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Abstract
For many systems of linear equations that arise from the discretization of partial dif-
ferential equations, the construction of an efficient multigrid solver is challenging. 
Here we present EvoStencils, a novel approach for optimizing geometric multigrid 
methods with grammar-guided genetic programming, a stochastic program optimi-
zation technique inspired by the principle of natural evolution. A multigrid solver 
is represented as a tree of mathematical expressions that we generate based on a 
formal grammar. The quality of each solver is evaluated in terms of convergence 
and compute performance by automatically generating an optimized implementa-
tion using code generation that is then executed on the target platform to measure all 
relevant performance metrics. Based on this, a multi-objective optimization is per-
formed using a non-dominated sorting-based selection. To evaluate a large number 
of solvers in parallel, they are distributed to multiple compute nodes. We demon-
strate the effectiveness of our implementation by constructing geometric multigrid 
solvers that are able to outperform hand-crafted methods for Poisson’s equation and 
a linear elastic boundary value problem with up to 16 million unknowns on multi-
core processors with Ivy Bridge and Broadwell microarchitecture.
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1  Introduction

Solving the linear or nonlinear systems that arise from the discretization of partial 
differential equations efficiently is an unprecedented challenge. The vast number 
of unknowns in many of these systems necessitates the design of fast and scalable 
solvers. Unfortunately, the optimal solution method highly depends on the system 
itself, and it is infeasible to formulate a single algorithm that works efficiently 
in all cases. Geometric multigrid methods are a class of asymptotically optimal 
multilevel solution algorithms for (non-)linear systems, which were first formu-
lated by Fedorenko in 1961 [12] and have been later pioneered by Brandt [4] and 
Hackbusch [16]. These methods are based on accelerating the convergence of sta-
tionary iterative methods by applying corrections obtained on a lower resolution 
of the original problem. A comprehensive overview of multigrid methods can be 
found in [5, 34]. Even though, since the invention of multigrid, significant effort 
has been put into the design of efficient solvers for many important cases, such as 
Helmholtz [11] and saddle point problems [2], this task is still an open challenge.

Oosterlee et al. [27] already considered the optimization of multigrid solvers 
by choosing each component from a finite number of options. The resulting dis-
crete optimization problem is then solved using a genetic algorithm. Similarly, 
the work by Thekale et  al. [33] aims to optimize the number of full multigrid 
(FMG) cycles using a branch-and-bound approach while the recent work by 
Brown et al. treats the optimization of a solver’s parameter as a minimax problem 
[6]. These approaches have in common that they impose certain constraints on 
a solver’s structure and then aim to find the optimal set of options under these 
conditions. Thekale et al. consider an FMG solver consisting of V-cycles and then 
focuses on finding the optimal number of cycles. While Osterlee et al. and Brown 
et al. consider a larger number of algorithmic parameters, the optimization is still 
restricted to cycles of a particular structure and, therefore, lacks the flexibility 
to adapt the individual steps of the algorithm independent from each other. For 
instance, they do not consider the combination of different smoothers, prolonga-
tion, restriction, and cycles on each level.

To overcome these limitations, we treat the task of finding an optimal mul-
tigrid solver as an algorithm design problem by proposing a novel context-free 
grammar for the automatic generation of arbitrary sequences of multigrid opera-
tions, which we have first formulated in [32]. This approach allows us to alter 
each step performed within the algorithm by expressing it in a separate produc-
tion rule. Based on the order and choice of productions, we can construct arbi-
trarily composed multigrid cycles that combine the different building blocks of 
these methods to push the boundaries of classical parameter optimization meth-
ods, such as [6, 27, 33]. In [32], we could show how convergence and perfor-
mance estimates can be automatically obtained for geometric multigrid solvers 
on rectangular grids of arbitrary size and how, based on these metrics, a multi-
objective optimization can be performed using genetic programming (GP) [23] 
and a covariance matrix adaptation evolution strategy (CMA-ES) [17]. However, 
the resulting estimates could not yield sufficient accuracy in all investigated cases 
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and thus have, so far, limited the outcome of the optimization. Here, we demon-
strate an extension of this approach that replaces the prediction obtained from 
mathematical analysis and performance modeling by a code generation-based 
evaluation that can be carried out sufficiently fast by distributing its computation 
to multiple compute nodes.

A different direction within the optimization of multigrid methods, which has 
recently become popular, is applying machine learning to improve the individual 
solver components, such as [15, 19, 20, 22]. While Greenfeld et al. [15], Katrutsa 
et al. [22], and Huang et. al [20] focus on learning efficient prolongation operators or 
smoothers, the work by Hsieh et al. [19] aims to improve an existing solver through 
the supplemental application of a neural network. Consequently, these works regard 
the composition of a solver as immutable but instead focus on optimizing its com-
ponents or improving the outcome of an existing method through additional update 
steps. In contrast, our approach considers each building block of a solver as a black 
box and aims to find an optimal composition.

The paper is structured as follows. In the first step, we present the derivation of 
our context-free grammar for the automatic construction of geometric multigrid 
solvers, which forms the basis for all subsequent sections. Next, we present the 
extension of our previous work by a distributed code generation-based evaluation 
and describe the resulting grammar-guided evolutionary search method. Finally, we 
demonstrate our approach’s effectiveness by constructing efficient multigrid solvers 
for a similar linear elastic boundary value problem as considered in [32] and two 
Poisson problems.

2 � A formal grammar for constructing multigrid solvers

The task of constructing a multigrid solver for a particular problem is typically per-
formed by a human expert with profound knowledge in numerical mathematics. To 
automate this task, we first need to represent multigrid solvers in a formal language 
that we can then use to construct different instances on a computer. The rules of this 
language must ensure that only valid solver instances can be defined, which means 
that we can automatically determine their convergence speed and execution time. 
Additionally, we want to enforce that the generated method works on a hierarchy of 
grids, which requires the availability of inter-grid operations to obtain approxima-
tions of the same operator or grid on a finer or coarser level. Consider the general 
system of linear equations defined on a grid with spacing h

where Ah is the coefficient matrix, uh the unknown and fh the right-hand side of the 
system. Each component of a multigrid solver can be written in the form

where ui
h
 is the approximate solution in iteration i, � ∈ ℝ the relaxation factor and 

Bh an operator defined on the given level with spacing h. For example, with the 

(1)Ahuh = fh,

(2)ui+1
h

= ui
h
+ �Bh(fh − Ahu

i
h
),
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splitting Ah = Dh − Uh − Lh , where Dh represents the diagonal, −Uh the upper trian-
gular and −Lh the lower triangular part of Ah , we can define the Jacobi

and the lexicographical Gauss-Seidel method

If we assume the availability of a restriction operator IH
h

 , that computes an approxi-
mation of the residual on a coarser grid with spacing H, a prolongation operator Ih

H
 , 

that interpolates a correction obtained on the coarser grid into a finer grid, and an 
approximation for the inverse of Ah on the coarser grid, a coarse grid correction can 
be defined as

Furthermore, we can substitute ui
h
 in (5) with (3) and obtain a two grid with Jacobi 

pre-smoothing

By repeatedly substituting subexpressions, we can automatically construct a sin-
gle expression for any multigrid solver. If we take the set of possible substitutions 
as a basis, we can define a list of rules according to which such an expression can 
be generated. We specify these rules in the form of a context-free grammar, which 
is described in Table  1. Table  1a contains the production rules while Table  1b 
describes their semantics. Within the former the symbol A+

h
 corresponds to a given 

splitting of the system matrix Ah = A+
h
+ A−

h
 such that A+

h
 is efficiently invertible. 

