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Abstract Of concern in the development of oil fields is
the problem of determining the optimal locations of wells
and the optimal controls to place on the wells. Extraction
of hydrocarbon resources from petroleum reservoirs in a
cost-effective manner requires that the producers and injec-
tors be placed at optimal locations and that optimal controls
be imposed on the wells. While the optimization of well
locations and well controls plays an important role in ensur-
ing that the net present value of the project is maximized,
optimization of other factors such as well type and num-
ber of wells also plays important roles in increasing the
profitability of investments. Until very recently, improving
the net worth of hydrocarbon assets has been focused pri-
marily on optimizing the well locations or well controls,
mostly manually. In recent times, automatic optimization
using either gradient-based algorithms or stochastic (global)
optimization algorithms has become increasingly popular. A
well-control zonation (WCZ) approach to estimating opti-
mal well locations, well rates, well type, and well number is
proposed. Our approach uses a set of well coordinates and a
set of well-control variables as the optimization parameters.
However, one of the well-control variables has its search
range extended to cover three parts, one part denoting the
region where the well is an injector, a second part denoting
the region where there is no well, and a third part denot-
ing the region where the well is a producer. By this, the
optimization algorithm is able to match every member in
the set of well coordinates to three possibilities within the
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search space of well controls: an injector, a no-well situa-
tion, or a producer. The optimization was performed using
differential evolution, and two sample applications were
presented to show the effectiveness of the method. Results
obtained show that the method is able to reduce the num-
ber of optimization variables needed and also to identify
simultaneously, optimal well locations, optimal well con-
trols, optimal well type, and the optimum number of wells.
Also, comparison of results with the mixed integer nonlin-
ear linear programming (MINLP) approach shows that the
WCZ approach mostly outperformed the MINLP approach.

Keywords Well placement optimization · Generalized
field development optimization · Well control zonation

1 Introduction

In oil field management, well locations and well-control
specifications can be major deciding factors in the prof-
itability of a waterflood project. As a result, these param-
eters are considered central to any waterflood optimization
process. Traditionally, optimization of well placement and
rates has been done using quality maps that indicate which
regions of the reservoir have not been properly swept by
the injected water [8, 20, 31]. While this method has been
useful to some extent, it cannot properly place wells in loca-
tions that take advantage of long-term high oil saturation
or respond to the dynamics of reservoir fluid flow over a
long period of time. Thus, simply placing wells and adjust-
ing well controls based on saturation or quality maps cannot
guarantee long-term profitability of the project. Automatic
well placement and rate optimization has been introduced to
help optimize the placement and adjustment of well controls
over the entire period of waterflood. A good amount of work
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has been done on optimization of well locations using local
[17, 24, 35, 39, 41] and global [1, 7, 9, 10, 12–16, 22, 23, 25,
26, 32, 33, 40, 42] optimization methods. The application
of global optimization algorithms to solve the well place-
ment problem is increasingly becoming more popular due
to its flexibility, ease of formulation, and wide applicability.
Some works on optimizing only well rates using gradient-
based methods have also appeared in the literature [2, 3, 19,
21, 29, 36]. However, a gradient-based strategy is local and
would result in local optimum in the vicinity of the initial
guess. Also, in situations where the gradient of the objec-
tive function cannot be obtained, gradient-based strategies
would fail while global (stochastic) optimization algorithms
would still work. Asadollahi et al. [4] proposed a workflow
strategy that would significantly reduce the number of opti-
mization parameters. However, such strategy relies on the
enforcement of a voidage replacement ratio (VRR) of unity.
Such enforcement, as shown in [7], may lead to significant
loss of revenue. Optimizing the NPV, while maintaining an
acceptable level of VRR, was proposed as a better alterna-
tive. Lien et al. [30] presented a multiscale regularization
method for optimizing well controls in waterflood projects.
The authors used the piecewise-constant function to limit
the number of times the well controls are changed (fixed
cycles) and placed wells into groups, with wells in the
same group operated at the same control. At each cycle,
the grouping is refined so that fewer wells are kept in each
group as the iteration proceeded.

Recently, interest in well-control optimization and in the
joint optimization of both well placement and well-control
[11, 18, 24, 28] is on the rise. Joint optimization of both
well placement and well-control is expected to provide bet-
ter results than the exclusive optimization of either of these
two. A recent paper [28], which initially motivated this
work, addresses this issue to some extent. Isebor et al. [28]
presented a paper on generalized field development opti-
mization in which the authors included in the set of design
variables, not only well placement and well control but also
the number of wells and well type, in a joint optimiza-
tion process. The authors posed the optimization problem
as a mixed integer nonlinear program (MINLP) and pro-
posed different methods to solve the problem. While their
approach is expected to provide reasonably good solutions
(for small-to-medium scale problems), the approach makes
use of an additional variable per well that would otherwise
be unnecessary. Also, this additional variable is an integer
variable that represents the well type (an injector, a no-well
situation or a producer), making the problem an MINLP
problem requiring special solution methods.

We propose to estimate simultaneously, placement, con-
trol, type, and number of wells by using only well-control
and well location variables as the optimization parameters.
We consider only vertical wells and used the CWPO 1

method of Awotunde and Naranjo [6] to enforce minimum
well spacing constraints. Also, we define two sets of param-
eters, one set for the well locations in the (x, y) plane and
the other set for the well controls. The search range of the
set of well controls is subdivided into three, one part indi-
cating the presence of an injector, one part indicating the
presence of a producer, and the third part indicating no well.
The approach proves very useful in optimizing well place-
ment, well rate, well type, and number of wells without
substantially increasing the dimension of the problem space.

