
Barros et al. BMC Bioinformatics 2012, 13:310
http://www.biomedcentral.com/1471-2105/13/310

RESEARCH ARTICLE Open Access

Automatic design of decision-tree induction
algorithms tailored to flexible-receptor
docking data
Rodrigo C Barros1*, Ana T Winck2, Karina S Machado3, Márcio P Basgalupp4, André CPLF de Carvalho1,
Duncan D Ruiz5 and Osmar Norberto de Souza5

Abstract

Background: This paper addresses the prediction of the free energy of binding of a drug candidate with enzyme
InhA associated with Mycobacterium tuberculosis. This problem is found within rational drug design, where interactions
between drug candidates and target proteins are verified through molecular docking simulations. In this application,
it is important not only to correctly predict the free energy of binding, but also to provide a comprehensible model
that could be validated by a domain specialist. Decision-tree induction algorithms have been successfully used in
drug-design related applications, specially considering that decision trees are simple to understand, interpret, and
validate. There are several decision-tree induction algorithms available for general-use, but each one has a bias that
makes it more suitable for a particular data distribution. In this article, we propose and investigate the automatic
design of decision-tree induction algorithms tailored to particular drug-enzyme binding data sets. We investigate the
performance of our new method for evaluating binding conformations of different drug candidates to InhA, and we
analyze our findings with respect to decision tree accuracy, comprehensibility, and biological relevance.

Results: The empirical analysis indicates that our method is capable of automatically generating decision-tree
induction algorithms that significantly outperform the traditional C4.5 algorithm with respect to both accuracy and
comprehensibility. In addition, we provide the biological interpretation of the rules generated by our approach,
reinforcing the importance of comprehensible predictive models in this particular bioinformatics application.

Conclusions: We conclude that automatically designing a decision-tree algorithm tailored to molecular docking
data is a promising alternative for the prediction of the free energy from the binding of a drug candidate with a
flexible-receptor.

Background
The pharmaceutical industry is under increasing pressure
to continuously deliver new drugs to the market [1]. Since
the costs involved in the development of new drugs have
exceeded one billion dollars, Rational Drug Design (RDD)
has become an emerging technology for cost reduction
and fast development of new drugs [2].

Interaction between drug candidates (ligands) and tar-
get proteins (receptors) through molecular docking sim-
ulations is the computational basis of RDD. Given a
receptor, molecular docking simulations sample a large

*Correspondence: rcbarros@icmc.usp.br
1University of São Paulo, São Carlos, Brazil
Full list of author information is available at the end of the article

number of orientations and conformations of a ligand
inside the protein bibding site. The simulations also eval-
uate the Free Energy of Binding (FEB) and rank the orien-
tations/conformations according to their FEB scores [3].

Nowadays, the majority of molecular docking algo-
rithms only consider the ligand as flexible whereas the
receptor remains rigid, due to the computational cost
when considering its flexibility. Conversely, biological
macromolecules, like protein receptors, are intrinsically
flexible in their cellular environment, considering that
the receptor may modify its shape upon ligand bind-
ing, moulding itself to be complementary to its ligand.
This increases favorable contacts and reduces adverse
interactions, which in turn minimizes the total FEB [4].

© 2012 Barros et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Barros et al. BMC Bioinformatics 2012, 13:310 Page 2 of 14
http://www.biomedcentral.com/1471-2105/13/310

Therefore, it is important to consider the receptor flexibil-
ity during molecular docking.

Among all available methodologies to explicitly include
the receptor flexibility in molecular docking simulations,
a possible alternative is to select a series of different
conformations derived from a molecular dynamics (MD)
simulation of the target receptor [5]. We name this type
of receptor representation fully flexible-receptor (FFR)
model [6,7], and we investigate this methodology with
target receptor InhA enzyme from Mycobacterium tuber-
culosis [8] (Mtb), which was modeled as a set of 3,100
snapshots derived from a 3.1 ns MD simulation tra-
jectory [9]. For that, we generated molecular docking
data sets with data from docking simulations of FFR-
InhA [10] to six different ligands: nicotinamide adenine
dinucleotide (NADH) [8], triclosan (TCL) [11], penta-
cyano(isoniazid)ferrate(II) (PIF) [12], ethionamide (ETH)
[13], Isoniazid (INH) [14], and Triclosan derivative 20
(JPM) [15]. Explicitly including the receptor flexibility in
docking simulations is computationally demanding and
generates large amounts of data, which need to be ana-
lyzed and interpreted. The concept of molecular docking
is better illustrated in Figure 1.

Decision-tree induction algorithms have been success-
fully used in drug-design related applications [16-19]. One
of the main advantages of these algorithms when com-
pared to other machine learning techniques (e.g., SVMs
and Neural Networks) is that decision trees are simple to
understand, interpret and validate. Thus, domain special-
ists (e.g., biologists, physicians, chemists) can easily verify
whether the data present interesting patterns, increasing
their confidence in making predictions and creating new
hypotheses. Several decision-tree induction algorithms
have been proposed for general-use, but each has a bias
that makes it more suitable for a particular data distribu-
tion. Hence, a common choice for decision-tree applica-
tions is to employ state-of-the-art decision-tree induction
algorithm C4.5 [20], regardless of the fact that it was not
tailored to the biological domain of interest.

In this article, we investigate a new data mining
approach that automatically generates new decision-tree
algorithms tailored to a specific domain. We employ
this new approach for analyzing data from fully flexible-
receptor molecular docking experiments, looking for
receptor snapshots to which a particular ligand binds
more favorably. With the resulting induced models from
these automatically-designed algorithms, we expect that
the inferred knowledge will help us to point out which
of the conformations that were generated by the fully
flexible-receptor model are more promising to future
docking experiments. This, in turn, allows a reduction
of the flexible-receptor model dimensionality and per-
mit faster docking simulations of flexible receptors [6].
We analyze whether the decision trees generated by the

automatically-designed algorithms have higher predic-
tive accuracy and are more comprehensible than decision
trees generated by state-of-the-art decision-tree induc-
tion algorithm, C4.5 [20]. In addition, we interpret and
validate our findings with the help of a domain specialist.

Method
In this section, we describe the proposed method for auto-
matically generating decision-tree induction algorithms
tailored to flexible-receptor molecular docking data,
namely Hyper-heuristic Evolutionary Algorithm for auto-
matically Designing Decision-Tree algorithms (HEAD-
DT) [21]. First, we briefly introduce decision trees, and the
importance of generating comprehensible models.

Decision trees background
Automatically generating rules in the form of decision
trees has been a key active research topic in the develop-
ment of data exploration techniques [22]. Disciplines such
as engineering (pattern recognition), statistics, decision
theory, and more recently artificial intelligence (machine
learning) have a large number of works dedicated to the
generation and application of decision trees.

Formally, a basic top-down decision-tree induction
algorithm can be recursively defined in only two steps, in
the so-called Hunt’s algorithm. Let Xt be a set of training
instances associated with node t and y = {y1, y2, . . . , yk}
be the set of class labels in a k-class problem [23]:

1) if all the instances from Xt belong to the same class
yt then t is a leaf node labeled as yt ;

2) if Xt contains instances that belong to more than one
class, an attribute test condition is selected to
partition the instances into subsets. A child node is
created for each outcome of the test and the
instances in Xt are distributed to the children based
on the outcomes. Recursively apply the algorithm to
each child.

