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Abstract—A large class of entity extraction tasks from text that is either semistructured or fully unstructured may be addressed by

regular expressions, because in many practical cases the relevant entities follow an underlying syntactical pattern and this pattern may

be described by a regular expression. In this work, we consider the long-standing problem of synthesizing such expressions

automatically, based solely on examples of the desired behavior. We present the design and implementation of a system capable of

addressing extraction tasks of realistic complexity. Our system is based on an evolutionary procedure carefully tailored to the specific

needs of regular expression generation by examples. The procedure executes a search driven by a multiobjective optimization strategy

aimed at simultaneously improving multiple performance indexes of candidate solutions while at the same time ensuring an adequate

exploration of the huge solution space. We assess our proposal experimentally in great depth, on a number of challenging datasets.

The accuracy of the obtained solutions seems to be adequate for practical usage and improves over earlier proposals significantly. Most

importantly, our results are highly competitive even with respect to human operators. A prototype is available as a web application at

http://regex.inginf.units.it.

Index Terms—Genetic programming, information extraction, programming by examples, multiobjective optimization, heuristic search
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1 INTRODUCTION

Aregular expression is a means for specifying string pat-
terns concisely. Such a specification may be used by a

specialized engine for extracting the strings matching the
specification from a data stream. Regular expressions are a
long-established technique for a large variety of application
domains, including text processing, and continue to be a
routinely used tool due to their expressiveness and flexibil-
ity. A large class of entity extraction tasks, in particular, may
be addressed by regular expressions, because in many prac-
tical cases the relevant entities follow an underlying syntac-
tical pattern and this pattern may be described by a regular
expression. However, the construction of regular expres-
sions capable of guaranteeing high precision and high recall
for a given extraction task is tedious, difficult and requires
specific technical skills.

In this work, we consider the problem of synthesizing a
regular expression automatically, based solely on examples of
the desired behavior. This problem has attracted consider-
able interest, since a long time and from different research
communities. A wealth of research efforts considered classifi-
cation problems in formal languages [1], [2], [3], [4], [5], [6]—
those results are not immediately useful for text extraction.
Essentially, the problem considered by those efforts con-
sisted in inferring an acceptor for a regular language based
on positive and negative sample strings, i.e., of strings
described by the language and of strings not described by

the language. Learning of deterministic finite automata (DFA)
from exampleswas also a very active area, especially because
of competitions that resulted in several important insights
and algorithms, e.g., [7], [8]. Such research, however, usually
considered problems that were not inspired by any real
world application [8] and the applicability of the correspond-
ing learning algorithms to other application domains is still
largely unexplored [9]. For example, the so-called Abba-
dingo competition was highly influential in this area and
considered short sequences of binary symbols, with training
data drawn uniformly from the input space. Settings of this
sort do not fit the needs of practical text processing applica-
tions, which have to cope with much longer sequences of
symbols, from a much larger alphabet, not drawn uniformly
from the space of all possible sequences. Furthermore, regu-
lar expressions used in modern programming languages
allow specifying more various extraction tasks than those
which can be specified using a DFA.

A text extraction problem was addressed by researchers
from IBM Almaden and the University of Michigan, which
developed a procedure for improving an initial regular
expression to be provided by the user based on examples of
the desired functioning [10]. The cited work is perhaps the
first one addressing entity extraction from real text of non
trivial size and complexity: the entities to be extracted
included software names, email addresses and phone num-
bers while the datasets were unstructured and composed of
many thousands of lines. A later proposal by researchers
from IBM India and Chennai Mathematical Institute still
required an initial regular expression but was more robust
toward initial expressions of modest accuracy and noisy
datasets [11]. Refinement of a given regular expression was
also considered by an IBMResearch group, which advocated
involvement of a human operator for providing feedback
during the process [12]. The need of an initial solution was
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removed by researchers from SAPAG that demonstrated the
practical feasibility of inferring a regular expression from
scratch, based solely on a set of examples derived from enter-
prise data, such as, e.g., a product catalog or historical invoi-
ces [13]. A more recent proposal of ours has obtained further
significant improvements in this area, in terms of precision
and recall of the generated solutions as well as in terms of
smaller amount of training data required [14], [15]. Regular
expressions for text extraction tasks of practical complexity
may now be obtained in a fewminutes, based solely on a few
tens of examples of the desired behavior.

In this work we present a system that aims at improving
the state-of-the-art in this area. Our proposal is internally
based on Genetic Programming (GP), an evolutionary comput-
ing paradigmwhich implements a heuristic search in a space
of candidate solutions [16]. We execute a search driven by a
multiobjective optimization strategy aimed at simultaneously
improving multiple performance indexes of candidate solu-
tions while at the same time ensuring an adequate explora-
tion of the huge solution space. Our proposal is a significant
improvement and redesign of the approach in [15], resulting
in a system that generates solutions of much better accuracy.
The improvements include: (a) a radically different way of
quantifying the quality of candidate solutions; (b) inclusion,
in the starting points of the search, of candidate solutions
built based on an analysis of the training data, rather than
being fully random; (c) a strategy for restricting the solution
space by defining potentially useful “building blocks” based
on an analysis of the training data; and (d) a simple mecha-
nism for enforcing structural diversity of candidate solutions.