2 Objective function

Net present value (NPV) is used as the objective function
in this work. NPV is the difference between the discounted
cash inflow and the discounted cash outflow of a project.
NPV is useful in measuring the profitability of an invest-
ment or in comparing between several mutually exclusive
alternative projects. In waterflood projects, the NPV is an
important metric in analyzing and gauging the profitability
of different alternative scenarios of waterflood. Of impor-
tance in a waterflood project are the well controls and well
locations. Consequently, these parameters are considered to
be of primary interest in waterflood optimization. Differ-
ent configurations of wells and/or different specifications
of well-control will yield different NPVs. Thus, the NPV
becomes a critical yardstick to assess the viability of the
different waterflood scenarios and come up with the best
alternative. In a well rate optimization procedure, the NPV
serves as the objective function. The net present value of a
waterflood project can be defined as

NPV (r, T ) =
∫ T

t0

(1 + r)−tR (t) dt, (1)

where R (t0) is the initial capital outlay, t0 is the time of
start of investment (often zero) and R (t) is the net cash
flow at any other time t , T is the total time of waterflood
project (investment period), and r is the discount rate. In a
waterflood project, the initial capital expenditure is made up
mainly of facility installation costs and the costs of drilling
the injectors and producers. In the present work, all injectors
and producers are assumed to be drilled at the beginning of
the project. Thus, the capital expense, R (t0) is given by

R (t0) = Cfacility + npCprod + niCinj, (2)

where Cfacility, Cprod, and Cinj are the cost of facility instal-
lation, the cost drilling a producer, and the cost of drilling an
injector, respectively. ni and np denote the number of injec-
tors and the number of producers, respectively. The rate of
flow of net cash R (t) is the total revenue less expenditure
per unit accounting time t . R (t) can be described by

R (t) = Rvn (t) − Exp (t) . (3)



Comput Geosci (2016) 20:213–230 215

In Eq. 3, Rvn is the revenue given by

Rvn (t) = P o (t) q
prod
o (t) + P g (t) q

prod
g (t) , (4)

where q
prod
o and q

prod
g are the rates of oil and gas production,

respectively, and P o and P g are the unit prices of oil and gas
at time t . As indicated in Eq. 4, qprod

o , qprod
g , P o, and P g can

vary with time. Exp is the recurring expenditure defined as

Exp (t) = C
prod
w (t) q

prod
w (t) + C

inj
w (t) q

inj
w (t)

+ ni + np

Nwells,max
Cop (t) q

prod
fluid (t) , (5)

where q
prod
fluid is the combined rate of fluid production in

stb/day, C
prod
w is the unit cost of treating and disposing the

water produced, C
inj
w is the unit cost of acquiring, treat-

ing, and injecting water, and Cop is the unit operating cost

(excludingC
prod
w andC

inj
w ) per barrel of fluid produced, all at

time t . We note that the numbers of producers and injectors,
ni and np, vary from one solution to the other, as esti-
mated by a candidate solution at any particular iteration in
the optimization process.Nwells,max is the maximum number
of wells the user has declared possible in the optimization
program.

3 Generalized field development optimization

We define two sets of parameters, �αloc and �αcontr, represent-
ing well location and well-control variables, respectively.
The first set �αloc ∈ D, comprises the (x, y) coordinates
of the wells to be placed in the reservoir while the second
set �αcontr ∈ E, consists of the parameters describing the
primary controls in the wells. �αcontr can be further catego-
rized into �α0

contr and �α1
contr. �α0

contr contains a set of variables
in �αcontr that determine the well type while �α1

contr is the
set of the remaining variables that give no indication of
the well type. The length of �αloc is twice the maximum
number of wells permissible because each well (vertical
well) has two coordinates. The length of the vector �αcontr

depends on the approach adopted. For example, if the con-
stant rate approach is used, then the length of �αcontr equals
the maximum number of wells considered in the optimiza-
tion scheme because only one control (an average value)
is specified for each well throughout the entire waterflood
period. Other approaches will have more parameters in
�αcontr. Thus, the optimization problem can be stated as

min
�α

� (�α) (6)

such that

�f (�α) = 0, (7)

�g (�α) ≤ 0, (8)

�αloc ∈ D, �α0
contr ∈ E0, and �α1

contr ∈ E1

where � is the objective function,

D =
{
�αloc ∈ R

2Nwells,max : lloc,i ≤ αloc,i ≤ uloc,i∀i

= 1, 2, ..., 2Nwells,max
}
, (9)

E0 =
{
�α0
contr ∈ R

Nwells,max : l0contr,j ≤ α0
contr,j ≤ u0contr,j∀j

= 1, 2, ..., Nwells,max
}
, (10)

and

E1=
{
�α1
contr,j ∈ R

(Nwcvar−1) : �l1contr,j ≤ �α1
contr,j ≤ �u1contr,j∀j

= 1, 2, ..., Nwells,max
}
. (11)

�f (�α) = 0 comprises the set of equality constraints and
�g (�α) ≤ 0 are the set of inequality constraints. In Eqs.
9 to 11, l and u represent the lower and upper bounds,
respectively, and Nwcvar is the number of unknown well-
control variables per well. In the present work, no equality
constraints were placed on the optimization problem. How-
ever, inequality constraints enforcing minimum well spac-
ing [6] were imposed on the optimization problem. The
method described here is applied to the piecewise-constant
approach. In the piecewise constant approach, the well-
control is held for some period of time before it is altered.
Thus, the piecewise-constant (PWC) approach is made up
of several time periods, each with its own constant con-
trol. The remainder of the discussion will focus on the
implementation of the algorithm for the piecewise-constant
approach.