This simplified algorithm is is the basis for all current
top-down decision tree induction algorithm. Neverthe-
less, its assumptions are too stringent for practical use.
For instance, it would only work if every combination
of attribute values is present in the training data, and if
the training data is inconsistency-free (each combination
has a unique class label). Hunt’s algorithm was improved
in many ways. Its stopping criterion, for example, as
expressed in step 1, requires all leaf nodes to be pure (i.e.,
belonging to the same class). In most practical cases, this
constraint leads to enormous decision trees, which tend to
suffer from overfitting. Possible solutions to overcome this
problem is prematurely stopping the tree growth when a
minimum level of impurity is reached, or performing a
pruning step after the tree has been fully grown. Another

Barros et al. BMC Bioinformatics 2012, 13:310 Page 3 of 14
http://www.biomedcentral.com/1471-2105/13/310

Figure 1 Molecular docking simulation. Figure 1 is divided as follows: (A) shows an example of a docking simulation from InhA, where the protein
in ribbon is depicted in gray, the ETH ligand in its initial position is highlighted in red, and the final position of ETH after a molecular docking
experiment is highlighted in blue; (B) presents an example of the distances between the ETH ligand and the receptor residue GLY95 (Glycine 95).

design issue is how to properly select the split test to
partition the instances into smaller subsets. In Hunt’s
original approach, a cost-driven function was responsible
for partitioning the tree. Subsequent algorithms such as
ID3 [24] and C4.5 [20] make use of information-theory
based functions for partitioning nodes in purer subsets.
Finally, dealing with missing values is also a major design
issue one has to face when developing a new decision-tree
induction algorithm.

Alternatives to the top-down approach were proposed
in the last decades, such as bottom-up induction [25], evo-
lutionary induction [26-30], and ensemble of trees [31].
Notwithstanding, no strategy has been more successful
in generating accurate and comprehensible decision trees
with low computational effort than the greedy top-down
induction strategy. Due to its popularity, a large number
of approaches have been proposed for each one of the
design components of top-down decision-tree induction
algorithms. Considering that the manual improvement of
decision-tree design components has been carried out for
the past 40 years, we believe that automatically design-
ing decision-tree induction algorithms could provide a
faster, less-tedious — and equally effective — strategy for
improving decision-tree algorithms. Hence, we propose
in this work to automatically generate new and effective
decision-tree algorithms tailored to the flexible-receptor
molecular docking data.

We recall that decision-tree induction algorithms are
widely-used for knowledge discovery and pattern recog-
nition tasks, due to their advantage of producing a com-
prehensible classification model. Notwithstanding, these
algorithms are usually underestimated in bioinformatics,
given that researchers tend to prefer methods such as sup-
port vector machines or neural networks [32-34]. These
methods are usually very effective in terms of predictive
accuracy, but they are “black box” methods, providing

little biologically-meaningful explanation for their pre-
diction, giving few new insight about the data or the
application domain to users [35]. In many bioinformat-
ics applications, however, the discovered model should
be interpreted and validated in the context of current
biological knowledge.

HEAD-DT
HEAD-DT is a hyper-heuristic algorithm able to automat-
ically design top-down decision-tree algorithms [21,36].
Hyper-heuristics can automatically generate new heuris-
tics suited to a given problem or class of problems. This is
carried out by combining, through an evolutionary algo-
rithm, components or building-blocks of human designed
heuristics [37]. HEAD-DT is a regular generational evo-
lutionary algorithm, in which individuals are collections
of building blocks of decision-tree algorithms. Figure 2
illustrates the evolutionary scheme followed by HEAD-
DT. Each individual is encoded as an integer string and
each gene has a different range of supported values. We
divided the genes into four categories, representing the
major building blocks (design components) of a decision-
tree algorithm: split genes, stopping criteria genes, prun-
ing genes, and missing values genes. We detail each
category next.

Split genes
These genes are used for selecting the attribute to split
the data in the current node of the decision tree. A
decision rule based on the selected attribute is thus gen-
erated, and the input data is filtered according to the
outcomes of this rule. This process continues recursively.
We used two genes to model the split component of a
decision-tree algorithm. The first gene, with an integer
value, indexes one of the 15 splitting criteria implemented:
information gain [24], Gini index [38], mutual information

Barros et al. BMC Bioinformatics 2012, 13:310 Page 4 of 14
http://www.biomedcentral.com/1471-2105/13/310

Figure 2 HEAD-DT evolutionary scheme. Figure 2 presents the evolutionary scheme followed by HEAD-DT. A random initial population of
individuals (decision-tree algorithms) is created and evaluated according to the performance of their corresponding trees in a meta-training set.
Then, a selection procedure is responsible for choosing individuals that will undergo breeding operations. After a new population is complete, it is
once again evaluated and the process continues until a maximum number of generations is reached. The best decision-tree induction algorithm is
then executed over a meta-test set, which estimates its performance in unseen data.

[39], G statistics [40], Mantaras criterion [41], hypergeo-
metric distribution [42], Chandra-Varghese criterion [43],
DCSM [44], χ2 [45], mean posterior improvement [46],
normalized gain [47], orthogonal criterion [48], twoing
[38], CAIR [49] and gain ratio [20]. The second gene,
with a binary value, represents the split component of
a decision-tree algorithm, indicating whether the splits
of a decision tree will be necessarily binary or multi-
edged. In a binary tree, every split has only two outcomes
(edges). Thus, nominal attributes with many categories
have to be divided into two subsets, each representing an
aggregation over several categories. In a multi-edge tree,
nominal attributes are divided according to their num-
ber of categories, i.e., one edge for each category. In both
cases, numeric attributes always partition the tree into
two subsets (att ≤ threshold, att > threshold).

Stopping criteria genes
The second category of genes concerns the stopping cri-
teria component of decision-tree induction algorithms.
The top-down induction of a decision tree is recursive
and it continues until a stopping criterion is satisfied. We
implemented the following stopping criteria:

1) Reaching class homogeneity — when all instances
that reach a given node belong to the same class,
there is no reason to split this node any further. This
strategy can be combined with any of the following
strategies;

2) Reaching the maximum tree depth — a parameter
tree depth can be specified to avoid deep trees. We
have fixed its range in the interval [2, 10] levels;

3) Reaching the minimum number of instances for a
non-terminal node — a parameter minimum number

of instances for a non-terminal node can be specified
to avoid (or at least alleviate) the data fragmentation
problem in decision trees. Range: [1, 20] instances;

4) Reaching the minimum percentage of instances for a
non-terminal node — same as before, but instead of
the current number of instances, we set the
minimum percentage of instances. Its range is
[1%, 10%] of the total number of instances;

5) Reaching an accuracy threshold within a node — a
parameter accuracy reached can be specified to stop
the growth of the tree when the accuracy within a
node (majority of instances) reaches a given
threshold. Possible values are
{70%, 75%, 80%, 85%, 90%, 95%, 99%}.

The first of the stopping criteria genes selects one of
the five different strategies for stopping the tree growth.
The second gene dynamically adjusts a value within the
range [0, 100] to the corresponding strategy. For exam-
ple, if the strategy selected by the first gene is reaching the
maximum tree depth, the following mapping function is
executed: result = (value mod 9) + 2. This function maps
from [0, 100] to [2, 10], which is what was defined as the
range of this strategy.

Pruning genes
Pruning is usually performed in decision trees for enhanc-
ing tree comprehensibility by reducing its size while main-
taining (or even improving) accuracy. We implemented
the following well-known pruning strategies: i) reduced-
error pruning; ii) pessimistic error pruning; iii) minimum
error pruning; iv) cost-complexity pruning; and v) error-
based pruning.