Furthermore, the redesign features several novel proper-
ties which greatly broaden the scope of extraction tasks that
may be addressed effectively:

� Support for the or operator. In many cases learning a sin-
gle pattern capable of describing all the entities to be
extracted may be very difficult—e.g., dates may be
expressed in amyriad of different formats. Our system
is able to address such scenarios by generating several
regular expressions that are all joined together with or
operators to form a single, larger regular expression.
We implement this functionality by means of a sepa-
rate-and-conquer procedure [17], [18], [19]. Once a can-
didate regular expression provides adequate accuracy
on a subset of the examples, the expression is inserted
into the set of final solutions and the learning process
continues on a smaller set of examples including only
those not yet solved adequately [20]. The key point is
that the system is able to realize automatically how
many regular expressions are needed.

� Context-dependent extraction. It is often the case that a
text snippet must or must not be extracted depend-
ing on the text surrounding the snippet—e.g., an
email address might have to be extracted only when
following a Reply-To: header name. Modern regular
expression engines provide several constructs for
addressing these needs but actually taking advan-
tage of those constructs is very challenging: the more
the available constructs, the larger the search space.
Our system is able to generate regular expressions
which exploit lookaround operators effectively, i.e.,

operators specifying constraints on the text that pre-
cedes or follows the text to be extracted.

� No constraints on the size of training examples. We place
no constraints on the size of training examples: the
training datamay consist of either a single, potentially
very large, file with an annotation of all the desired
extractions, or of a set of lines with zero or more
extractions in each one. This seemingly minor detail
may in fact be quite important in practice: the cited
work [15] was not able to exploit training examples
including multiple extractions correctly (this point
will be discussed in detail later), thus the training data
had to be segmented in units containing at most one
extraction and in such a way that desired extractions
did not span across adjacent units. The need for such
a tricky operation is now removed. Accommodating
the possibility of multiple extractions in each training
example has required significant changes in the
search strategy internally used by the system.

We assess our proposal experimentally in great depth, on
a number of challenging datasets of realistic complexity and
with a very small portion of the dataset available for learn-
ing. We compare precision and recall of the regular expres-
sions generated by our system to significant baseline
methods proposed earlier in the literature. The results indi-
cate a clear superiority of our proposal and the obtained
accuracy values seem to be adequate for practical usage.
Our results are highly competitive also with respect to a
pool of more than 70 human operators, both in terms of
accuracy and of time required for building a regular expres-
sion. Indeed, we are not aware of any proposal for auto-
matic generation of regular expressions in which human
operators were used as a baseline.

Wemade publicly available the source code of our system
(https://github.com/MaLeLabTs/RegexGenerator) and
deployed an implementation as a web app (http://regex.
inginf.units.it).

2 RELATED WORK

In this sectionwe discuss further proposals that, beyond those
already discussed in the introduction, may be useful to place
our work in perspective with respect to the existing literature.
As pointed out by [10], the learning of regular expressions for
information extraction prior to the cited work focused on sce-
narios characterized by alphabet sizes much smaller than
those found in natural language text. Rather than attempting
to infer patterns over the text to be extracted, the usual
approach consisted on learning patterns over tokens generated
with various text processing techniques, e.g., POS tagging,
morphological analysis, gazetteermatching [21], [22], [23].

An attempt at learning regular expressions over real text
was proposed in [24]. The cited work considered reduced
forms of regular expressions (a small subset of POSIX
rules) and, most importantly, considered a simple classifi-
cation problem consisting in the detection of HTML lines
with a link to other web documents. Text classification and
text extraction are related but different problems, though.
The former assumes an input stream segmented in units to
be processed one at a time; one has to detect whether the
given input unit contains at least one interesting substring.
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The latter requires instead the ability to identify, in the
(possibly very long) input stream, the boundaries of all the
relevant substrings, if any. Furthermore, text extraction
usually requires the ability to identify a context for the
desired extraction, that is, a given sequence of characters
may or may not have to be extracted depending on its sur-
roundings. Interestingly, the approach in [15] was devel-
oped for extraction but delivered better results than in [24]
also in classification.

Further proposals for addressing classification problems
have been developed but tailored to very specific scenarios,
recent examples include email spam campaigns [25], [26]
and clinical symptoms [27].

There have been other proposals for regular expression
learning aimed at information extraction from real text, spe-
cifically web documents [28]. The cited work provides an
accuracy in URL extraction from real web documents that is
quite low—the reported value for F-measure being 27 per-
cent (on datasets that are not public). In this respect, it is
useful to observe that the latest proposal [15] obtained accu-
racy well above 90 percent in the 12 datasets considered;
moreover, two of those datasets were used also in [10], [13]
and in those cases it obtained similar or much better accu-
racy with a training set smaller by an order of magnitude.