3.1 Procedure/implementation for rate control
in the piecewise constant approach

First, we describe the optimization procedure for rate con-
trol in the piecewise constant (PWC) approach and then
extend the method to cases in which bottomehole pressure
(BHP) is specified as the primary control. The two vec-
tors, �αloc and �αcontr, are combined into a single vector �α =[ �αloc

�αcontr

]
to form the vector of design variables. The param-

eters in �αcontr are the actual well rates. In the PWC approach,
the length of �α is Nwells,max

(
Ncyc + 2

)
where Nwells,max is

the maximum number of wells allowed and Ncyc is the num-
ber of cycles considered. In this work, a cycle is a period
of time during which the well controls in all wells are held
constant. Thus, for each well, we need to estimate only one
well control variable per cycle. Any well declared has the
possibility of existing, but may not necessarily be placed in
the reservoir. To jointly optimize well rates, well placement,
well type, and number of wells, we first identify suitable
search ranges for well locations and controls. To implement
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the procedure on the piecewise-constant approach, we use
the estimated values of well controls in all wells only at the
first cycle to determine the well type. That is, the well con-
trols estimated at the first cycle belongs to the set E0 while
the well controls estimated at other cycles belong to the set
E1. Therefore, the maximum limit of the rate is extended to
cover the positive and negative portions of the real line only
in the first cycle. The search range E0 is then partitioned
into three, with the first part completely on the negative real
line, the second part covers some part of the negative real
line and some part of the positive real line, and the third part
is entirely on the positive real line. That is, E0 becomes

E0
ext =

{
�α0
contr ∈ R

Nwells,max : −�u0contr + �l0,−contr ≤ �α0
contr

≤ �u0contr + �l0,+contr

}
, (12)

which is subdivided into three ranges E−
ext, E−+

ext , and E+
ext

for �α0
contr in E0

ext. These ranges are defined as

E−
ext =

[
−�u0contr + �l0,−contr,

�l0,−contr

)
, (13)

E−+
ext =

[�l0,−contr,
�l0,+contr

]
, (14)

and

E+
ext =

(�l0,+contr, �u0contr + �l0,+contr

]
, (15)

respectively. Every component α0
contr,j (well control) in E0

ext
corresponds to two components (a pair of well coordinates)
in D. During the search for optimum well configuration and
optimum well control, if α0

contr,j falls in E+
ext, then a well

exists at the corresponding location in D and it is an injec-
tor. If α0

contr,j falls in E−
ext, a well exists and it is a producer.

However, if α0
contr,j falls in E−+

ext , no well exists and the
corresponding well location (pair of coordinates) in D is
redundant. We term this procedure a well-control zonation
(WCZ) approach. We note that the lower bound �l0contr of the
original search range (the range before extension to the neg-
ative real line) has been replaced with �l0,−contr and �l0,+contr. These
values must be specified by the user. In fact, the user can
specify �l0,−contr = −�l0,+contr, as done throughout the remainder of
this work. The interval between �l0,−contr and �l0,+contr is termed the
no-well zone. From Eqs. 12 to 15, it is clear that the search
is conducted between−�u0contr+�l0,−contr and �u0contr+�l0,+contr. Thus,
if an estimated rate falls in E−

ext, the actual rate is obtained
by subtracting l

0,−
contr from the estimated rate. Also, if an esti-

mate falls in E+
ext, the actual rate is obtained by subtracting

l
0,+
contr from that estimate. While the difference between �l0,−contr

and �l0,+contr can be zero so that the two values coincide, results
in this work show that this situation is ineffective and would
result in suboptimal well output.

Notice that E1 contains only positive values of rates from
zero to the maximum allowed rate since no-extension of
the interval to the negative side is performed. For example,

if the well rates in a well located in a reservoir undergo-
ing waterflooding in which the project duration has been
divided into six cycles are estimated to be −800, 600, 700,
400, 900, and 500 stb/day, respectively for the six cycles.
Then, the well will be a producer producing 800 stb/day dur-
ing the first cycle and producing at the other specified rates
at their corresponding cycles. If the estimated rate for the
first cycle had been 800 stb/day, then the well would be an
injector injecting water at 800 stb/day at the first cycle and
injecting at the other specified rates at their corresponding
cycles. If the specified rate falls within the no-well zone, i.e.,
between l

0,−
contr and l

0,+
contr, then no well will be placed at the

corresponding location. By this, we are able to distinguish
between a producer, an injector and a no-well scenario. We
note that while only the rate in the first cycle is used here to
determine the well type, the rate at any other specific cycle
can be used. However, the cycle whose rate is used to deter-
mine the well type should be fixed throughout the search
period (same cycle should be used in all members of the
population and at all iterations of the optimization). We also
note that other attributes such as the sum or average of rates
in all cycles can be used but these would be less effective as
this joint attribute will place an additional layer of constraint
on the optimization. For instance, consider that the optimum
well type at a certain well location is a producer and that the
well type is to be determined by the sum or average of all
rates in a well, then in order to achieve this, the optimizer
will try to force the sum of all the rates of that well to be
negative. This will affect the estimation of the cycle rates.
Therefore, such joint attributes are not recommended.