Barros et al. BMC Bioinformatics 2012, 13:310 Page 5 of 14
http://www.biomedcentral.com/1471-2105/13/310

1) Reduced-error pruning (REP) is a conceptually simple
strategy proposed by Quinlan [50]. It uses a pruning
set to evaluate the goodness of a given subtree from
T. The idea is to evaluate each non-terminal node t
with regard to the classification error in the pruning
set. If such an error decreases when we replace the
subtree T (t) rooted on t by a leaf node, then T (t)

must be pruned. Quinlan imposes a constraint: a
node t cannot be pruned if it contains a subtree that
yields a lower classification error in the pruning set.
The practical consequence of this constraint is that
REP should be performed in a bottom-up fashion.

2) Pessimistic error pruning (PEP) [50] uses the training
set for both growing and pruning the tree. The
apparent error rate is optimistically biased and
cannot be used to decide whether pruning should be
performed or not. Quinlan thus proposes adjusting
the apparent error according to the continuity
correction for the binomial distribution in order to
provide a more realistic error rate. PEP is computed
in a top-down fashion, and if a given node t is
pruned, its descendants are not examined, which
makes this pruning strategy efficient in terms of
computational effort.

3) Minimum error pruning (MEP) [51] is a bottom-up
approach that seeks to minimize the expected error
rate for unseen cases. It uses an ad-hoc parameter m
for controlling the level of pruning. Usually, the
higher the value of m, the more severe the pruning.
Cestnik and Bratko [51] suggest that a domain expert
should set m according to the level of noise in the
data. Alternatively, a set of trees pruned with
different values of m could be offered to the domain
expert, so he/she can choose the best one according
to his/her experience.

4) Cost-complexity pruning (CCP) is the post-pruning
strategy of the CART system [38]. It consists of two
steps: (i) generate a sequence of increasingly smaller
trees, beginning with T and ending with the root
node of T, by successively pruning the subtree
yielding the lowest cost complexity, in a bottom-up
fashion; (ii) choose the best tree among the sequence
based on its relative size and accuracy (either on a
pruning set, or provided by a cross-validation). The
idea within step (i) is that pruned tree Ti+1 is
obtained by pruning the subtrees that show the
lowest increase in the apparent error (error in the
training set) per pruned leaf. Regarding step (ii), CCP
chooses the smallest tree whose error (either on the
pruning set or on cross-validation) is not more than
one standard error greater than the lowest error
observed in the sequence of trees.

5) Error-based pruning (EBP) was proposed by Quinlan
and it is implemented as the default pruning strategy

of C4.5 [20]. It is an improvement over PEP, based on
a far more pessimistic estimate of the expected error.
Unlike PEP, EBP performs a bottom-up search, and it
carries out not only the replacement of non-terminal
nodes by leaves but also grafting of subtree T (t) onto
the place of parent t. For deciding whether to replace
a non-terminal node by a leaf (subtree replacement),
to graft a subtree onto the place of its parent (subtree
raising) or not to prune at all, a pessimistic estimate
of the expected error is calculated by using an upper
confidence bound.

We designed two genes in HEAD-DT for pruning. The
first gene indexes one of the five approaches for pruning a
DT (and also the option of not pruning at all). The second
gene is in the range [0, 100] and its value is dynamically
mapped by a function, according to the pruning method
selected (similar to the second stopping criteria gene). For
REP, the parameter is the percentage of training data to
be used in the pruning set (varying within the interval
[10%, 50%]). For PEP, the parameter is the number of stan-
dard errors (SEs) to adjust the apparent error, in the set
{0.5, 1, 1.5, 2}. For MEP, the parameter m may range within
[0, 100]. For CCP, there are two parameters: the number
of SEs (in the same range than PEP) and the pruning set
size (in the same range than REP). Finally, for EBP, the
parameter CF may vary within [1%, 50%].

Missing values genes
Handling missing values is an important issue in decision-
tree induction and its use for classification. We designed
three genes for dealing with missing values in distinct
scenarios: (i) during split evaluation; (ii) during instance
distribution; and (iii) during classification, as follows.

For the split criterion evaluation of node t based on
attribute ai, we implemented the following strategies:
1) ignore all instances whose value of ai is missing; 2)
imputation of missing values with either the mode (nom-
inal attributes) or the mean (numeric attributes) of all
instances in t; 3) weight the splitting criterion value (cal-
culated in node t with regard to ai) by the proportion of
missing values; 4) imputation of missing values with either
the mode (nominal attributes) or the mean (numeric
attributes) of all instances in t whose class attribute is the
same of the instance whose ai value is being imputed.

For deciding which child node training instance xj
should go to, considering a split in node t over ai, we
adopted the following options: 1) ignore instance xj; 2)
treat instance xj as if it has the most common value of
ai, regardless of the class; 3) treat instance xj as if it has
the most common value of ai considering the instances
that belong to the same class than xj; 4) assign instance
xj to all partitions; 5) assign instance xj to the partition
with the largest number of instances; 6) weight instance xj

Barros et al. BMC Bioinformatics 2012, 13:310 Page 6 of 14
http://www.biomedcentral.com/1471-2105/13/310

according to the partition probability; 7) assign instance xj
to the most probable partition, considering the class of xj.

Finally, for classifying a new test instance xj, considering
a split in node t over ai, we used the strategies: 1) explore
all branches of t combining the results; 2) take the route
to the most probable partition (largest subset); 3) stop the
classification process and assign instance xj to the majority
class of node t.

Evolution and fitness evaluation
The evolution of individuals in HEAD-DT follows the
scheme presented in Figure 2. The 9-gene linear genome
of an individual in HEAD-DT is comprised of the build-
ing blocks described in the earlier sections: [split criterion,
split type, stopping criterion, stopping parameter, pruning
strategy, pruning parameter, mv split, mv distribution, mv
classification]. One possible individual encoded by that
linear string is [4, 1, 2, 77, 3, 91, 2, 5, 1], which accounts for
the following algorithm:

1) Recursively split nodes with the
G statistics criterion;

2) Create one edge for each category in
a nominal split;

3) Perform step 1 until class
-homogeneity or the maximum tree
depth of 7 levels ((77 mod 9) + 2)
is reached;

4) Perform MEP pruning with m = 91;
5) When dealing with missing values:

5.1) Impute missing values with
mode/mean during split
calculation;

5.2) Distribute missing-valued
instances to the partition with
the largest number of
instances;

5.3) For classifying an instance
with missing values, explore
all branches and combine the
results.

Figure 3 presents an example of how linear genomes are
decoded into algorithms, and how they participate of the
evolutionary cycle. The first step of HEAD-DT is the gen-
eration of the initial population, in which a population of
100 individuals is randomly generated (random number
generation within the genes acceptable range of values).
Then, the individuals participate in a pairwise tourna-
ment selection procedure for defining those that will
undergo genetic operators. Individuals may participate
in either one-point crossover (80% probability), random
uniform gene mutation (15% probability), or reproduc-
tion (5% probability), the three mutually-exclusive genetic
operators employed in HEAD-DT. In addition, HEAD-DT

employs an elitism strategy, in which the best 5 individuals
are kept from one generation to the next.

During fitness evaluation, a meta-training set is used for
assessing the quality of each individual throughout evolu-
tion. The meta-test set is used to assess the quality of the
decision-tree induction algorithm evolved by HEAD-DT
(the best individual in Figure 2). There are two distinct
approaches for dealing with the meta-training and test
sets: (i) evolving a decision-tree induction algorithm tai-
lored to one specific data set; and (ii) evolving a single
decision-tree induction algorithm to be employed in mul-
tiple data sets. In the first case, we have a specific data set
to which we want to design a decision-tree induction algo-
rithm. In the second case, we have one (or several) data
set(s) comprising the meta-training set, and multiple data
sets comprising the meta-test set.