For instance, in case of the Jacobi method A+
h
= Dh is defined as the diagonal of 

Ah . Each rule defines the set of expressions by which a certain production symbol, 
denoted by ⟨⋅⟩ , can be replaced. Starting with ⟨S⟩ , symbols are recursively replaced 
until the produced expression contains only terminals or the empty string � . The 
construction of a multigrid solver comprises the recursive generation of cycles on 
multiple levels. Consequently, it must be possible to create a new system of linear 
equations on a coarser level, including a new initial solution, right-hand side, and 
coefficient matrix. Moreover, if we decide to finish the computation on a particular 
level, we need to restore the state of the next finer level, i.e., the current solution 
and right-hand side, when applying the coarse grid correction. The current state of 
a multigrid solver on a level with grid spacing h is represented as a tuple ( uh , fh , 
�h ), where uh represents the current iterate, fh the right-hand side and �h a correc-
tion expression. To restore the current state on the next finer level, we additionally 
include a reference stateh to the corresponding tuple. According to Table 1a, the con-
struction of a multigrid solver always ends when the tuple ( u0

h
 , fh , � , � ) is reached. 

This tuple contains the initial solution and right-hand side on the finest level and 
therefore corresponds to the original system of linear equations that we aim to solve. 

(3)ui+1
h

= ui
h
+ D−1

h
(fh − Ahu

i
h
)

(4)ui+1
h

= ui
h
+ (Dh − Lh)

−1(fh − Ahu
i
h
).

(5)ui+1
h

= ui
h
+ Ih

H
A−1
H
IH
h
(fh − Ahu

i
h
).

(6)
ui+1
h

= (ui
h
+ D−1

h
(fh − Ahu

i
h
))

+ Ih
H
A−1
H
IH
h
(fh − Ah(u

i
h
+ D−1

h
(fh − Ahu

i
h
))).
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Here we have neither computed a correction nor need to restore the state, and both �h 
and stateh contain the empty string.

In general, our grammar includes three functions that operate on a fixed level. The 
function iterate generates a new state tuple based on the previous one by applying the 
correction � to the current iterate u using the relaxation factor � . If available, a parti-
tioning can be included to perform the update in multiple sweeps on subsets of u and � , 
for example, a red-black Gauss-Seidel iteration. The function residual creates a resid-
ual expression based on the given state, which is assigned to the newly created symbol 
� . A correction � can be transformed with the function apply, which generates a new 
correction 𝛿 by applying the linear operator B to the old one. For example, the follow-
ing function applications evaluate to one iteration of damped Jacobi smoothing:

ITERATE(APPLY(D−1
h
, RESIDUAL(Ah, (u

0
h
, fh, �, �))), 0.7, �)

→ ITERATE(APPLY(D−1
h
, (u0

h
, fh, fh − Ahu

0
h
, �)), 0.7, �)

→ ITERATE((u0
h
, fh, D

−1
h
(fh − Ahu

0
h
), �), 0.7, �)

→ (u0
h
+ 0.7 ⋅ D−1

h
(fh − Ahu

0
h
), fh, �, �)

Table 1   Formal grammar for constructing three-grid multigrid cycles—The first column contains the list 
of production rules where each symbol on the left side of the ⊨ sign can be replaced by the correspond-
ing symbol on its right side 

〈S〉 |= 〈sh〉
〈sh〉 |= iterate(〈ch〉, ω, 〈P〉)
〈sh〉 |= iterate(apply(〈Bh〉, 〈ch〉), ω, 〈P〉)
〈sh〉 |= iterate(cgc(Ih2h, 〈s2h〉), ω, 〈P〉)
〈sh〉 |= (u0

h, fh, λ, λ)

〈ch〉 |= residual(Ah, 〈sh〉)
〈Bh〉 |= inverse(A+

h ) with Ah = A+
h +A−

h

〈c2h〉 |= residual(A2h, 〈s2h〉)
〈c2h〉 |= cocy(A2h, u0

2h, apply(I2hh , 〈ch〉))
〈s2h〉 |= iterate(〈c2h〉, ω, 〈P〉)
〈s2h〉 |= iterate(apply(〈B2h〉, 〈c2h〉), ω, 〈P〉)
〈s2h〉 |= iterate(apply(I2h4h , 〈c4h〉), ω, λ)

〈B2h〉 |= inverse(A+
2h) with A2h = A+

2h +A−
2h

〈c4h〉 |= apply(A−1
4h , apply(I4h2h , 〈c2h〉))

〈P〉 |= partitioning | λ

(a) Production rules

function iterate((u, f , δ, state), ω, P)
ũ ← u+ ω · δ with P
return (ũ, f , λ, state)

end function
function apply(B, (u, f , δ, state))

δ̃ ← B · δ
return (u, f , δ̃, state)

end function
function residual(A, (u, f , λ, state))

δ ← f −Au
return (u, f , δ, state)

end function
function cocy(AH , u0

H , (uh, fh, δH ,
stateh))

uH ← u0
H

fH ← δH
δ̃H ← fH −AHu0

H
stateH ← (uh, fh, λ, stateh)
return (uH , fH , δ̃H , stateH)

end function
function cgc(IhH , (uH , fH , λ, stateH))

(uh, fh, λ, stateh) ← stateH
δ̃h ← IhH · uH

return (uh, fh, δ̃h, stateh)
end function

(b) Semantics

The occurrence of the same symbol at the left side of different rules means that multiple alternative pro-
ductions can be applied to this symbol. Finally, the list of functions in the second column formally speci-
fies the semantic behavior of each symbol
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Finally, it remains to be shown how one can recursively create a multigrid cycle 
on the next coarser level and then apply the result of its computation to the current 
approximate solution. This is accomplished through the functions cocy and cgc1. 
The former expects a state to which the restriction IH

h
 has been already applied. It 

then creates a new state on the next coarser level using the initial solution u0
H