3.2 Modifications for optimization of BHP

Because the search range of BHP for producers is dif-
ferent from that of injectors, the procedure described in
the preceding section is modified for use in the optimiza-
tion of BHP. If the lower BHP limit in any producer has
been determined to be pwf,min and the upper BHP limit in
any injector has been specified as pinj,max, then the task
of the optimizer will be to determine the operational BHP
controls within these limits in all the wells. However, the
BHPs imposed on the producers should be lower than those
imposed on the injectors for effective production to take
place. Also, the optimization procedure, requires separate
search ranges be used for the producers and the injectors
because they have different upper and lower bounds. While
pwf,min can be specified as the lower bound for the producer
and pinj,max specified as the upper bound for the injectors,
there is still the need to specify the upper bound for the
producers

(
pwf,max

)
and a lower bound for the injectors(

pinj,min
)
. In this work, we choose pwf,max and pinj,min to

be close to the initial reservoir pressure and ensure that
pwf,max is slightly lower than pinj,min. Also, pwf,max may be
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chosen to coincide with pinj,min. The choice of these values
is solely the responsibility of the user, not the algorithm.
Also, rather than search directly for pressure between the
specified lower and upper bounds, we choose to search for
a change in pressure, �p, and then adding the estimated
value of �p to pwf,min if the well is a producer or adding
it to pinj,min if the well is estimated to be an injector. With
this description, we can now identify the bounds of the set
E0 as l0contr,j = 0 and u0contr,j = �pmax where �pmax =
max

(
�pwf,max, �pinj,max

)
, �pwf,max = pwf,max − pwf,min,

and �pinj,max = pinj,max − pinj,min. The extended search
domain can then be created by using Eqs. 13 to 15 as

E−
ext =

[
−� �pwf,max + �l0,−contr,

�l0,−contr

)
, E−+

ext =
[�l0,−contr,

�l0,+contr

]
,

and E+
ext =

(�l0,+contr, � �pinj,max + �l0,+contr

]
. The values in E1

range from 0 to �pmax. The reason for this is that the search
range in the producer is different from the search range in
the injector. By this, it is possible to generate estimates of
BHPs that are larger than the maximum value allowed in the
well-type with the smaller search range. In that Case, the
estimated value would be replaced by the maximum value
(upper limit of that well-type).

As an illustration, consider an optimization problem in
which the minimum pressure allowed in the producer is
2000 psi and the maximum pressure allowed in the injec-
tor is 6500 psi. Also, consider that we choose pwf,max =
3950psi, pinj,min = 4050psi, �l0,+contr = 1000psi, and
�l0,−contr = −1000psi. Then, �pwf,max = 1950psi, �pinj,max =
2450psi, and the search range in E0

ext would be from −2950
to 3450 psi while the search range in E1 would be from 0
to 2450 psi. The no-well region would be from −1000 to
1000 psi. If the estimates of �p for a particular well in a
three-cycle scenario were −2100, 1500, and 2300 psi, this
well would be identified as a producer producing at 1100 psi
during the first cycle. The BHP of the well would be 3500
psi in the 2nd and 3950 psi in the 3rd because the estimated
BHP is obtained by adding the estimated �p to the lower
bound (2000 psi in the case of a producer). The estimated
BHP in the 3rd cycle (i.e. 2000+2300psi) was replaced with
3950 psi because it was out of range for a producer.

4 Practical considerations

In the generalized field development optimization pre-
sented, the maximum number of wells to use in the opti-
mization schememust be selected. The optimization scheme
will then identify those wells that should be operated as
producers, those to be operated as injectors and those that
should not be drilled at all. Thus, the maximum number of
wells selected should be more than or at least equal to the
number that is required to optimize the waterflood project.
While the maximum number of wells required can itself

be considered as an optimization variable, we consider it a
known variable in this work. Also, as it is evident in the
WCZ, we do not assign separate operational variables that
determine which wells are injectors and which wells are
producers. The identification of an injector or producer is
implicitly built into one of the parameters used to model the
well controls, thus cutting down the size of the optimization
problem. Therefore, this procedure uses fewer design vari-
ables than those used in the procedure proposed by Isebor et
al. [28]. Also, the procedure makes the use of mixed integer
nonlinear programming (MINLP) unnecessary for the solu-
tion of the optimization problem. More important is the fact
that since there are no fixed integers to be determined, the
definition of the no-well zone can be made according to the
level of uncertainty one has in choosing the maximum num-
ber of wells allowed in solving the optimization problem.
For instance, if a user of this algorithm is confident that the
number of wells required to develop a field is between 50
and 60, he can set the maximum number of wells allowed
in the algorithm to be 60 and set the no-well interval to be
small. However, if the user believes the number of wells
required to be between 30 and 80, then the user can set 80
and also set the no-well interval to be large. Setting the no-
well interval to be large ensures that the algorithm is able
to quickly push unneeded wells that were declared to this
interval. Example 1 presented in a later section of this paper
shows how the size of the no-well interval affects the NPVs
obtained from the same problem but with different settings
of Nwells,max.