We perform experiments with both approaches pre-
viously described. In the first set of experiments, we
evolved a decision-tree induction algorithm tailored to
each molecular docking data set. In the second set, we
evolved a single decision-tree induction algorithm, using
only one data set, and applied this algorithm to all data
sets. In the first scenario, we use the classification accu-
racy of a validation set (25% the size of the training
set) to evolve the individuals (decision-tree algorithms)
of HEAD-DT. In the second scenario, we use the classi-
fication accuracy obtained by performing 10-fold cross-
validation in the meta-training set as our fitness function.

Results
The hypothesis we try to confirm in this paper is
that automatically-designed decision-tree induction algo-
rithms can be more effective than human-designed,
general-use decision-tree induction algorithms for solv-
ing problems of a particular domain. More specifically, we
investigate the problem of RDD through flexible-receptor
molecular docking simulations.

One way to evaluate a molecular docking simulation
(e.g. AutoDock) is by examining the resulting FEB value:
the smaller the FEB value, the better the binding of the
ligand into the receptor binding pocket. AutoDock is a
suit of programs used to predict the bound conforma-
tions of a ligand to a receptor, which applies a technique
that combines an algorithm of conformation-searching
with a rapid grid-based method of energy evaluation [52].
This grid-based method is performed by the module
of AutoDock called AutoGrid. It pre-calculates a three-
dimensional energy-based grid of interactions of various
atom types. AutoGrid generates a a grid map for each
atom in the ligand considering a probe atom that visits
each grid point. The interaction energy between the lig-
and and the probe atom is then calculated and stored. To
estimate the final FEB value, AutoDock applies an empir-
ical binding free energy function where the molecular

Barros et al. BMC Bioinformatics 2012, 13:310 Page 7 of 14
http://www.biomedcentral.com/1471-2105/13/310

8 0 1 4 1 1 2 2 5

...

individuals

algorithm
- code line 1
- code line 2
- ...

algorithm
- code line 1
- code line 2
- ...

algorithm
- code line 1
- code line 2
- ...

meta-training

... ...

14 1 2 10 4 5 3 1 20

5 0 4 90 2 7 1 3 10

Evolution
- selection
- crossover
- mutation

4 1 2 77 3 91 2 5 1

best individual

meta-test

algorithm
1. Recursively split nodes with the G statistics criterion;
2. Create one edge for each category in a nominal split;
3. Perform step 1 until class-homogeneity or the maximum
tree depth of 7 levels ((77 mod 9) + 2) is reached;
4. Perform MEP pruning with m = 91;
5. When dealing with missing values:

5.1. Impute missing values with mode/mean during split
calculation;

5.2. Distribute missing-valued instances to the partition
with the largest number of instances;

5.3. For classifying an instance, explore all branches and
combine the results;

compute
fitness

compute
fitness

compute
fitness

Figure 3 HEAD-DT in action. Figure 3 presents an illustration of HEAD-DT — a set of linear-genome individuals are decoded into algorithms and
executed over the meta-training set. The performance of these individuals is measured and the evolutionary cycle starts with typical operations
such as selection, crossover, and mutation. At the end of the cycle, the best (fitness-wise) individual is selected for inducing decision trees from the
meta-test set.

mechanism-based and empirical terms are multiplied by
coefficients obtained by linear regression analysis [52].

An important feature related to FEB is the Euclidean dis-
tance (measured in Angstrom, Å) between atoms in the
receptor’s residues and ligands. Thus, for each receptor-
amino acid residue, we calculate the distances between
theirs and the ligand atoms. For all calculated distances,
we only consider the shortest distance for each receptor
residue. Therefore, each receptor residue may be seen as a
predictive attribute in a data mining problem. Given that
the InhA receptor contains 268 amino acid residues, each
docking data set has 268 predictive attributes plus the FEB
class, which is the attribute we are interested in predict-
ing [53]. Each instance in a molecular docking data set is
a receptor snapshot. We produced a distinct data set for
each of the six previously mentioned ligands (see Table 1).

Since FEB is a continuous variable, we employ a dis-
cretization technique detailed in [54], which divides FEB
in five levels of binding quality. Such technique makes use
of the mode and standard deviation of FEB, dividing its
sorted values into intervals where border values of the dis-
tribution fit each instance into its proper class. The border
values are shown in Equation 1, where Mo and σ repre-
sents the mode and standard deviation values of the FEB
distribution.

Class =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Excelent if Mo − 2∗σ > FEB
Good if Mo − σ > FEB ≥ Mo − 2∗σ

Regular if Mo + σ > FEB ≥ Mo − σ

Weak if Mo + 2 ∗ σ > FEB ≥ Mo + σ

Negligible if FEB > Mo + 2∗σ

(1)

Barros et al. BMC Bioinformatics 2012, 13:310 Page 8 of 14
http://www.biomedcentral.com/1471-2105/13/310

Table 1 Summary of the data sets

Ligand # Instances # Attributes # Classes Class Distribution

NADH 2,823 268 (97) 5 205-1020-374-903-321

ETH 3,043 268 (108) 5 160-512-2131-226-14

PIF 3,042 268 (106) 5 7-223-2616-173-23

TCL 2,837 268 (78) 5 19-158-1866-645-149

INH 2,953 268 (89) 5 12-260-2420-175-86

JPM 2,786 268 (80) 5 5-201-1835-323-421

Table 1 presents the summary of the flexible-receptor docking data sets used in the experiments. Number os instances represents the total of valid docking results,
out of 3,100. Number of attributes shows the total of selected attributes, in parenthesis, from the initial 268. Class distributions are regarding the five FEB classes,
respectively: excellent, good, regular, weak, negligible.

Moreover, we perform attribute selection to reduce the
268-dimensional data sets using the following procedure:
we remove all attributes (residues) whose shortest dis-
tance to the ligand is larger than 5 Å (distances larger than
5 Å do not establish a meaningful contact between recep-
tor and ligand atoms). The number of disjointed attributes
is within parentheses in Table 1.

We perform two different kinds of experiments — one
for each fitness strategy previously detailed. In the first
experiment, the meta-training set is comprised of the
NADH data set (which is the natural ligand for recep-
tor InhA). The remaining five data sets (meta-test set) are
then used for assessing the performance of the decision-
tree algorithm that was tailored to the NADH data. For
each of the five data sets, a 10-fold cross-validation proce-
dure is performed. In the second experiment, HEAD-DT
automatically designs a decision-tree algorithm tailored to
each of the six data sets. Thus, each data set is divided in
training and test sets, in a 10-fold cross-validation proce-
dure, and then HEAD-DT designs an algorithm tailored
to each of the training folds. We analyze the average per-
formance of HEAD-DT in the 10-folds, considering both
test accuracy and tree size (total number of nodes) of the
corresponding decision trees.

In order to provide some reassurance about the validity
and non-randomness of the obtained results, we present
the results of the corrected resampled t-test statistic, fol-
lowing the approach proposed by Nadeau and Bengio [55].
Considering that the standard t-test has a high Type-I
error when used in conjunction with random subsam-
pling, Nadeau and Bengio [55] observe that this is due to
an underestimation of the variance because the samples
are not independent (i.e., the different training and test
sets overlap). Consequently, they propose to correct the
variance estimate by taking this dependency into account.
Let aj and bj be the accuracy of algorithms A and B respec-
tively, measured on run j (1 ≤ j ≤ k). Assume that in each
run, n1 instances are used for training and the remaining
n2 instances for testing. Let difj be the difference difj =
aj−bj, and μ̂ and σ̂ 2 the estimates of mean and variance of

the k differences. The statistic of the corrected resampled
t-test is:

t =
1
k

∑k
j=1 difj√(

1
k + n2

n1

)
× σ̂ 2

. (2)

Given that we employ a 10-fold cross-validation pro-
cedure, k = 10 and (n2/n1) = (1/9). To reject the
null hypothesis of equal performances between the algo-
rithms, the value of t is tested regarding the Student-t
distribution, with k − 1 degrees of freedom and α is
adjusted to (1−α)/2, i.e., tk−1,1−α/2. Considering α = 0.95
and 9 degrees of freedom, i.e., t9,0.025 = 2.26216, the null
hypothesis is rejected if t > 2.26216.