 , the 
operator AH , and the restricted correction �H as a right-hand side fH . Note that on 
the coarsest level, the resulting system of linear equations can be solved directly, 
which is denoted by the application of the inverse coarse-grid operator. For restoring 
the previous state, a reference is stored in stateH . If the computation on the coarser 
level is finished, the function cgc comes into play. It first restores the previous state 
on the next finer level and then computes a coarse-grid correction by applying the 
prolongation operator to the solution computed on the coarser grid, which is then 
used as a new correction 𝛿h on the finer level. Again the following example applica-
tion demonstrates the semantics of these functions:

Finally, note that Table 1a can produce multigrid cycles with a hierarchy of at most 
three discretization levels (or coarsening steps), whereas the only viable operation 
on the lowest level is the application of a coarse grid solver. However, since its rules 
can be applied recursively, the depth of the resulting grammar expression tree is not 
restricted, and, in principle, all three discretization levels can be traversed an infi-
nite number of times. In practice, it is often favorable to construct multigrid solvers 
that employ an even greater number of coarsening steps. For this purpose, additional 
production rules for the generation of inter-grid transfer operations, i.e., cocy and 
cgc, must be defined on the respective discretization levels, whereas the general 
structure of the grammar remains unchanged. Since we have shown how it is possi-
ble to generate expressions that uniquely represent different multigrid solvers using 
the formal grammar defined in Table 1, this paper’s remainder focuses on the evalu-
ation and optimization of the algorithms resulting from this representation.

3 � Optimization objectives and search space estimation

The efficiency of an iterative method for solving a given problem is defined by two 
objectives: its convergence rate and compute performance on the target platform. 
This work focuses on the automatic optimization of geometric multigrid solvers on 

CGC(Ih
2h
, ITERATE(COCY(A2h, u

0
2h
, (u0

h
, fh, I

2h
h
(fh − Ahu

0
h
), �)), 1, �))

→ CGC(Ih
2h
, ITERATE((u0

2h
, I2h

h
(fh − Ahu

0
h
), I2h

h
(fh − Ahu

0
h
) − A2hu

0
2h
,

(u0
h
, fh, �, �)), 1, �))

→ CGC(Ih
2h
, (u0

2h
+ 1 ⋅ (I2h

h
(fh − Ahu

0
h
) − A2hu

0
2h
), I2h

h
(fh − Ahu

0
h
), �,

(u0
h
, fh, �, �)))

→ (u0
h
, fh, I

h
2h
⋅ (u0

2h
+ 1 ⋅ (I2h

h
(fh − Ahu

0
h
) − A2hu

0
2h
)), �)

1  The names of these functions represent abbreviations for the terms coarse cycle and coarse-grid cor-
rection, respectively.
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rectangular grids. In this case, we can represent all matrices as one or multiple sten-
cils, which facilitates the application of both predictive models for convergence and 
performance predictions as well as the utilization of techniques for the automatic 
generation and domain-specific optimization of scalable solver implementation. In 
the following, we first give an overview of the possibilities and limitations of pre-
dicting a solver’s convergence and compute performance based on mathematical 
analysis and performance modeling. We then explain how the inherent limitations 
of these techniques can be overcome with a distributed code generation-based solver 
evaluation and optimization using grammar-guided genetic programming. Finally, 
we conclude the description of our optimization approach with implementation 
details about EvoStencils,2 an open source Python tool for the grammar-guided opti-
mization of geometric multigrid methods.

3.1 � Convergence estimation

The quality of an iterative method is first and foremost determined by its conver-
gence rate, i.e., the speed at which the approximation error approaches machine pre-
cision. One iteration of a multigrid solver can be expressed in the general form of 
Eq. (2). By separating all terms that contain the current iterate ui

h
 from the rest of the 

equation, we obtain the following form:

where Ih is the unit matrix. The iteration matrix Mh of the multigrid solver is then 
given by

The spectral radius � of this matrix, as defined by

where �j(Mh) are the eigenvalues of Mh , is essential for the convergence of the 
method. Assume u∗

h
 is the exact solution of the system, the error ei

h
= ui

h
− u∗

h
 in iter-

ation i then satisfies,

where (Mh)
i is the ith power of Mh . The convergence factor of this sequence is the 

limit

(7)ui+1
h

= (Ih − �BhAh)u
i
h
+ �Bhfh,

(8)Mh = (Ih − �BhAh).

(9)�(Mh) = max
1≤j≤n

|�j(Mh)|,

(10)ei
h
= (Mh)

ie0
h
,

2  EvoStencils: https://​github.​com/​jonas-​schmi​tt/​evost​encils.

https://github.com/jonas-schmitt/evostencils
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which is equal to the spectral radius of the iteration matrix Mh [29]. In general, the 
computation of the spectral radius is of complexity O(n3) for Mh ∈ ℝ

n×n [9]. If we, 
however, restrict ourselves to geometric multigrid solvers on rectangular grids, we 
can employ local Fourier analysis (LFA) to obtain an estimate for � [35]. LFA con-
siders the original problem on an infinite grid while the boundary conditions are 
neglected. Recently LFA has been automated through the use of software packages 
[21, 28]. To automatically estimate a multigrid solver’s convergence factor, we first 
need to obtain the iteration matrix. Using the grammar described in the last sec-
tion, we consistently generate expressions of the form of Eq.  (2) from which we 
can extract the iteration matrix by transforming it to the representation formulated 
in Eq. (7). Finally, we can emit the resulting combined expression, representing the 
iteration matrix of a complete multigrid solver for which the spectral radius can be 
estimated using automated local Fourier analysis.

3.2 � Compute performance estimation

A popular yet simple model for estimating an algorithm’s performance on modern 
computer architectures is the roofline model [36]. Based on the operational intensity 
of a compute kernel, i.e., the ratio of floating-point operations to words loaded from 
and stored to memory, it estimates the maximum achievable performance, which is 
either limited by the memory bandwidth or the compute capabilities of the machine. 
The basic roofline formula is given by

where P is the attainable performance, Pmax the peak performance of the machine, 
i.e., the maximum achievable amount of floating-point operations per second, I the 
operational intensity of the kernel, and bs the peak bandwidth, i.e., the number of 
words that can be moved from and to main memory in every second. Each opera-
tion within a geometric multigrid solver either represents a matrix-vector or vector-
vector operation, where each vector corresponds to a regular grid and each matrix to 
one or multiple stencil codes. If we explicitly represent each operation in the form of 
a stencil, the computation of the operational intensity is straightforward.