5 Comparison with MINLP approach

To measure the advantage of using this methodology rela-
tive to the established method of using a separate variable
for determining the well-type, we used theMINLP approach
of [28] in finding the optimum parameters and compared
the results with those from the proposed method. To do this,
we considered the work of Isebor et al. [28] and focused
on the ternary categorical MINLP formulation as described
by the authors. In the ternary categorical MINLP formula-
tion, a categorical variable z, was introduced and associated
with each well. The categorical variable can take on the
integer values −1, 0, and 1. In the authors’ work, −1 cor-
responds to drilling an injector, 0 refers to not drilling any
well, and 1 corresponds to drilling a producer. However,
to solve this problem practically, the authors searched for
the variable z within the bounds [−1, 1] and rounded its
value to the nearest integer. This formulation is somewhat
similar to our formulation in this work except that the deter-
mination of well type is integrated into the search for the
well-control so that we do not incur an additional optimiza-
tion variable (z) per well. Note the reversal of nomenclature
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(i.e., the negative part corresponds to an injector in the
authors’ work while it corresponds to a producer in our
work). Apart from this obvious difference in formulation,
there is another difference in the actual search for well-type.
In Isebor et al.’s ternary formulation [28], the region repre-
senting an injector is [−1, −0.5], that representing a no-well
situation is (−0.5, 0.5), and the region representing a pro-
ducer is [0.5, 1]. Thus, the round-off approach adopted by
the authors means that each region has a fixed width for all
problems. Also, a greater search space (i.e., from −0.5 to
0.5) is devoted to the no-well region. This is good if users
do not have a good idea about the approximate number of
wells needed to develop the field and would like to spec-
ify a maximum number of wells that is considerably large.
In this case, many of the unneeded wells would easily end
up in the no-well region. In the WCZ approach; however,
the user can determine the size of the no-well region for
different problems. As would be seen in the examples pre-
sented, the size of the no-well region relative to the other
two regions affects the results obtained for different prob-
lems. Another significant difference between this work and
that of Isebor et al. [28] is that in this work, a reducing
tendency in the estimated value of a well control variable
over iterations results in an increasing tendency towards a
different well type. Take for example, a well that is esti-
mated to be an injector but whose estimated rate (in the first
cycle) is decreasing gradually as the search proceeds. As
the value of the estimated rate reduces from one iteration
to the next, there is an increase in the possibility that the
well would change from being an injector to a non-existing
well or even to a producer in later iterations if the trend con-
tinues. This tendency results from the implicit dependency
of the well type on the estimated well control (of the first
cycle).

6 Sample illustrations

Two sample optimization problems are presented. The prob-
lems were solved to estimate the optimum number and
configuration of injectors and producers, and the controls
to place on the wells. The first problem consisted of a
small-sized reservoir model with heterogeneous permeabil-
ity distribution while the second problem used a reservoir
model having four facies. Relative permeability curves and
PVT properties of reservoir oil are shown in Fig. 1. In all
the examples, we have used Eclipse reservoir simulator and
imposed economic limits of 100 stb/day minimum oil rate
and maximum water cut of 97 % on every producer. This
means that a producer would be shut-off if it produces at
an oil rate less than 100 stb/day or at a water-cut greater
than 97 %. Also, field-wide economic limits of 3000 stb/day
minimum oil rate and a maximum water cut of 97 % are

imposed on the reservoir. These field-wide limits ensure that
all wells in the reservoir are shut down simultaneously and
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Fig. 1 Relative permeability and PVT properties of fluids. a Oil-
water relative permeability curves. b Oil formation volume factor. c
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Table 1 Cases considered for well control zonation in the examples

Case Rate BHP

�l0,−contr
�l0,+contr

�l0,−contr
�l0,+contr

1 −100 100 – –

2 −500 500 – –

3 −1000 1000 – –

4 −2500 2500 −975 1225

5 −5000 5000 −1950 2450

6 −7500 7500 −2925 3675

the simulation terminated if any of these global economic
limits is violated.

In the examples, the performances of the WCZ and
MINLP approaches were studied. The optimization prob-
lems were solved under both rate-control and BHP-control.
Also, several cases involving different widths of the no-
well zone were considered under each problem (Table 1).
Under rate-control, six widths of the no-well region were
considered while only three widths were considered under
BHP-control. Cases 1 to 3 are considered to be of small
widths and in all these three, the no-well zone is smaller than
each of the other zones. In Case 4, the no-well zone cov-
ers one-third of the search space while in Case 5, the zone
covers half of the search space. In Case 6, the no-well zone
covers 60 % of the search space.

The performances of the approaches were studied using
the NPV as the performance measure and DE [34, 38] as the
optimizer. The same DE strategy and DE parameters were
used for the two algorithms and all the scenarios/cases con-
sidered. The population size in the DE was obtained from

Np = 4 + floor (3 logM) , (16)

where Np is the population size and M is the problem
dimension. Although, Eq. 16 was originally proposed to
compute the population size in CMA-ES [27], it has been
shown to work well for DE [5]. In the Appendix, we further

Table 2 Values of variables used to compute NPV

Variable Value Unit

Cfacility 50 × 106 USD

Cprod 7 × 106 USD

Cinj 7 × 106 USD

P o 60 USD/bbl

C
prod
w 5 USD/bbl

C
inj
w 10 USD/bbl

Cop 8 USD/bbl

r 0.05 None

compared the performance of this population size with those
of larger population sizes to show its effectiveness. Five runs
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(realizations) of the optimization solutions were obtained in
each problem/case considered and the solutions were ranked
from the best (the run with the highest NPV) to the worst. A
realization is obtained by solving the optimization problem
once using a set of random numbers in the global optimizer.
Thus, different realizations are obtained by using different
sets of random numbers in solving the same problem. For
the sake of fair comparison in stochastic-based approaches,
it is necessary to make several runs and obtain several real-
izations of the optimization results because the performance
of each method/case is different for different sets of random
numbers.

Only vertical wells were used in the examples and
the values of variables used in computing the NPV are
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Fig. 3 Comparison of the NPVs attained by different algo-
rithms on the optimization problem with rates as well controls.
a Median realization. b Final optimized NPVs in all realizations
(Scenario 1, Example 1)

presented on Table 2. The optimization algorithms were
coded in a suitable programming language and a commer-
cial reservoir simulator was used to simulate the reservoir
performance. To ensure a fair comparison between the
approaches/cases, the random seed in the programming soft-
ware was set to 1 at the start of the first of the five runs
in each approach/case. In this way, each algorithm/case was
initialized with the same random seed and used almost the
same set of random numbers.