Experiment 1 — An evolved decision-tree algorithm
tailored to the NADH data set
Table 2 shows the classification accuracy and tree size of
HEAD-DT and C4.5. For HEAD-DT, it is actually present-
ing the results provided by the decision-tree algorithm
tailored to the NADH data set and tested on the remain-
ing five data sets. It illustrates the average accuracy and
tree size according to the 10-fold cross-validation proce-
dure. The average of the differences μ̂ and variance of the
differences σ̂ 2 are also presented.

First, let us consider the accuracy results depicted in
Table 2. For computing the t value for each data set, we
have:

tETH = 0.08√(1
10 + 1

9
) × 0.0007

= 6.25 (3)

tPIF = 0.06√(1
10 + 1

9
) × 0.0004

= 6.22 (4)

tTCL = 0.08√(1
10 + 1

9
) × 0.0003

= 9.12 (5)

tINH = 0.05√(1
10 + 1

9
) × 0.0001

= 8.28 (6)

Barros et al. BMC Bioinformatics 2012, 13:310 Page 9 of 14
http://www.biomedcentral.com/1471-2105/13/310

Table 2 Results of Experiment 1

Measure Ligand HEAD C4.5 μ̂ σ̂ 2 t

Accuracy

ETH 0.71 ± 0.02 0.62 ± 0.02 0.08 0.0008 6.25

PIF 0.86 ± 0.00 0.80 ± 0.02 0.06 0.0004 6.22

TCL 0.65 ± 0.02 0.57 ± 0.02 0.08 0.0003 9.12

INH 0.84 ± 0.01 0.79 ± 0.01 0.05 0.0001 8.28

JPM 0.72 ± 0.02 0.65 ± 0.02 0.07 0.0004 7.62

Tree Size

ETH 45.40 ± 9.88 539.80 ± 29.64 494.40 1174.04 31.48

PIF 6.80 ± 0.63 283.00 ± 39.97 276.20 1603.95 15.00

TCL 38.20 ± 8.17 588.00 ± 37.39 549.80 1549.73 30.40

INH 12.20 ± 3.91 278.60 ± 24.80 266.40 568.71 24.31

JPM 28.20 ± 6.48 483.80 ± 19.76 455.60 408.71 49.05

Table 2 presents the classification accuracy and tree size of HEAD-DT and C4.5 in the ETH, PIF, TCL, INH, and JPM data sets. HEAD-DT results were obtained by running a
single decision-tree algorithm tailored to the NADH data set.

tJPM = 0.07√(1
10 + 1

9
) × 0.0004

= 7.62 (7)

Regarding the ETH data set, the value of t is 6.25, and
since 6.25 > 2.26, HEAD-DT significantly outperforms
C4.5 in the ETH data set. The same can be said for the
PIF (t = 6.22), TCL (t = 9.12), INH (t = 8.28), and JPM
(t = 7.62) data sets. These results suggest that evolving a
decision-tree algorithm tailored to a particular domain —
recall that in this experiment, the domain was represented
by the NADH data set — is a good idea for generating
more accurate decision trees.

We can also verify in Table 2 whether the trees gen-
erated by the evolved algorithm are more comprehensi-
ble (i.e., smaller) than those generated by C4.5. We can
observe that HEAD-DT is able to generate much smaller
trees than C4.5 for each data set. In the ETH data set,
HEAD-DT generates trees that are, on average, 12 times
smaller than those generated by C4.5. In PIF, this dif-
ference is even greater: HEAD-DT generates trees that
are, on average, 40 times smaller than the C4.5 generated
trees. The difference in the TCL data set is also large in
favor of HEAD-DT: trees 15 times smaller, on average. The
same behavior is observed in the INH (23 times smaller)
and JPM (17 times smaller) data sets. These very large
differences are reflected in the statistical test, as follows:

tETH = 494.4√(1
10 + 1

9
) × 1, 174.04

= 31.48 (8)

tPIF = 276.2√(1
10 + 1

9
) × 1, 603.95

= 15.00 (9)

tTCL = 549.8√(1
10 + 1

9
) × 1, 549.73

= 30.40 (10)

tINH = 266.4√(1
10 + 1

9
) × 568.71

= 24.31 (11)

tJPM = 455.6√(1
10 + 1

9
) × 408.71

= 49.05 (12)

These values indicate that HEAD-DT clearly outper-
forms C4.5 with statistical significance regarding tree
size. The evolved algorithm that was tailored to NADH
and then applied to the remaining three data sets is the
following:

1) Recursively split nodes with the
Gain Ratio criterion;

2) Create one edge for each category in
a nominal split;

3) Perform step 1 until
class-homogeneity or the minimum
number of 15 instances is reached;

4) Perform EBP pruning with cf = 5%;
5) When dealing with missing values:

5.1) Ignore missing values in split
calculation;

5.2) Weight missing values according
to the partition probability;

5.3) For classifying an instance
with missing values, go to the
most probable partition.

Experiment 2 — An evolved decision-tree algorithm for
each data set
In this experiment, we make use of HEAD-DT to evolve
a decision-tree algorithm tailored to each ligand data set
(one algorithm per data set). Table 3 presents the results
of this strategy.

Observe that HEAD-DT generates more accurate trees
than C4.5 for all data sets. The values of t for each data

Barros et al. BMC Bioinformatics 2012, 13:310 Page 10 of 14
http://www.biomedcentral.com/1471-2105/13/310

Table 3 Results of Experiment 2

Measure Ligand HEAD C4.5 μ̂ σ̂ 2 t

Accuracy

ETH 0.70 ± 0.02 0.62 ± 0.02 0.08 0.00074 6.28

PIF 0.87 ± 0.00 0.80 ± 0.02 0.06 0.00045 6.39

TCL 0.65 ± 0.02 0.57 ± 0.02 0.07 0.00022 10.85

NADH 0.75 ± 0.03 0.72 ± 0.02 0.03 0.00054 2.28

INH 0.83 ± 0.02 0.79 ± 0.01 0.04 0.00033 4.57

JPM 0.72 ± 0.02 0.65 ± 0.02 0.07 0.00061 5.90

Tree Size

ETH 30.20 ± 38.09 539.80 ± 29.64 510.0 2147.38 23.95

PIF 17.80 ± 13.44 283.00 ± 39.97 265.2 1174.40 16.84

TCL 43.00 ± 37.49 588.00 ± 37.39 545.0 3193.11 20.99

NADH 87.00 ± 36.42 360.00 ± 22.33 273.0 2379.78 12.18

INH 42.80 ± 27.96 278.60 ± 24.80 235.8 1313.29 14.16

JPM 121.80 ± 65.60 483.80 ± 19.76 362.0 4152.00 12.23

Table 3 presents the classification accuracy and tree size of HEAD-DT and C4.5 in the ETH, PIF, TCL, NADH, INH, and JPM data sets. HEAD-DT results were obtained by
running an evolved decision-tree algorithm tailored to each data set.

set are: 6.28 (ETH), 6.39 (PIF), 10.85 (TCL), 2.28 (NADH),
4.57 (INH), and 5.90 (JPM) which means that the trees
generated by the algorithms evolved by HEAD-DT out-
perform those by C4.5 with statistical significance in all
data sets, regarding test accuracy. The next step is, once
again, to verify whether the trees generated by the evolved
algorithms are more comprehensible than those generated
by C4.5. We can see in Table 3 that the trees generated
by HEAD-DT are much smaller than those by C4.5. The
values of t for ETH, PIF, TCL, NADH, INH, and JPM are,
respectively: 23.95, 16.84, 20.99, 12.18, 14.16, and 12.23.
Hence, the trees generated by HEAD-DT are significantly
smaller than the trees provided by C4.5 with statistical
assurance.