3.3 � Search space estimation

To find the optimal geometric multigrid solver for a specific problem, the struc-
ture and size of the search space dictate what types of optimization methods can be 
applied. With a sufficiently small search space, one could attempt to enumerate all 
possible solutions. This approach’s infeasibility becomes apparent when looking at 
the grammar in Table 1. Assume our goal is to find a multigrid solver that operates 

(11)� = lim
i→∞

⎛⎜⎜⎝

���eih
���

���e0h
���

⎞⎟⎟⎠

1∕i

,

(12)P = min(Pmax, I ⋅ bs),
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on three levels, but the only allowed operation on the coarsest level is applying a 
direct solver. Now assume we want to evaluate all solvers that perform at least one 
but at most six smoothing steps on each level, whereby in each step, we can choose 
a different smoother from four alternatives, each of them available with or without 
a red-black partitioning of the computation. Moreover, we require that a coarse-grid 
correction is always performed before smoothing and that the number of coarse-grid 
corrections never exceeds the number of smoothing steps. Consequently, for each 
step of our multigrid solver, we must choose from 4 = 22 different smoothers while 
we further need to decide if we want to apply a red-black partitioning and if we want 
to perform a coarse-grid correction beforehand, which results in a total number of 
24 choices. Since we also want to consider all possible configurations that perform 
more than one but less than six smoothing steps on each level, the size of the search 
space is approximately 

∑12

k=2
24k ≈ 3 ⋅ 1014 . Consequently, we have to consider 

3 ⋅ 1014 alternatives that all need to be evaluated for both objectives. If we assume 
that evaluating a particular solver for both objectives takes on average ten millisec-
onds on a multi-core CPU, even a supercomputer consisting of one million such pro-
cessors would require more than 30 days to evaluate all possible alternatives. This 
number will be even higher in practice, especially if we consider more levels and 
configuration options, which renders a brute-force approach practically impossible.

Note that in [32] we have treated the choice of relaxation factors � as an addi-
tional continuous optimization problem, while within the construction of multigrid 
solver expressions, each relaxation factor has been first fixed to a default value of 
1. However, if it is possible to predict the method’s convergence factor accurately, 
it is beneficial to target both optimization problems at once. The reason for this is 
that certain combinations of smoothers and coarse-grid corrections only lead to a 
converging solver in combination with over- or underrelaxation, i.e., the choice of 
a relaxation factor smaller or larger than one, respectively. For instance, the Jacobi 
method often only represents an efficient smoother when underrelaxation is used 
[34]. Consequently, considering the choice of relaxation factors as a separate opti-
mization problem comprises the risk of a premature eviction of solver components 
that require over- or underrelaxation for their functioning. In contrast to [32], we, 
therefore, choose each relaxation factor that occurs within one of the productions in 
Table 1a randomly from an evenly-spaced interval, which increases the size of the 
search space even further.

4 � Grammar‑guided evolutionary search method

If the search space is too large to be directly enumerated, a remedy is to use heu-
ristics to search efficiently through the space of possible solutions and still find the 
global or at least a local optimum. Evolutionary algorithms are a class of search 
heuristics inspired by the principle of natural evolution that have been successfully 
applied to numerous domains [24]. These methods have in common that they evolve 
a population of solutions (called individuals) through the iterative application of so-
called genetic operators. The order and probability of application of each operation 
can be varied, and different choices have been suggested for different optimization 
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problems [1]. The exact implementation of each genetic operator depends on the 
problem class, i.e., the solution’s structure. Our goal is to find the list of produc-
tions that, according to the context-free grammar shown in Table 1, leads to the opti-
mal multigrid solver. The class of evolutionary algorithms that optimize expressions 
according to formal grammars is summarized under the term grammar-guided (or 
grammar-based) genetic programming (GGGP) [26]. In principle, our goal is to con-
struct a solver with minimal execution time for reducing the approximation error of 
a given problem down to the required tolerance. While in [32] we could only predict 
this metric, a distributed evaluation of the considered solvers enables us to measure 
it directly.

4.1 � Code generation and parallel evaluation

Even though the application of predictive models to estimate the convergence speed 
and compute performance of a grammatically represented solver has several advan-
tages, the experiments performed in [32] indicate that, in practice, this approach 
does not consistently achieve sufficient accuracy for identifying solvers that out-
perform hand-crafted methods. An alternative approach is to employ code genera-
tion to automatically generate the optimized implementation of a solver, which can 
be executed on a modern computer architecture to extract all relevant performance 
metrics. For this purpose, we employ the ExaStencils3 code generation framework, 
which was specifically designed for the generation of geometric multigrid imple-
mentations that run on parallel and distributed systems [25]. First, we transform the 
evolved multigrid expression to an algorithmic representation, which is then emit-
ted in the form of a specification in ExaStencils’ domain-specific language (DSL). 
Based on this representation the framework generates a C++ implementation of the 
solver which we finally run on a representative problem instance to measure both its 
total execution time and defect reduction factor

per iteration i on the target platform. We then obtain an approximate for the asymp-
totic convergence factor

where n is the number of iterations until convergence [34]. To cope with computa-
tional expense of performing this process for each solver considered within an opti-
mization, we distribute its execution to multiple compute nodes such that it can be 
performed in parallel. With the availability of sufficient computational resources, we 
can, thus, perform an optimization that is purely based on a direct evaluation of all 

(13)𝜌̃i =

‖‖‖fh − Ahu
i
h

‖‖‖
‖‖‖fh − Ahu

i−1
h

‖‖‖

(14)𝜌̃ =

(
n∏
i=1

𝜌̃i

)1∕n

,

3  ExaStencils: https://​www.​exast​encils.​fau.​de.

https://www.exastencils.fau.de
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considered solvers and, hence, does not rely on the accuracy of a model-based pre-
diction. Furthermore, while the complexity of an LFA-based prediction of a solver’s 
convergence grows exponentially with the number of coarse-grid correction steps, 
the time required for code generation only increases linearly with the number of sub-
expressions within the grammatical representation of a multigrid solver. It is, hence, 
possible to evaluate multigrid solvers that operate on a grid hierarchy with signifi-
cantly larger depth, for instance, a five-grid method.

4.2 � Identification of optimal solvers

The execution time of a solver depends on its performance on the computer archi-
tecture employed for this measurement. Consequently, even though modern parallel 
architectures share certain commonalities, a solver with minimal execution time on 
specific evaluation hardware does not necessarily achieve the same performance on a 
different platform. Since our goal is to find solvers that are efficient for a wide range 
of modern architectures, a single-objective optimization that minimizes the time 
required for solving the given problem on the evaluation platform is insufficient. 
However, suppose we assume that a specific solver achieves faster convergence and 
a lower execution time per iteration than another one on particular hardware. In that 
case, there is a high probability that it will also achieve the same result on similar 
computer architectures. As in [32] we, therefore, treat the construction of an optimal 
multigrid solver as a multi-objective optimization problem, whereas we replace the 
model-based predictions used therein by the measured values of the convergence 
factor and execution time per iteration for a solver on the evaluation platform. To 
evolve a Pareto front of multigrid solvers, we employ a non-dominated sorting-
based selection [7]. We expect that all solvers that turn out to be Pareto-optimal for 
these two objectives on the evaluation platform will also represent efficient solvers 
on similar computer architectures. Consequently, to identify an optimal solver, it is 
sufficient to consider only those contained in the Pareto front obtained with optimi-
zation on the evaluation hardware. If the amount of Pareto-optimal solvers is large, 
we can then further restrict the number of considered solvers, for instance, by sort-
ing them according to their required solving time on the evaluation hardware.