6.1 Example 1

In this example, we consider a synthetic reservoir dis-
cretized into 32×32×3 gridblocks, each grid of dimension
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Fig. 4 Comparison of the NPVs attained by different algorithms
on the optimization problem with rates as well controls. a Median
realization. b Final optimized NPVs in all realizations (Scenario 2,
Example 1)
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150ft × 150ft × 70ft. The reservoir log permeability distri-
butions in the three layers are shown in Fig. 2. The task is
to optimize the well type, the well controls, and the number
of wells simultaneously to maximize the NPV in a 20-
year field development plan. In this example, we consider 5
cycles, each of 4 years, in optimizing the rates.

First, we start with rate constraints and consider three
scenarios of this problem. In the first scenario, the maxi-
mum number of wells that can be declared, Nwells,max, is
set to 15, in the second, Nwells,max = 25, and in Sce-
nario 3, Nwells,max = 40. Using different scenarios would
help us study how the size of the no-well interval affects
the performance of the WCZ approach. This is because
if Nwells,max is much greater than the optimum number of
wells required to develop the reservoir, the optimizer would
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Fig. 5 Comparison of the NPVs attained by different algorithms
on the optimization problem with rates as well controls. a Median
realization. b Final optimized NPVs in all realizations (Scenario 3,
Example 1)

need to move a large number of wells to the no-well region.
In these scenarios, well rates, estimated by the optimizers,
were the primary constraints placed on the wells. The sec-
ondary constraint was a minimum BHP of 2000 psi on a
producer and a maximum BHP of 6500 psi on an injector.
In the first scenario, where the maximum number of wells
allowed in the optimization solution was 15, the number of
variables representing the well location coordinates was 30
and the number of variables representing well rates was 75.
Thus, the total number of optimization variables in theWCZ
approach was 105. However, the MINLP approach has an
additional variable per well to determine the well type.
Thus, the number of design variables in the MINLP was
120. We have used approximately 3000 function evaluations
for this example.
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Fig. 6 Comparison of the NPVs attained by different algorithms
on the optimization problem with BHPs as well controls. a Median
realization. b final optimized NPVs in all realizations (Scenario 1,
Example 1)
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The NPVs obtained from the MINLP and the six cases
of the WCZ are shown in Fig. 3a from the median realiza-
tion. Figure 3b shows only the final NPVs attained by the
methods in their respective five runs. The values of NPVs
in Fig. 3b have been arranged in decreasing order for each
method/case considered. From the figures, we observe that
the performance of WCZ improved as the width of the no-
well region became bigger (i.e., WCZ 4 to 6 were much
better than WCZ 1 to 3). This shows that it is better to start
with many wells in the no-well region and gradually push
the wells into their appropriate zones than initially placing
many wells in the production-well and injection-well zones
and finding ways to push the unneeded wells out. We also
observe that almost all the cases considered performed bet-
ter than the MINLP in this scenario. In particular, WCZ 5
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Fig. 7 Comparison of the NPVs attained by different algorithms
on the optimization problem with BHPs as well controls. a Median
realization. b Final optimized NPVs in all realizations (Scenario 2,
Example 1)

has the same width of the no-well zone with the MINLP and
has performed much better under this scenario.

The optimized NPVs from the second scenario, where
the maximum number of wells allowed was 25, are shown
in Fig. 4a, b. We observe a general and more conspicu-
ous increase in NPV with increasing width of the no-flow
region. This is consistent with our expectation because as
the maximum number of wells allowed in the solution to
the optimization problem increases, the need for a larger
no-well zone becomes more acute. In this case, WCZ 6
consistently produced the highest NPV in all the five runs.
Also, the performance of WCZ 5 was only slightly bet-
ter than that of MINLP in this case. In the third Scenario(
Nwells,max = 40

)
shown in Fig. 5, two of the five runs of

WCZ 1 yielded negative NPVs while one of the five runs of
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Fig. 9 Optimized well locations from Scenario 2 under rate-constraints. a MINLP. b WCZ 4. c WCZ 5. d WCZ 6 (Example 1). Note: producers
are represented by small white circles while injectors are presented by small black squares

WCZ 2 produced a negative NPV. This situation occurred
because the no-flow regions specified in these cases were
too small to accommodate the null-wells that should result
from the maximum of 40 wells specified under this scenario.
This shows that a large width of the no-well zone is needed

whenever the uncertainty in the maximum number of wells
to be specified in solving the problem is high. Because of the
large difference in the values of NPVs plotted in Fig. 5, the
differences in some optimized results are not evident from
the plot. In this 40-well scenario, WCZ 6 yielded the highest

Table 3 Estimated number of wells (Example 1)

Rates BHPs

15 Wells 25 Wells 40 wells 15 Wells 25 Wells 40 wells

Approaches in pn in pn in pn in pn in pn in pn
MINLP 5 6 5 7 4 6 3 6 3 8 3 10

WCZ 1 4 8 6 15 13 25 – – – – – –

WCZ 2 5 6 6 12 16 17 – – – – – –

WCZ 3 4 5 5 10 8 18 – – – – – –

WCZ 4 3 5 6 7 5 11 3 7 3 9 4 12

WCZ 5 4 6 5 6 6 9 3 6 3 8 3 10

WCZ 6 4 5 6 5 6 7 3 5 3 5 4 9
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NPVs in all the five runs while WCZ 5 gave higher NPVs
than MINLP in three of the five runs.