Discussion
We conclude from Experiments 1 and 2 that both strate-
gies for automatically generating decision-tree algorithms
are effective for the problem of RDD with flexible-receptor
docking data. Experiment 1 seems to be a better option
than Experiment 2, considering that it requires a sin-
gle execution of HEAD-DT, instead of multiple runs —
one for each data set. After evolving a single algorithm
in Experiment 1, the computational cost of applying the
evolved algorithm in new data sets is very low: build-
ing a tree takes O(m × n log n) time (m is the number
of attributes and n the number of instances), plus the
individual complexity of a pruning method. A single exe-
cution of HEAD-DT requires operations such as breeding
and fitness evaluation. Breeding takes negligible time,
which is a known fact in evolutionary algorithms that deal
with strings. Fitness evaluation, on the other hand, is the
bottleneck of HEAD-DT, because each individual has to

generate a decision tree for a given data set. We can esti-
mate the time complexity of HEAD-DT as O(i × g × m ×
n log n), where i is the number of individuals and g the
number of generations. In practice, however, the number
of evaluations is much smaller than i×g, because repeated
individuals are not re-evaluated. Also, individuals selected
by elitism and reproduction are not re-evaluated, saving
computational time.

Our experiments suggest that not only the resulting
trees from the tailored algorithms are more accurate than
those generated by C4.5, but also significantly smaller
(i.e., more comprehensible). The importance of generating
comprehensible predictive models in several application
domains has already been established. In bioinformat-
ics, it provides advantages such as [35]: (i) improving
the biologist’s confidence in the prediction; (ii) giving the
biologist new insight about the data; (iii) giving the biol-
ogist ideas for hypotheses creation; and (iv) allowing the
detection of errors in the model or in the data. Hence,
we believe HEAD-DT is a good alternative to C4.5 for
domains in which comprehensible accurate models are of
great importance, such as molecular docking.

Considering the importance of model-comprehensi-
bility to confirm or reject hypotheses regarding the
available data, we briefly discuss some intriguing facts
regarding the decision tree generated in Experiment 1
with data from the ETH ligand. The generated tree has
a total of 49 nodes and 25 leaves (see Figure 4). We first
highlight that only the three levels of FEB that indicate
a reasonable conformation of InhA to ETH (REGULAR,
GOOD, EXCELLENT) appear in the leaves. More specif-
ically, the decision tree ignored rules that could predict
conformations that are irrelevant with respect to the
docking experiments.

Barros et al. BMC Bioinformatics 2012, 13:310 Page 11 of 14
http://www.biomedcentral.com/1471-2105/13/310

Figure 4 Decision tree generated in Experiment 1 with data from
the ETH ligand. Figure 4 presents a decision tree generated by the
algorithm evolved in Experiment 1 (tailored to the NADH data set),
which was trained with data from the ETH ligand.

Regarding our findings within the decision tree model,
note that ETH binds to InhA as an adduct (ETH-NADH)
formed with the NADH coenzyme [56]. The active site
of the InhA receptor, composed of the coenzyme and
substrate-binding cavity, is almost completely filled during
InhA-ETH-NADH interaction [13]. Almost all residues
found in the ETH decision tree model are directly related
or very close to the definition of the receptor active
site. For instance, we verify that three of them (PHE41,
GLY192, PRO193) are listed as the top-25 most sig-
nificant residues to InhA flexibility, as reported in [53].
PHE41 helps fit the adenine portion of NADH into its
binding site while GLY192 and PRO193 are located
in the substrate-binding loop region. This is a remark-
able prediction since these residues do actually make
direct contact with the adduct in the crystal structure
[13], meaning that they are determinant to the inhibi-
tion of InhA by ETH. In addition, of other six residues
that appear in the model (VAL12, ILE15, ILE120,
ALA124, ASN159, VAL163), one (ILE15) interacts
directly with the adduct while the others are structural
nearest-neighbors to the residues that belong to the top-
25. Having such information at hand allowed the biologist
to improve his/her understanding regarding InhA flexibil-
ity and function, as well as its behavior when docking with
ETH and other similar ligands.

Looking at the leaves that classify snapshots as
EXCELLENT, we noticed that the residues in their paths
are quite far from the receptor binding pocket. Even
though these residues seem to be irrelevant at first sight,
they are actually determining whether the residues that
are closer to the receptor can actually provide lower FEB
values, and thus better conformation of InhA to ETH. For
instance, we obtained the following rules in the decision
tree model:

(1) IF (ILE15 > 13.37) AND (ASN159 <=
4.97)
THEN FEB = EXCELLENT

(2) IF (ILE15 > 13.37) AND (ASN159 >

4.97) AND (LEU218 > 2.63) AND
(ILE258 <= 10.81) AND (VAL163 >

11.45) AND (GLY263 <= 6.08)
THEN FEB = EXCELLENT.

Rule (1) indicates that an excellent conformation of InhA
to ETH imply in the receptor residue Isoleucine-15 being

Barros et al. BMC Bioinformatics 2012, 13:310 Page 12 of 14
http://www.biomedcentral.com/1471-2105/13/310

far from the binding pocket (in distances greater than
13.37 Å) and, at the same time, the residue Asparagine-159
being relatively close to the receptor (in distances lesser
than 4.97 Å). Inspection of the InhA - ETH-NADH crystal
structure [13] confirms this finding.

Conversely, rule (2) indicates that a conformation of
InhA to ETH may also be excellent if residue Asparagine-
159 is far from the receptor (a distance greater than
4.97 Å), though assuming that the remaining residues
presented in rule (2) meet their distance requirements.
Figure 5 shows the residue-attribute mapping for the ETH
ligand. In general the agreement between predicted and
experimental binding modes is very satisfactory, as illus-
trated by the mapping of rule (2) to the experimental
structure (Figure 5B). Only two residues, ILE258 and
GLY263, did not satisfy the rule. These exceptions can
be explained by the fact that the rules are based on a
fully-flexible (FFR) model of the InhA receptor. We believe
that structural differences between snapshots in the FFR
model create a space in the receptor’s binding cavities,
which differs from the one we see in the rigid, crystal
structure. The FFR model of InhA can therefore accom-
modate a more diverse range of ligand conformations and
orientations.