4.3 � Implementation details

To accomplish all steps from the automatic construction of arbitrarily composed 
multigrid solver expressions to the generation of scalable implementations on vari-
ous computer architectures and the identification of Pareto-optimal solvers, a flex-
ible implementation is needed that combines different programming languages and 
libraries under a common framework. For this purpose, we have created EvoSten-
cils, an open source Python tool for the grammar-guided optimization of multigrid 
methods, whose software architecture is shown in Fig. 1. First, our implementation 
extracts all required information about the system matrix, solution field, and asso-
ciated right-hand side from a formulation in ExaStencil’s DSL ExaSlang [30, 31]. 
Based on this information, a context-free grammar similar to Table 1 is automatically 
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constructed based on the GP module of the framework DEAP [13]. Each expression 
tree generated through GGGP is transformed to the graph-based internal representa-
tion of a multigrid solver and then evaluated using code generation, as described in 
Sect. 4.1. Since this functionality is fully encapsulated in Python functions, we can 
use all available optimization algorithms already implemented within DEAP. While 
EvoStencils is implemented in pure Python, the MPI library is accessed through lan-
guage bindings to distribute the process of solver generation and evaluation to mul-
tiple compute nodes. Since MPI is an established standard for parallel computing 
on multi-node systems, this allows us to run EvoStencils on most of today’s clusters 
and supercomputers.

5 � Experiments

In [32] we could already demonstrate the construction of functioning multigrid solv-
ers for a linear elastic boundary value problem based on a prediction-guided optimi-
zation. While we were able to show that our optimization approach is more efficient 
than a random search, the multigrid solvers obtained with it were not able to outper-
form hand-crafted methods for the given test case. In this work, building upon this, 
we aim to overcome these limitations through a distributed code generation-based 
solver evaluation. For consistency, we consider the same linear elastic boundary 
value problem as in [32], but also evaluate our approach on two- and three-dimen-
sional Poisson problems. Poisson’s equation is a well-studied PDE in multigrid 
theory and practice, facilitating the interpretability of the results obtained on these 
problems. Each of the resulting linear systems is considered solved when the initial 
defect is reduced by a factor of 10−12 . In the following, we first present the consid-
ered multigrid solver components and the general configuration of our optimization 
algorithm used within all subsequent experiments.

Fig. 1   Software Architecture of EvoStencils
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5.1 � Optimization settings

Within all optimization runs we choose a step size of h = 1∕2l on each level l, 
whereby we employ a range of l ∈

[
lmax − 4, lmax

]
 . As such our goal is to construct 

an optimal five-grid method for the given problem. We then consider the following 
components for the construction of a multigrid solver: 

Smoothers:	� Decoupled/Collective Jacobi and red-black Gauss-Seidel, 
block Jacobi with rectangular blocks up to a maximum num-
ber of 6 terms.

Restriction:	� Full-weighting restriction.
Prolongation:	� Bilinear interpolation.
Relaxation factors:	� � ∈ (0.1 + 0.05i)36

i=0
= (0.1, 0.15, 0.2,… 1.9)

Coarse grid solver:	� Conjugate gradient method for l = lmax − 4.

 To generate block Jacobi smoothers, we define a splitting A = L + D + U where D 
is a block diagonal matrix, such that we have to solve a local system whose size cor-
responds to the size of a block at every grid point. For a more detailed treatment of 
block relaxation methods, the reader is referred to [34]. The relaxation factor � for 
each smoothing and coarse grid correction step is chosen from the above sequence.

Table  2 contains a summary of the parameters used in our implementation of 
GGGP. To obtain a Pareto front of multigrid expressions, starting with a randomly 
initialized population of 2048 individuals, we perform a multi-objective optimiza-
tion for 250 generations using tree-based GGGP implemented as a (� + �) evolu-
tion strategy [3], where we choose � = � = 256 and employ the non-dominated 
sorting procedure presented in [14] (NSGA-II). Hence in each generation, we cre-
ate � individuals based on an existing population of size � and then select the best 

Table 2   Summary of GGGP configuration parameters

Parameter Value

Evolutionary algorithm type (� + �)

Genetic programming variant Tree-based
Number of objectives 2
Number of generations 250
Initial population size 2048
� 256
� 256
Number of MPI processes 64
Non-dominated sorting procedure [14]
Selection operator [8]
Crossover operator Single-point crossover
Crossover probability 2/3
Mutation operator Random subtree replacement
Probability to mutate a terminal symbol 1/3
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� individuals for the next generation from the combined set. Each individual’s fit-
ness consists of two objectives: the asymptotic convergence factor 𝜌̃ and its execu-
tion time per iteration t both measured using a code generation-based evaluation, 
as described in 4.1. Here, we make use of the following optimization flags of the 
ExaStencils code generator: opt_useAddressPrecalc, opt_loopCarriedCSE and 
opt_vectorize, which enable an automatic address precalculation, common subex-
pression elimination and vectorization, respectively. We also enable the inversion 
of local matrices that occur within certain smoothers during within code genera-
tion by setting the flag experimental_resolveLocalMatSys accordingly. To compile 
the resulting C++ solver, we employ the GCC compiler with version 9.3.0 using 
one OpenMP thread per physical CPU core. We execute each solver three times and 
compute the resulting average for both objectives to reduce the influence of tempera-
ture and manufacturing-based variations in CPU performance.

Individuals are selected for crossover and mutation using a dominance-based 
tournament selection as described in [8]. New individuals are created by either 
crossover with a probability of 2/3, whereby we employ single-point crossover, or 
by mutation, either through replacement of a certain subtree with a new randomly 
created one, with a relative probability of 2/3, or through replacement of a single 
terminal or non-terminal symbol with a randomly chosen alternative. To evaluate 
� = 256 individuals in each generation, we employ 64 MPI processes executed on 
32 nodes of the Meggie Cluster of the Erlangen National High Performance Com-
puting Center (NHR), where each node consists of two sockets, each with ten physi-
cal CPU cores. By pinning each process to the ten cores of a separate socket, only 
four individuals per generation need to be evaluated per process, which reduces the 
required time to run an optimization to less than 24 h in all considered test cases.

