 320 640 160 320 640

EP-1 1178 3399 − 6.29 28.07 −
EP-2 795 2160 8449 7.86 29.89 241.7

EP-3 933 2827 11143 6.08 27.58 257.8

EP-4 637 2509 7901 7.17 41.04 268.2

EP-5 539 1838 7765 5.01 28.39 227.7

EP-6 941 2103 − 9.58 30.76 −
EP-7 955 2701 − 6.45 27.84 −
EP-8 945 2870 10839 7.24 33.02 276.9

EP-9 3436 3872 − 15.15 27.51 −
EP-10 586 1881 8855 6.70 31.39 246.1

did not yield a convergent solver in any of the cases. For the other

twowavenumbers considered, theW(3, 3)-cycle represents the most

effective preconditioner and therefore leads to the lowest number of

iterations, while the V(0, 1)-cycle yields the overall fastest solving

time on the given platform.
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4.3 Implementation Details
We have implemented the evolutionary search procedure summa-

rized in Algorithm 1 by extending the approach described in [50].

For this purpose, we generate a new grammar for constructing

complex-valued multigrid preconditioners adapted to the respec-

tive problem instance in every𝑚th iteration. For evaluating each

method’s fitness, it is first translated to an ExaSlang [48] representa-

tion, which is then automatically integrated into an existing Krylov

Subspace method as a preconditioner. Finally, based on the DSL rep-

resentation of each solver, a multi-threaded C++ implementation is

generated, as described in Section 3. To cope with the cost of run-

ning a code generation pipeline for each evaluation, together with

the growing execution time required for solving the increasingly

difficult problem instances, we employ a distributed parallelization

using the Message Passing Interface (MPI) library. The resulting

implementation is freely available as part of the open-source library

EvoStencils
1
.

For each experiment, we perform an evolutionary search with

a total population size of 128 on eight nodes of SuperMUC-NG

using 64 MPI processes, whereby each process is executed on a

separate island of the system. As an initial problem, we choose

𝑘 = 80 with a maximum level 𝑙𝑚𝑎𝑥 = 7, discretized with a step

size ℎ = 1/27. A problem instance with greater difficulty is then

constructed by doubling the wavenumber. Note that due to the

requirement ℎ𝑘 = 0.625, this results in a step size half as large as

the original one and, in total, a four times larger grid. The relaxation

factor for each smoothing and coarse-grid correction step is chosen

from the interval specified above. Each preconditioner is evaluated

on the respective island using 12 threads. A solver is considered

convergent for all wavenumbers if it can reduce the initial resid-

ual by 10
−7

in less than 10,000 iterations. The initial population is

obtained through the non-dominated sorting of a randomly gener-

ated set of 1024 individuals. The search is then performed for 150

iterations, whereby the difficulty is adjusted every 50 iterations.

New derivation trees are created through recombination with a

probability of 2/3 or by mutation. In the latter, a terminal symbol is

chosen with a probability of 1/3. To evaluate the consistency of the

obtained results, we perform ten experiments with a random ini-

tialization. At the end of each experiment, we identify the ten best

preconditioners according to the product of both objectives and

evaluate them under the same conditions as the reference methods,

i.e., by executing each solver ten times on a full SuperMUC-NG

node using 48 OpenMP threads.

5 RESULTS AND DISCUSSION
Table 3 contains the results for each preconditioner from the set of

non-dominated solutions of the respective experiment that achieves

the fastest solving time for a wavenumber of 𝑘 = 640. Note that,

similar to all reference methods, in four of the ten cases, EP-1, EP-6,

EP-7, and EP-9, none of the evaluated solvers could achieve conver-

gence for the largest wavenumber 𝑘 = 640. In these cases, we have

selected the preconditioner, which leads to the fastest solving time

for 𝑘 = 320. Additionally, Figure 2 shows a direct comparison of

the best-performing preconditioners from both groups for different

wavenumbers. For better comparability of the results achieved on

1
EvoStencils: https://github.com/jonas-schmitt/evostencils
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Figure 2: Solving time comparison of the best precondition-
ers according to the product of both objectives for different
wavenumbers (𝑘).

different grid sizes, we measure the solving time per grid point

instead of the total time required for solving each problem. Note

that all solvers have been evaluated using the same number of mea-

surements on the target platform. All three evolved preconditioners

included in this plot represent more efficient methods for 𝑘 ≥ 320

than the best of the reference methods, the V(0, 1)-cycle, while

remaining competitive for lower wavenumbers. The most efficient

preconditioner (EP-5) leads to a consistent improvement of about 20

% compared to the V(0, 1)-cycle for all wavenumbers. Furthermore,

while none of the evolved preconditioners has been evaluated on

wavenumbers greater than 320 within the search, in six of the ten

experiments they lead to a converging solution method for the case

of a wavenumber of 640, for which all standard methods fail. In

the remaining four experiments, the search still finds competitive

preconditioners that generalize well for 𝑘 ≤ 320, whereby only in

one case (EP-9) preconditioning leads to an inefficient solver for

a wavenumber of 160. Therefore, we have demonstrated that our

evolutionary search method could find generalizable and efficient

methods in the majority of the experiments performed. In addition,

our GGGP-based approach was able to evolve methods that sur-

pass the capabilities of standard multigrid cycles in preconditioning

Helmholtz problems, which could be demonstrated by solving a

problem instance with 𝑘 = 640.