All the information presented so far is exactly what
we expect from a comprehensible model generated from
the flexible-receptor molecular docking data: helping to
significantly reduce the number of snapshots in future

Figure 5 Residue-attribute mapping for the ETH decision tree.
Figure 5 is composed as follows: (A) The main chain of the FFR-InhA
receptor is represented by grey ribbons. The amino acids residues
identified by the decision tree are represented as space-filled atoms.
For clarity, only the residues classified as Excellent (green) and
Good (orange) are shown. (B) The main chain of the experimental
structure (PDB ID: 2HI9) is shown in transparent grey ribbons together
with the mapped residues of rule (2) (Excellent) of the decision
tree and their distances (in Å) to the ligand. The ETH ligand is
represented by stick models (carbon: grey; nitrogen: blue; oxygen:
red; sulphur: yellow).

docking experiments. Hence the importance of provid-
ing comprehensible models, like those produced by deci-
sion trees and decision rules. At the same time, it must
be pointed out that very large decision trees (such as
those induced by C4.5) are not of easy interpretation,
since the specialist would need several hours to visu-
ally inspect interesting rules in a 500-node decision tree.
Whenever two decision tree models of similar perfor-
mance are compared, one should prefer the smaller one, as
stated by the Occam’s Razor principle. Recall that HEAD-
DT evolved algorithms that were able to induce signifi-
cantly more accurate and comprehensible decision trees
than C4.5.

Conclusions
In this work, we proposed a hyper-heuristic algorithm
capable of automatically designing decision-tree induc-
tion algorithms tailored to specific domains, namely
HEAD-DT. We investigated its efficiency in the predic-
tion of the free energy of binding of a drug candidate
with enzyme InhA associated with Mycobacterium tuber-
culosis. More specifically, we performed several exper-
iments with flexible-receptor docking data for ratio-
nal drug design, a bioinformatics application of known
importance.

We compared the algorithms automatically designed
by HEAD-DT to traditional state-of-the-art decision-tree
induction algorithm C4.5 [20]. We assessed the perfor-
mance of HEAD-DT through two different measures:
accuracy and tree size. The experimental analysis sug-
gested that HEAD-DT can generate algorithms which
perform significantly better than C4.5. These algorithms
can also induce significantly smaller trees, regarding the
domain of flexible-receptor docking data. The resulting
decision trees were analyzed by a biologist, who was
able to extract several interesting rules for helping future
docking experiments. For instance, the biologist verified
that three residues selected by the decision tree model
(PHE41, GLY192, PRO193) are determinant to the
inhibition of InhA by ETH.

We believe that these results indicate that HEAD-DT
can be an effective algorithm for domain-specific applica-
tions of decision trees, specially bioinformatics. As future
work, we plan to investigate whether a more sophisti-
cated search system, such as grammar-based genetic pro-
gramming, can outperform our current HEAD-DT imple-
mentation. We intend to employ HEAD-DT in further
experiments of flexible-receptor molecular docking data,
for helping in the discovery of new drug candidates to
Mycobacterium tuberculosis. In addition, considering the
good performance of HEAD-DT over flexible-receptor
docking data, we intend to test it in other relevant bioin-
formatics problems.

Barros et al. BMC Bioinformatics 2012, 13:310 Page 13 of 14
http://www.biomedcentral.com/1471-2105/13/310

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
RB implemented the method and wrote the manuscript. RB, MB, and AC
designed the experiments, evaluated the experimental results, and assessed
their statistical significance. AW, KM, DR, and ONS generated and
preprocessed the biological data, and also interpreted the resulting decision
trees. ONS interpreted and validated the biological findings. All authors read
and approved the final manuscript.

Acknowledgements
The authors would like to thank Fundação de Amparo à Pesquisa do Estado de
São Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Cientı́fico e
Tecnológico (CNPq), for funding this research.

Author details
1University of São Paulo, São Carlos, Brazil. 2Federal University of Santa Maria,
Santa Maria, Brazil. 3Federal University of Rio Grande, Rio Grande, Brazil.
4Federal University of São Paulo, São José dos Campos, Brazil. 5Pontifical
Catholic University of Rio Grande do Sul, Porto Alegre, Brazil.

Received: 22 May 2012 Accepted: 29 October 2012
Published: 21 November 2012

References
1. Lyne PD: Structure-based virtual screening: an overview. Drug Discov

Today 2002, 7:1047–1055.
2. Adams C, Brantner V: Spending on new drug development. Health

Econ 2010, 19:130-141.
3. Huang SY, Zou X: Ensemble docking of multiple protein structures:

Considering protein structural variations in molecular docking.
Proteins 2006, 66:399-421.

4. Verkhivker GM, Bouzida D, Gehlhaar DK, Rejto PA, Freer ST, Rose P W:
Computational detection of the binding-site hot spot at the
remodeled human growth hormone-receptor interface. Proteins
2003, 53(2):201–219.

5. Lin JH, Perryman AL, Schames JR, McCammon JA: The relaxed complex
method: Accommodating receptor flexibility for drug design with
an improved scoring scheme. Biopolymers 2003, 68:47–62.

6. Machado KS, Winck AT, Ruiz DD, Norberto de Souza O: Mining
flexible-receptor docking experiments to select promising protein
receptor snapshots. BMC Genomics 2010, 11(5):1–13.

7. Machado KS, Winck AT, Ruiz DD, Norberto de Souza O: Mining
flexible-receptor molecular docking data. WIREs Data Mining Knowl
Discov 2011, 1(6):532–541.

8. Dessen A, Quemard A, Blanchard J, Jacobs W, Sacchettini J: Crystal
Structure and Function of the Isoniazid Target of Mycobacterium
tuberculosis. Science 1995, 267:1638–1641.

9. Schroeder E, Basso L, Santos D, Norberto de Souza O: Molecular
Dynamics Simulation Studies of the Wild-Type, I21V, and I16T
Mutants of Isoniazid-Resistant Mycobacterium tuberculosis Enoyl
Reductase (InhA) in Complex with NADH: Toward the
Understanding of NADH-InhA Different Affinities. Biophys J 2005,
89:876–884.

10. Machado KS, Schroeder EK, Ruiz DD, Norberto de Souza O: Automating
molecular docking with explicit receptor flexibility using scientific
workflows. In II Brazilian Simposium on Bioinformatics; 2007:1–11.

11. Kuo M, Morbidoni H, Alland D, Sneddon S, Gourlie B, Staveski M, Leonard
M, Gregory J, Janjigian A, Yee C, Musser J, Kreiswirth B, Iwamoto H,
Perozzo R, Jacobs W, Sacchettini J, Fodock D: Targeting tuberculosis
and malaria through inhibition of Enoyl Reductase: compound
activity and structural data. J Biol Chem 2003, 278(23):20851–20859.

12. Oliveira JS, Sousa EHS, Basso LA, Palaci M, Dietze R, Santos DS, Moreira I:
An inorganic iron complex that inhibits wild-type and an
Isoniazid-resistant Mutant 2-trans-enoyl-ACP (CoA) Reductase from
Mycobacterium tuberculosis. Chem Commun 2004, 15:
312–313.

13. Wang F, Langley R, Gulten G, Dover L, Besra G, Jacobs WJ, Sacchettini J:
Mechanism of thioamide drug action against tuberculosis and
leprosy. J Exp Med 2007, 204:73–78.

14. Middlebrook G: Sterilization of tubercle bacilli by isonicotinic acid
hydrazide and the incidence of variants resistant to the drug in
vitro. Am Rev Tuberc 1952, 65:765–767.

15. Freundlich J, Wang F, Vilcheze C, Gulten G, Langley R, Schiehser G,
Jacobus D, Jacobs WJ, Sacchettini J: Triclosan derivatives: towards
potent inhibitors of drug-sensitive and drug-resistant
Mycobacterium tuberculosis. Chem Med Chem 2009, 4(2):241–248.

16. Andres C, Hutter M: CNS Permeability of drugs predicted by a
Decision Tree. QSAR Comb Sci 2006, 25(4):305–309.

17. Lee S, Yang J, Oh KW: Prediction of molecular bioactivity for drug
design using a decision tree algorithm. In Discovery Science ’03;
2003:344–351.