5.2 � Poisson’s equation

Poisson’s equation is an elliptic partial differential equation defined by

We consider two different instances of Eq.  (15) with Dirichlet boundary condi-
tions, summarized in Table 3. In both cases, we discretize the Laplace operator ∇2 
with finite differences on a uniform cartesian grid of size h = 1∕lmax , which in two 
dimensions yields the five point stencil

(15)
−∇2u = f in �

u = g on ��.

Table 3   Considered Poisson 
problem instances

Problem 2D Poisson 3D Poisson

� (0, 1)2 (0, 1)3

f (�) �2 cos(�x) − 4�2 sin(2�y) x2 − 0.5y2 − 0.5z2

g(�) cos(�x) − sin(�y) 0
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and in three dimensions the seven point stencil

whereby we choose lmax = 11 in the two-dimensional and lmax = 7 in the three-
dimensional case. The resulting systems of linear equations then consist of 4 190 209 
and 2 048 383 unknowns, respectively.

5.3 � Linear elasticity

Linear elasticity is an essential branch of solid mechanics, characterized as a linear 
relationship between stress and strain, that has numerous applications in engineering 
and material science [18]. We consider a two-dimensional linear elastic boundary 
value problem, formulated in the form of the following system of PDEs, which mod-
els a two-dimensional rectangular body that undergoes an elastic deformation into 
y-direction, as it can be seen in Fig. 2:

(
∇2u

)
i,j
=

1

h2
(ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4ui,j),

(
∇2u

)
i,j,k

=
1

h2
(ui−1,j,k + ui+1,j,k + ui,j−1,k + ui,j+1,k + ui,j,k−1 + ui,j,k+1 − 6ui,j,k),

(16)

(� + �) ⋅

(
�2

�x2
u +

�2

�x�y
v

)
+ �∇2u = 0 in �

(� + �) ⋅

(
�2

�x�y
u +

�2

�y2
v

)
+ �∇2v = 0 in �

u = 0 and v = g on ��

Fig. 2   Visualization of the 
considered linear elastic bound-
ary value problem. A two-
dimensional rectangular body 
undergoes an elastic deforma-
tion into y-direction
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where � = (0, 1)2 , � = 195 , � = 130 and

We discretize Eq. (16) using finite differences on a cartesian grid with a step size 
of h, to obtain the system of linear equations Au = f  with

whereby the differential operators ∇2 , �
2

�x2
 , �

2

�y2
 and �2

�x�y
 are approximated by their dis-

crete counterparts

Similar to the above case, we employ a uniform cartesian grid of size h = 1∕lmax 
with lmax = 10 , such that the resulting system of linear equations contains 2 093 058 
unknowns.

6 � Results and discussion

To evaluate whether our optimization approach can consistently construct effi-
cient multigrid solvers, we have performed ten independent experiments for each 
of the three considered cases. The Figs.  3,  4 and  5 show the mean and stand-
ard deviation of the current optima for both objectives during the optimization 
in all of the experiments performed. First, the question arises whether our algo-
rithm can effectively minimize the values of both objective functions during the 
optimization. By investigating Figs.  3a,  4a and  5a it becomes apparent that, in 
general, our algorithm is able to drastically reduce the minimum convergence 
factor within the first 100 generations. The same is the case for the second objec-
tive, the execution time per iteration of a solver. However, as Figs. 3b, 4b and 5b 
shows, the majority of decrease is already achieved within the first 50 genera-
tions of the optimization. In general, we can observe that in all three cases, the 
optimization of the convergence factor requires more generations, and significant 

g(x, y) = 0.4 (1 − x) xy sin(�x).

A =

(
(� + �)

�2

�x2
+ �∇2 (� + �)

�2

�x�y

(� + �)
�2

�x�y
(� + �)

�2

�y2
+ �∇2

)
,

u =

(
u

v

)
, f =

(
fu
fv

)
=

(
0

0

)
,

(
∇2u

)
i,j
=

1

h2
(ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4ui,j)(

�2

�x2
u

)

i,j

=
1

h2
(ui−1,j + ui+1,j − 2ui,j)

(
�2

�y2
u

)

i,j

=
1

h2
(ui,j−1 + ui,j+1 − 2ui,j)

(
�2

�x�y
u

)

i,j

=
1

4h2
(ui+1,j+1 + ui−1,j−1 − ui−1,j+1 − ui+1,j−1).
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reductions still occur beyond 100 generations. Furthermore, by investigating the 
range of values achieved for the first objective, we can assess the difficulty of the 
underlying problem. While the execution time per iteration is solely determined 
by the computational complexity of the individual operations employed within a 
solver, for an easier problem, faster convergence, and therefore a smaller conver-
gence factor can be attained. As known from multigrid theory [34], the two- and 
three-dimensional Poisson’s equation represent relatively easy problems for the 

(a) (b)

Fig. 3   2D Poisson–Mean and standard deviation of the minimum objective function values during the 
optimization

(a) (b)

Fig. 4   3D Poisson–Mean and standard deviation of the minimum objective function values during the 
optimization
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construction of multigrid solvers, and hence the mean optimum convergence fac-
tor falls below a value of 0.005. For the linear elastic boundary value problem, 
both the mean and standard deviation is higher. However, on average, we can still 
construct multigrid methods that achieve a convergence factor of 0.01 or less, 
which represents an exceptionally fast convergence. Finally, we can conclude 

(a) (b)

Fig. 5   2D Linear Elasticity–Mean and standard deviation of the minimum objective function values dur-
ing the optimization

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Convergence Factor

40

60

80

100

E
xe
cu

ti
on

T
im

e
(m

s)

Fig. 6   2D Poisson–Pareto distribution at the end of all ten experiments. The red line denotes the com-
bined Pareto front
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Fig. 7   3D Poisson–Pareto distribution at the end of all ten experiments. The red line denotes the com-
bined Pareto front (Color figure online)
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Fig. 8   2D Linear Elasticity–Pareto distribution at the end of all ten experiments. The red line denotes the 
combined Pareto front (Color figure online)
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that our optimization approach is able to consistently find satisfactory minima for 
both objectives for all three problems considered.