The performances of the algorithms under pressure-
constraints were also tested. In this case, the optimized
well controls are the bottomhole pressures placed on the
wells. We intend to search for an optimum pressure between
2000 and 3950 psi in each producer and between 4050 and
6500 psi in each injector with a maximum well rate of
5000 stb/day placed on each well as secondary constraint.
However, the search was made for optimum values of �p

in each well and the values were added to the lower bound
of the producer or the injector as determined by the esti-
mated well-type. In the WCZ, the first-cycle estimates of
BHPs were used to determine the well-type while a sep-
arate variable was used in the MINLP approach. All the
three scenarios (each scenario involving the specification
of a different maximum allowable number of wells in the
optimization problem) considered for the rate-constraints
were also considered for the BHP-constraints. However,
only cases 4 to 6 of the WCZ were considered under the
BHP-constraints.

Figure 6 shows the optimized NPVs from Scenario 1(
Nwells,max = 15

)
. The figure shows that both WCZ 5 and

WCZ 6 performed slightly better than MINLP while WCZ
4 exhibited the worst performance. The optimized NPVs
from Scenario 2 are presented in Fig. 7. Although in this
scenario, the two highest NPVs were obtained from WCZ
6, the MINLP approach performed much better than all the
three cases of WCZ in three of the five runs. Figure 8 shows
that WCZ 6 exhibited the best performance for the third sce-
nario, even though the highest NPV obtained in this scenario
was from WCZ 5. Also, the MINLP performed better than
both WCZ 4 and WCZ 5 in this scenario.

From this example, our overall assessment of the meth-
ods studied is that the WCZ approach performs well when
the no-well region is large enough and in fact as large as
or larger than the combined width of the other two zones
(production-well and injection-well zones). We observe that
a larger width of the no-well region becomes indispensable
when the maximum number of wells declared in the opti-
mization problem is much larger than the optimum number
of wells needed to develop the reservoir. Such a scenario
may occur in situations where the user of the algorithm
is uncertain about the rough estimate of the number of
wells to declare and thus chooses to declare a large num-
ber. Specifically, we observe that in almost all the cases
considered, the WCZ 6 (the case with the largest width
of the no-well zone) performed much better than all the
other cases considered. Furthermore, in all the scenarios
considered under the rate-constraints, WCZ 5 performed
better than MINLP. However, in two of the three scenar-
ios under BHP constraint, MINLP performed better than
WCZ 5. One other observation is that all the scenarios
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Fig. 10 Channel reservoir with four facies. a Layer 1. b Layer 2.
Color represents facies type: Facies 0 has deep blue color, Facies 1 has
light blue color, Facies 2 is yellow in color, and Facies 3 has deep red
color

under rate-constraints yielded much higher NPVs than the
scenarios under BHP-constraints. The overall highest NPV
from this example was 1.88× 109 from WCZ 6 in Scenario
2

(
Nwells,max = 25

)
under rate-constraints while the overall

second highest NPV
(
1.84 × 109

)
was obtained from WCZ

5 of the same scenario under rate-constraints.
The well locations obtained from the best realizations

of the approaches in Scenario 2 under rate-constraints are

Table 4 Channel reservoir properties

Facies Color k (md) φ

0 Deep blue 100 0.12

1 Light blue 2100 0.37

2 Yellow 750 0.23

3 Red 2 0.05
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shown in Fig. 9a–d. A general observation from the fig-
ures is that wells of the same type tend to be placed in
the same part of the reservoir. This observation had been
made in a previous work [6]. The reason why this config-
uration may give higher NPV than the conventional belief
of placing a producer in the neighborhood of an injector is
that having the injectors together in a region of the reser-
voir may enhance the push of oil away from that region to
an opposite region of the reservoir. Having producers in the
opposite part will then allow such producers to benefit from
the push of oil towards that part. This is reasonable consid-
ering that the field development process is for several years
(20 years in this example) and early water breakthrough is
prevented. The optimum number of injectors and producers
as estimated by the approaches in their best realizations
(runs) are presented on Table 3. The optimum numbers of
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Fig. 11 Comparison of the NPVs attained by different algorithms
on the optimization problem with rates as well controls. a Median
realization. b Final optimized NPVs in all realizations (Example 2)

injectors and producers from each scenario are shown in
bold font and in brown color while the overall best num-
bers from all scenarios are shown in bold font and in blue
color. We observe from the table that the optimum num-
bers of injectors and producers that yielded the highest NPV
from Scenario 1 under rate-constraints are 3 and 4, respec-
tively. These were achieved by WCZ 4. From Scenario 2
under rate constraint, the optimum numbers of injectors and
producers were 6 and 5, respectively. These numbers, esti-
mated by WCZ 6, also yielded the overall highest NPV
for this problem. The optimum numbers for the other sce-
narios are presented on the table. The table shows that
WCZ 6 yielded the optimum numbers leading to the high-
est NPV in four out of the six scenarios presented. Each of
WCZ 4 and WCZ 5 yielded the highest NPV in only one
scenario.
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Fig. 12 Comparison of the NPVs attained by different algorithms
on the optimization problem with BHPs as well controls. a Median
realization. b Final optimized NPVs in all realizations (Example 2)
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6.2 Example 2

In this example, we used a synthetic channel reservoir com-
posed of four facies (Fig. 10) in two layers. The facies are
represented by different colors with Facies 1 to Facies 4
progressing from deep blue color to deep red color. Each
facies has distinct permeability and porosity as presented
on Table 4. The reservoir is discretized into 75 × 75 × 2
gridblocks, each block of size 150ft × 150ft × 100ft. The
NPV was computed for a 50-year operating period and
approximately 6000 function evaluations were used in the
search for the highest NPV.