To further investigate our evolutionary algorithm’s behavior,

Figure 3 shows the distribution of the non-dominated solutions at

the end of all ten experiments, whereby the red line represents the

non-dominated front of the combined set of solutions. From this

distribution, we can conclude that the method can consistently find

preconditioners of equal quality for iteration numbers of 4000 or

more. For lower iteration numbers, the spread between the solu-

tions increases and, in individual experiments, leads to suboptimal

preconditioners in the left part of the solution space. Reducing the

number of iterations requires more smoothing and coarse-grid cor-

rections steps with an effective combination of relaxation factors,

https://github.com/jonas-schmitt/evostencils
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Figure 3: Distribution of non-dominated solutions at the end
of all ten experiments for 𝑘 = 320. The red line denotes the
combined front.

which results in a growth of the size of the corresponding grammar

derivation tree. This effect impedes the search algorithm’s ability

to find the right combination of productions that leads to the same

Pareto-optimal preconditioner in every experiment.

While the efficiency and generalizability of the evolved precondi-

tioners could be demonstrated, we have not yet analyzed how these

methods function algorithmically. For this purpose, we consider

the two evolved preconditioners, EP-5 and EP-2, that perform best

for wavenumbers 𝑘 ≥ 320. Figure 4 contains a graphical repre-

sentation of each method’s computational structure, including all

relaxation factors. These figures illustrate that, in each of the two

cases, our grammatical representation of a multigrid preconditioner

has enabled the construction of a unique sequence of computations,

whose complexity exceeds those obtained by classical parameter

optimization methods such as [7, 39, 52]. While both algorithms

resemble a V-cycle, as the coarse-grid solver is only employed once,

they include additional smoothing-based coarse-grid correction

steps. In contrast to classical multigrid cycles, these corrections are

obtained from intermediate discretization levels without traversing

the complete hierarchy down to the coarsest grid. Furthermore, in

both preconditioners, pre- and post-smoothing steps are omitted on

certain levels, while the amount of smoothing is increased on oth-

ers. In EP-5 the number of smoothing steps is substantially higher

on the coarser grids. Since the computational cost of smoothing

is significantly decreased with each coarsening step, this greatly

reduces the overall execution time of the resulting preconditioned

solver. While EP-2 performs more smoothing on the second finest

level, only a single step of red-black Gauss-Seidel is employed on

the finest level. In both preconditioners, red-black Gauss-Seidel is

predominantly used for smoothing. However, especially EP-5 also

includes intermediate Jacobi smoothing steps or a combination of

both methods. Finally, as shown in Figure 4, both preconditioners

combine a wide range of different relaxation factors within their

computation.
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Figure 4: Computational structure of the evolved multigrid
preconditioners. The color of the node denotes the type of
operation. Black: Coarse-grid solver, Blue: Pointwise Jacobi
smoothing, Red: Red-black Gauss-Seidel smoothing, White:
No operation. The relaxation factor of each smoothing step
is included in each node, while for coarse-grid correction, it
is attached to the respective edge.

6 CONCLUSION AND FUTUREWORK
This work demonstrates how grammar-guided genetic program-

ming (GGGP) can evolve multigrid preconditioners for Helmholtz

problems that outperform known methods for different wavenum-

bers and even handle problems for which those methods fail. De-

spite this accomplishment, further research is needed to investigate

under which circumstances the presented approach can achieve

consistent results. We also aim to apply our approach to other

multigrid variants, such as algebraic multigrid methods [56], and

the solution of more challenging and complicated PDEs, such as

nonlinear [23] and saddle point problems [3]. Furthermore, the re-

sulting implementation is mainly limited by the compute resources

required to evaluate a sufficient number of preconditioners. As a

remedy, one could train a machine learning system to learn a model

for predicting multigrid preconditioner performance based on the

respective grammar representation. Another promising research

direction, which has been already mentioned in the introduction,

is the grammar-based construction of a multigrid method from

those components obtained by a machine learning-based optimiza-

tion such as [21, 24]. In addition, our approach could be utilized

to accelerate the generation of training data for data-driven PDE

solvers [28, 32, 33]. Finally, we aim to extend our implementation of

GGGP to incorporate alternative initialization, crossover, and muta-

tion operators, such as [10, 19, 44]. Also, while the implementation

presented here employs tree-based GGGP, grammatical evolution

(GE) [38, 45] represents a promising alternative, which could be

as well integrated into our grammar-based approach for multigrid

preconditioner design.
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