6.1 � Pareto distribution analysis

To further assess the outcome of our multi-objective optimization, the Figs.  6,  7 
and 8 show the combined Pareto distributions of all ten experiments. Here, the red 
curve represents the resulting Pareto front, while the combined density of the data 
points indicates where the majority of the solutions is located. In all three cases, 
the objective function values of most individuals are close to the combined Pareto 
front, whereby the number of individuals is overall higher in the center of the front, 
i.e., the lower left part of the objective function space. In principle, the solutions 
located there represent a compromise between the two objectives and are, hence, 
the most promising solver candidates. In Fig. 6 the number of individuals that are 
distinctly located outside the Pareto front is slightly higher than in the other two 
cases, although, compared to the complete objective function space, the minimal 
distance from these outliers to the next point located on the combined Pareto front 
is still comparably small. In general, we can conclude that, under the given condi-
tions, our optimization algorithm can consistently evolve a similar Pareto front in 
the majority of the performed experiments for all three considered problems. How-
ever, it must be noted that the employed population size is not sufficient to evolve a 
set of Pareto-optimal candidate solutions that are evenly distributed over the objec-
tive space, which can be attributed to the vast size of the search space as discussed 
in Sect. 3.3. While our approach’s scalability, in principle, supports the evaluation 
of a significantly larger number of individuals than considered here through the use 
of distributed computing capabilities, the availability of computational resources is 
limited. Although, it can be expected that future architectural advances and perfor-
mance improvements will enable the application of our approach to larger popula-
tion sizes and problems with higher computational requirements.

6.2 � Comparison with reference methods

Finally, since our goal is to automatically construct multigrid solvers that are 
competitive with renowned methods developed within decades of mathematical 
research, we evaluate their efficiency on the three test problems on two differ-
ent evaluation platforms and compare them with several hand-crafted multigrid 
cycles. We consider two multi-core CPU architectures for evaluation: Intel Xeon 
E5-2630v4 (Broadwell) and Intel Xeon 2660v2 (Ivy Bridge). In both cases, we 
execute each solver on a single compute node, consisting of two sockets, with 
a total number of 20 physical cores. So far, we have only considered a single 
problem size for each test problem, i.e. lmax = 11 for the two-dimensional, lmax = 7 
for the three-dimensional Poisson equation and lmax = 10 for the linear elastic 
boundary value problem. However, an essential property of multigrid methods 
is to achieve the same degree of efficiency on larger problem instances. For this 
purpose, we also evaluate each solver on a larger instance of the respective test 
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problem. As a baseline for multigrid solver efficiency, we consider several differ-
ent reference methods. Besides full multigrid, which we do not consider in this 
work, V-cycles with overrelaxed red-black Gauss-Seidel smoothing represent 

Table 4   2D Poisson—Measured 
number of iterations and solving 
times of the reference methods 
on 20 cores and two sockets

l
max

Iterations Broadwell (ms) Ivy Bridge 
(ms)

11 12 11 12 11 12

V(1, 0) 21 21 969 2810 879 2652
V(1, 1) 9 9 461 1359 411 1287
V(2, 1) 7 7 377 1137 334 1087
V(2, 2) 6 6 344 1056 302 1007
V(3, 2) 6 6 378 1160 324 1112
V(3, 3) 6 6 397 1255 344 1201
V(4, 3) 6 6 425 1350 366 1306
V(4, 4) 6 6 448 1449 383 1409

Table 5   3D Poisson - Measured 
number of iterations and solving 
times of the reference methods 
on 20 cores and two sockets

l
max

Iterations Broadwell (ms) Ivy Bridge (ms)

7 8 7 8 7 8

V(1, 0) 29 30 121.3 1221 134.6 1470
V(1, 1) 13 13 70.8 682 79.9 838
V(2, 1) 9 9 59.0 582 66.2 708
V(2, 2) 7 7 54.6 531 65.4 654
V(3, 2) 7 7 61.9 610 74.6 757
V(3, 3) 7 7 72.6 690 86.6 857
V(4, 3) 7 6 77.9 656 87.3 825
V(4, 4) 6 6 73.2 725 82.5 906

Table 6   2D Linear Elasticity - 
Measured number of iterations 
and solving times of the 
reference methods on 20 cores 
and two sockets

l
max

Iterations Broadwell (ms) Ivy Bridge 
(ms)

10 11 10 11 10 11

V(1, 0) 32 31 872 4306 828 4128
V(1, 1) 15 15 439 2118 418 2075
V(2, 1) 10 10 318 1529 312 1529
V(2, 2) 9 9 314 1449 316 1476
V(3, 2) 8 8 297 1368 304 1388
V(3, 3) 7 7 283 1247 288 1288
V(4, 3) 7 7 293 1320 313 1397
V(4, 4) 7 7 311 1378 334 1471
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the most efficient multigrid methods for solving the discretized Poisson’s equa-
tion [34]. As we have already investigated in [32], the same is also true for the 
considered linear elastic boundary value problem. In all three cases, we choose 
an optimal relaxation factor for the smoother from the same interval considered 
within the optimization, which leads to � = 1.15 for the two-dimensional Poisson 
equation and � = 1.25 both for the three-dimensional Poisson equation and the 
linear elastic boundary value problem. The Tables 4, 5 and 6 contain the required 
number of iterations and solving times to achieve the desired defect reduction for 
the three test problems with the two considered problem sizes. For instance, the 
abbreviation V(2, 1) denotes a V-cycle with two pre- and one post-smoothing step 
with red-black Gauss-Seidel. Note that in all three cases, the number of itera-
tions stays almost constant for both problem sizes. In general, we can identify the 
V(2, 2)-cycle as the most efficient solver both for the two- and three-dimensional 
Poisson equation and the V(3, 3)-cycle as the most efficient solver for the lin-
ear elastic boundary value problem, which is the case for both considered CPU 
architectures.

As the last step, we evaluate the solvers constructed with our optimization 
approach under the same conditions. Since the number of individuals contained 
in the Pareto front varies and can potentially be too large for a direct evaluation of 
all contained individuals, we heuristically identify the 50 most promising solvers. 
For this purpose, we sort the Pareto front according to the metric

where � = 10−12 is the desired defect reduction factor and 𝜌̃ and t the objective func-
tion values obtained within the optimization. The resulting list of solvers is then 
evaluated on the 20 cores of a compute node with Broadwell architecture to identify 
the one with the lowest solving time, which is then considered for all subsequent 

(17)T𝜀 =
log(𝜀)

log(𝜌̃)
⋅ t,

Table 7   2D Poisson - Measured 
number of iterations and solving 
times of the evolved multigrid 
methods on 20 cores and two 
sockets

l
max

Iterations Broadwell (ms) Ivy Bridge 
(ms)