We estimate the well controls, well locations, and num-
ber of wells simultaneously. A maximum of 60 wells
were used in the optimization scheme. Ten cycles, each
consisting of a 5-year period, were used. Thus, in this
example, there were 780 variables in the MINLP approach
and 720 variables in the WCZ approach. The optimized
NPVs from the median realization of the algorithms are
presented in Fig. 11a while the final NPVs from all the
five runs are presented in Fig. 11b. The three cases (cases
4 to 6) of the no-well interval described in “Example
1” were also considered in this example. However, only
one scenario

(
Nwells,max = 60

)
was considered and the
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Fig. 13 Optimized well locations. a MINLP. b WCZ 4. c WCZ 5. d WCZ 6 (rates, Example 2). Note: producers are represented by small white
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Table 5 Estimated number of wells (Example 2)

Rates BHPs

Approaches in pn in pn

MINLP 12 17 7 15

WCZ 4 12 17 8 26

WCZ 5 11 15 6 15

WCZ 6 10 18 7 14

problem was solved separately under rate-constraints and
under BHP-constraints. The secondary constraints under
the rate or BHP-constraints are the same as presented in
“Example 1.” Under rate-constraints, WCZ 5 showed the
best overall performance while MINLP exhibited the worst
performance (Fig. 11). Figure 12 shows the optimized NPVs
under BHP-constraints. In this case, the MINLP exhibited
the best performance while WCZ 5 came second. However,
WCZ 5 produced slightly higher NPVs thanMINLP in three
of the five runs. Also, we observe that the optimized NPVs
obtained under rate-constraints (Fig. 11) are much higher
than those obtained under pressure constraints (Fig. 12).
We conclude that the optimized NPVs from both the rate-
constraints and the pressure-constraints in this example
indicate that the optimum no-well width should be about
half of the search space (as indicated by Case 5).

The optimized well locations are shown in Fig. 13a–d
for the best runs of the algorithms/cases under rate-control.
We again observe from the figures that wells of the same
type cluster in the same region of the reservoir in similar
fashion to those observed in Example 1. The estimated num-
bers of wells from the algorithms are presented in Table 5.
The optimum numbers corresponding to the algorithm that
yielded the overall highest NPV (i.e., WCZ 5) are 11 and 15
for the injectors and producers, respectively, indicating that
only 26 wells were needed to develop the reservoir in this
example. The second highest NPV was obtained fromWCZ
6 and this indicated a need for 10 injectors and 18 producers
(28 wells). This numbers are much less than the stipulated
maximum number of wells (60) used in solving the problem,
explaining the need for large no-well zone.

7 Conclusion

A well-control zonation (WCZ) approach was presented to
optimize well controls, well type, and number of wells. The
approach is based on the extension of the search space of the
well-control variable (rates or BHPs) to create three well-
control zones: the injection-well zone, the no-well zone, and
the production-well zone. The approach helps to avoid the
use of integer optimization variables in determining well

types and also reduces the total number of optimization vari-
ables needed. The width of the no-well zone is not fixed
but left to the user to determine. This makes it possible to
adjust the width for different degrees of uncertainty associ-
ated with setting the maximum allowable number of wells
in the optimization problem. The approach was used in
conjunction with the piecewise constant approach and was
compared to the MINLP method of handling the optimiza-
tion problem [28]. Two example problems were designed
to test the performance of the approach relative to the
MINLP. The first example was used to test different scenar-
ios involving different values of the maximum number of
wells allowed

(
Nwells,max

)
. Results show that the proposed

algorithm (well-control zonation) mostly outperformed the
existing algorithm (MINLP). Also, we observed that the
WCZ performed best when the width of the no-well zone
is as large as or larger than the combined width of the two
other zones.
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Appendix

In this appendix, we show the effectiveness of using Eq. 16
in computing the population size in DE algorithm. This is
done by comparing the optimized NPV from this population
size to those generated by using larger population sizes. In
the literature, a population size 10 times the problem dimen-
sion [37] was suggested. However, this size is often too
large and unnecessary for many practical problems.We have
found that Eq. 16 yields a much smaller population size and
we show that DE performs very well with this small popu-
lation size by comparing with two larger population sizes.
The larger sizes considered are a population size that is 3
times of that generated by Eq. 16 and another size that is
6 time that generated by Eq. 16. We have used Case 4 and
Scenario 2 of Example 1 for this study. In order to allow the
cases with larger population sizes to realize their full poten-
tial, we have allowed a total of 6000 function evaluation for
those cases while keeping only 3000 function evaluations
for the original case (Eq. 16). In Figs. 14 and 15, Np rep-
resents the NPV obtained from the population size used in
this work (i.e., computed from Eq. 16). The other two labels
represent the NPVs obtained from population that are 3 and
6 times larger than Np, respectively. Only the best, median
and worst runs (of the five runs) are presented. It is evident
from the figures that using Eq. 6 is much better than using
the larger population sizes.
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Fig. 14 Comparison of the NPVs attained by different algorithms on
the optimization problem with rates as well controls. a Best. bMedian.
c Worst (Scenario 2 of Example 1)
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Fig. 15 Comparison of the NPVs attained by different population
sizes on the optimization problem with BHPs as well controls. a Best.
bMedian. c Worst (Scenario 2 of Example 1)
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