18. Han L, Wang Y, Bryant S: Developing and validating predictive
decision tree models from mining chemical structural fingerprints
and high-throughput screening data in PubChem. BMC Bioinformatics
2008, 9:401.

19. Blower PE, Cross KP: Decision tree methods in pharmaceutical
research. Curr Top Med Chem 2006, 6:31–39.

20. Quinlan JR: C4.5: Programs for Machine Learning. San Francisco: Morgan
Kaufmann; 1993.

21. Barros RC, Basgalupp MP, de Carvalho AC, Freitas AA: A hyper-heuristic
evolutionary algorithm for automatically designing decision-tree
algorithms. In Proceedings of the fourteenth international conference on
Genetic and evolutionary computation conference GECCO ’12. New York:
ACM; 2012:1237–1244.

22. Murthy SK: Automatic construction of decision trees from data: a
multi-disciplinary survey. Data Min Knowl Disc 1998, 2(4):345–389.

23. Tan PN, Steinbach M, Kumar V: Introduction to Data Mining. Boston:
Addison-Wesley; 2005.

24. Quinlan JR: Induction of decision trees. Mach Learn 1986, 1:81–106.
25. Barros RC, Cerri R, Jaskowiak PA, de Carvalho ACPLF: A bottom-up

oblique decision tree induction algorithm. In 11th International
Conference on Intelligent Systems Design and Applications; 2011:450–456.

26. Barros RC, Basgalupp MP, de Carvalho ACPLF, Freitas AA: A survey of
evolutionary algorithms for decision-tree induction. IEEE T Syst Man
Cy C 2012, 42(3):291–312.

27. Barros RC, Ruiz DD, Basgalupp MP: Evolutionary model trees for
handling continuous classes in machine learning. Inf Sci 2011,
181:954–971.

28. Barros RC, Basgalupp MP, Ruiz DD, de Carvalho ACPLF, Freitas A A:
Evolutionary model tree induction. In 2010 ACM SAC; 2010:1131–1137.

29. Basgalupp MP, Barros RC, de Carvalho ACPLF, Freitas A A, Ruiz DD:
LEGAL-Tree: a lexicographic multi-objective genetic algorithm for
de. In 2009 ACM SAC; 2009:1085–1090.

30. Basgalupp MP, de Carvalho ACPLF, Barros RC, Ruiz DD, Freitas AA:
Lexicographic multi-objective evolutionary induction of decision
trees. Int J Bioinspired Comput 2009, 1(1/2):105–117.

31. Breiman L: Random forests. Mach Learn 2001, 45:5–32.
32. Jensen L, Gupta R, Staerfeldt HH, Brunak S: Prediction of human protein

function according to gene ontology categories. Bioinformatics 2003,
19(5):635–642.

33. Vinayagama A, Konig R, Moormann J, Schubert F, Eils R, Glatting KH, Suhai
S: Applying support vector machines for gene ontology based gene
function prediction. BMC Bioinformatics 2004, 5:116.

34. Weinert WR, Lopes H: Neural networks for protein classification. Appl
Bioinformatics 2004, 3:41–48.

35. Freitas AA, Wieser DC, Apweiler R: On the importance of
comprehensible classification models for protein function
prediction. IEEE/ACM Trans Comput Biol Bioinformatics 2010, 7:
172–182.

36. Barros RC, Basgalupp MP, de Carvalho ACPLF, Freitas AA: Towards the
automatic design of decision tree induction algorithms. In
Proceedings of the 13th Annual Conference Companion on Genetic and
Evolutionary computation (GECCO 2011), GECCO ’11. New York: ACM;
2011:567–574.

37. Burke EK, Hyde MR, Kendall G, Ochoa G, Ozcan E, Woodward JR:
Exploring hyper-heuristic methodologies with genetic
programming. In Colaborative Computational Intelligence. Berlin /
Heidelberg: Springer; 2009:177–201.

38. Breiman L, Friedman JH, Olshen RA, Stone CJ: Classification and Regression
Trees. Wadsworth: Monterey; 1984.

Barros et al. BMC Bioinformatics 2012, 13:310 Page 14 of 14
http://www.biomedcentral.com/1471-2105/13/310

39. Gleser M, Collen M: Towards automated medical decisions. Comput
Biomed Res 1972, 5(2):180–189.

40. Mingers J: Expert systems - rule induction with statistical data. J Oper
Res Soc 1987, 38:39–47.

41. De Mántaras RL: A distance-based attribute selection measure for
decision tree induction. Mach Learn 1991, 6:81–92.

42. Martin J: An exact probability metric for decision tree splitting and
stopping. Mach Learn 1997, 28(2):257–291.

43. Chandra B, Varghese PP: Moving towards efficient decision tree
construction. Inf Sci 2009, 179(8):1059–1069.

44. Chandra B, Kothari R, Paul P: A new node splitting measure for
decision tree construction. Pattern Recogn 2010, 43(8):2725–2731.

45. Mingers J: An empirical comparison of selection measures for
decision-tree induction. Mach Learn 1989, 3(4):319–342.

46. Taylor PC, Silverman BW: Block diagrams and splitting criteria for
classification trees. Stat Comput 1993, 3:147–161.

47. Jun B, Kim C, Song YY, Kim J: A new criterion in selection and
discretization of attributes for the generation of decision trees. IEEE
T Pattern Anal 1997, 19(2):1371–1375.

48. Fayyad U, Irani K: The attribute selection problem in decision tree
generation. National Conference on Artificial Intelligence 1992:104–110.

49. Ching J, Wong A, Chan K: Class-dependent discretization for inductive
learning from continuous and mixed-mode data. IEEE T Pattern Anal
1995, 17(7):641–651.

50. Quinlan JR: Simplifying decision trees. Int J Man Mach Stud 1987,
27:221–234.

51. Cestnik B, Bratko I: On estimating probabilities in tree pruning. In
European Working Session on Learning. Berlin / Heidelberg: Springer;
1991:138–150.

52. Morris GM, Goodsell DS, Halliday R, Huey R, Hart W, Belew RK, Olson AJ:
Automated docking using a Lamarckian genetic algorithm and an
empirical binding free energy function. J Comput Chem 1998,
19(14):1639–1662.

53. Winck A, Machado K, Norberto de Souza O, Ruiz DD: Supporting
intermolecular interaction analyses of flexible-receptor docking
simulations. In International Conference on Applied Computing;
2010:183–190.

54. Machado K, Winck A, Ruiz DD, Norberto de Souza O: Comparison of
discretization methods of flexible-receptor docking data for
analyses by decision trees. In International Conference on Applied
Computing; 2010:223–229.

55. Nadeau C, Bengio Y: Inference for the generalization error. Mach Learn
2003, 52(3):239–281.

56. Schroeder E, Norberto de Souza O, Santos D, Blanchard J, Basso L: Drugs
that inhibit mycolic acid biosynthesis in Mycobacterium
tuberculosis. Curr Pharm Biotechnol 2002, 3(3):197–225.

doi:10.1186/1471-2105-13-310
Cite this article as: Barros et al.: Automatic design of decision-tree induction
algorithms tailored to flexible-receptor docking data. BMC Bioinformatics
2012 13:310.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

	Abstract
	Background
	Results
	Conclusions

	Background
	Method
	Decision trees background
	HEAD-DT
	Split genes
	Stopping criteria genes
	Pruning genes
	Missing values genes
	Evolution and fitness evaluation

	Results
	Experiment 1 — An evolved decision-tree algorithm tailored to the NADH data set
	Experiment 2 — An evolved decision-tree algorithm for each data set

	Discussion
	Conclusions
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.440 793.440]
>> setpagedevice