11 12 11 12 11 12

ES-1 5 5 338 1064 304 1055
ES-2 6 6 371 1163 330 1133
ES-3 5 5 311 988 279 976
ES-4 6 6 380 1188 338 1153
ES-5 5 5 312 978 279 963
ES-6 5 5 349 1123 309 1106
ES-7 6 6 354 1096 320 1068
ES-8 6 6 347 1081 310 1056
ES-9 6 6 353 1079 313 1045
ES-10 5 5 310 960 275 934
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evaluations on both CPU architectures. While we could also identify the most prom-
ising solver on the Ivy Bridge CPU, we focus on Broadwell, as it represents a more 
recent design. The Tables  7, 8 and 9 contain the resulting measurements for the 
evolved solvers ES-[1-10], which have been chosen from the Pareto front at the end 
of each optimization run with the above heuristic. In general, all constructed solv-
ers represent functioning multigrid methods for both considered problem sizes in 
all three investigated cases. However, the achieved solving time differs between the 
individual experiments, which is especially the case for the three-dimensional Pois-
son problems, where our approach cannot consistently obtain solvers with the same 
degree of efficiency as in the other two cases. If we compare the average solving 
times achieved in all three cases, it becomes apparent that for the three-dimensional 
Poisson equation with lmax = 7 the difference between the individual solvers is in the 

Table 8   3D Poisson - Measured 
number of iterations and solving 
times of the evolved multigrid 
methods on 20 cores and two 
sockets

l
max

Iterations Broadwell (ms) Ivy Bridge 
(ms)

7 8 7 8 7 8

ES-1 10 11 55.3 577 70.0 704
ES-2 8 9 57.2 578 64.3 716
ES-3 8 9 59.0 671 65.3 824
ES-4 8 9 54.6 576 62.7 710
ES-5 8 10 54.6 641 60.9 789
ES-6 9 10 59.4 716 67.1 891
ES-7 6 8 56.2 702 70.9 880
ES-8 5 5 56.7 589 74.0 724
ES-9 10 10 61.0 568 66.3 681
ES-10 10 11 55.4 581 61.3 705

Table 9   2D Linear Elasticity - 
Measured number of iterations 
and solving times of the evolved 
multigrid methods on 20 cores 
and two sockets

l
max

Iterations Broadwell (ms) Ivy Bridge 
(ms)

10 11 10 11 10 11

ES-1 6 6 234 1117 235 1137
ES-2 6 6 216 1033 211 1035
ES-3 7 7 258 1225 259 1231
ES-4 6 6 226 1077 219 1093
ES-5 6 6 235 1121 229 1139
ES-6 6 6 220 1083 213 1093
ES-7 7 7 238 1191 236 1186
ES-8 6 6 217 1037 223 1039
ES-9 6 6 224 1039 222 1058
ES-10 7 7 243 1188 238 1188
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order of magnitude of a few milliseconds. Therefore, the use of this problem size 
within the optimization hampers the identification of Pareto-optimal solvers since it 
is impossible to eliminate the influence of CPU performance variations within our 
code generation-based evaluation. For three dimensional problems the number of 
unknowns increases cubically with the problem size n = 1∕h − 1 = 2l − 1 , which 
means that for lmax = 8 we have to solve a system with 16 581 375 unknowns for 
the evaluation of each solver within the optimization. Since the cost of performing 
code generation also increases for three-dimensional problems, so far, we could not 
consider larger instances within our approach. However, in the majority of experi-
ments, the constructed solvers still represent efficient methods for both considered 
problem sizes of the three-dimensional Poisson equation, whereby the most efficient 
solver for lmax = 8 , ES-9, achieves a faster solving time than the second-best ref-
erence method, the V(2, 1)-cycle, on both CPU architectures. In contrast, for both 
two-dimensional PDEs, our optimization approach manages to construct solvers that 
are more efficient than the best reference method for both problem sizes and CPU 
architectures. For the two-dimensional Poisson equation, in three of the ten experi-
ments, ES-3, ES-5, and ES-10, we were able to construct solvers that achieve con-
sistently faster solving times than the V(2, 2)-cycle, whereby the achieved speedup 
ranges from a few percent up to almost ten. The two-dimensional Poisson equation 
has been thoroughly studied and represents a standard test case for the application 
of multigrid. Therefore, the fully automatic construction of solvers that outperform 
multigrid cycles developed in decades of mathematical research for different prob-
lem sizes already represents a significant achievement. Even beyond that, we can 
construct consistently faster multigrid solvers for the considered two-dimensional 
linear elastic boundary value problem than the most efficient reference method, 
the V(3, 3)-cycle, in each of the ten experiments. For instance, the constructed 
solver, ES-2, solves the given problem 17 % faster for lmax = 11 and 23 % faster for 
lmax = 10 than the mentioned V-cycle on the Broadwell evaluation platform, while 
even slightly higher speedups can be achieved on Ivy Bridge.

7 � Conclusion

In this work, we have laid the foundations for the automatic construction of effi-
cient geometric multigrid solvers based on a tailored context-free grammar and 
the use of evolutionary search methods. It, therefore, opens up the possibility of 
applying the field of grammar-guided genetic programming (GGGP) to the opti-
mization of multigrid methods. Furthermore, while in [32] we could already 
demonstrate that this approach is capable of constructing functioning multigrid 
solvers for a linear elastic boundary value problem, the outcome was still limited 
by the accuracy of the models used for the prediction of a solver’s efficiency. In 
this work, we have been able to overcome this limitation through a distributed 
code generation-based solver evaluation and, hence, could demonstrate the con-
struction of multigrid solvers that are able to outperform efficient reference meth-
ods both in the previously considered linear elastic boundary value problem, as 
well as a two-dimensional Poisson problem. While we could not achieve the same 
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degree of efficiency for a three-dimensional Poisson problem, the constructed 
solvers still represent functioning and efficient multigrid methods. In addition, 
for the first time, we could also demonstrate that the solvers constructed through 
GGGP can achieve similar performance for a larger instance of the investigated 
problems. Achieving generalization, i.e., designing an algorithm that is not only 
able to solve a single problem instance but can deal with an entire class of prob-
lems, is a fundamental goal of artificial intelligence-based algorithm design. 
For many PDE-based applications, for instance, saddle point problems [2], the 
construction of a general and efficient multigrid solver has not yet been demon-
strated, which leaves room for a wide range of extensions of the approach pre-
sented in this work. Furthermore, in this and our previous work, we have only 
considered classical geometric multigrid methods based on the original formula-
tion by Brandt [4]. However, the mathematical properties of particular problems 
prohibit the use of such a method [11] but require alternative approaches to con-
struct an efficient multigrid-based numerical solution method, for example, using 
multigrid as a preconditioner to accelerate the convergence of Krylov subspace 
methods [10, 34]. Also, many PDEs, such as the Navier-Stokes equation, are sub-
stantially nonlinear and, hence, require an adaption of the classical multigrid for-
mulation to deal with the occurrence of these nonlinearities, for instance, in the 
form of Newton-multigrid methods or the full-approximation scheme (FAS) [5, 
34]. Finally, a different aspect, which has been already mentioned in [32], is com-
bining our approach with the complementary branch of machine learning-based 
methods by incorporating optimized prolongation [15, 22] and smoothing opera-
tors [20] into our formal grammar.
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