The problem of learning a regular expression by examples
of the desired extraction behavior could be seen as a very spe-
cific problem in the broader category of programming by exam-
ples, where a program in a given programming language is to
be synthesized based on a set of input-output pairs [29]. In
particular, the problem is an under-specified task [30] in the
sense that there may usually be many different solutions
whose behavior on the training data is identical while their
behavior on unseen data is different. The citedwork considers
the generation of regular expressions for classification tasks
on phone numbers, dates, email addresses and URLs—tasks
that are considered to be tricky even for expert developers
and to lack an easy-to-formalize specification. It advocates the
writing of solutions by several expert developers based on
some examples, an assessment of their behavior on unseen
data made in crowd-sourcing, and an evolutionary optimiza-
tion of the available solutions based on the feedback from the
crowd. Our proposal generates a regular expression in a fully
automatic way. Furthermore, we assess our work on datasets
that are orders of magnitude larger than those considered
in [30] and on tasks that seems fair to define much more chal-
lenging. Of course, wemake these observations in the attempt
of clarifying our proposal and by nomeans we intend to criti-
cize the cited work: besides, the cited work investigates the
possibility of crowd-sourcing difficult programming tasks
and is notmeant to propose amethod for the automatic gener-
ation of regular expressions from examples. It is useful to
observe, though, that the authors of the cited work were not
aware of any approach suitable for learning regular expres-
sions capable of handling the large alphabet sizes occurring in
real-world text files, while such functionality was demon-
strated in [13], [14], [15].

As pointed out above, learning a program from examples
of the desired behavior is an intrinsically under-specified
task—there might be many different solutions with identical
behavior over the examples. Furthermore, in practice, there is
usually not even any guarantee that a solutionwhich perfectly

fits all the examples actually exists. The common approach for
addressing this issue, which is also our approach, aims at an
heuristic balance between generalization and overfitting: we
attempt to infer from the examples what is the actual desired
behavior, without insisting on obtaining perfect accuracy on
the training set. It may be worth mentioning that coding chal-
lenges exist (and occasionally become quite popular in pro-
gramming forums) which are instead aimed at overfitting a
list of examples [31], [32]. The challenge1 consists in writing
the shortest regular expression that matches all strings in a
given list and does not match any string in another given list.
Our proposal is not meant to address these scenarios. From
the point of view of our discussion, scenarios of this sort differ
from text extraction in several crucial ways. First, they are a
classification problem rather than an extraction problem. Sec-
ond, they place no requirements on how strings not listed in
the problem specification should be classified—e.g., strings in
the problem specification followed or preceded by additional
characters. Text extraction requires instead a form of generali-
zation, i.e., the ability of inducing a general pattern from the
provided examples.

Finally, we mention a recent proposal for information
extraction from examples [33]. The cited work describes a
powerful and sophisticated framework for extracting multi-
ple different fields automatically in semi-structured docu-
ments. As such, the framework encompasses a much
broader scenario than our work. A tool implementing this
framework has been publicly released as part of Windows
Powershell.2 The tool does not generate a regular expression;
instead, it generates a program in a specified algebra of string
processing operators that is to be executed by a dedicated
engine. We decided to include this tool in our experimental
evaluation in order to obtain further insights into our results.

3 SCENARIO

We are concerned with the task of generating a regular
expression which can generalize the extraction behavior
represented by some examples, i.e., by strings annotated
with the desired portions to be extracted. In this section we
define the problem statement in detail along with the nota-
tion which will be used hereafter.

We focus on the regular expression implementation
which is provided by the Java standard libraries. A deep
comparison of different flavours of regular expressions is
beyond the scope of this paper [34], yet it is worth to men-
tion that Java regular expressions provide more constructs
than POSIX extended regular expressions (ERE)—e.g., look-
arounds (see Section 4.1.1)—which allow to define patterns
in a more compact form.

3.1 Definitions

A snippet xs of a string s is a substring of s, identified by the
starting and ending index in s. For readability, we refer to
snippets using their textual content followed by their start-
ing index as subscript—e.g., ex5, extra5 and traction7, are
three different snippets of the string text extraction. We
denote by X s the set of all the snippets of s. Let xs; x

0
s 2 X s.

A total order is defined among snippets in X s based on their

1. https://www.google.it/search?q=regex+golf
2. Windows Management Framework 5.0 Preview, November 2014.
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starting index: xs precedes x
0
s if the starting index of the for-

mer is strictly lower than the starting index of the latter. We
say that xs is a supersnippet of x0

s if the indexes interval of xs

strictly contains the indexes interval of x0
s: in this case, x0

s is
a subsnippet of xs. Finally, we say that xs overlaps x0

s if the
intersection of their index intervals is not empty. For
instance, ex1, ex5, extra5 and traction7, are snippets of the
string text extraction: extra5 is a supersnippet of ex5 (but not
of ex1), extra5 precedes and overlaps traction7.

A regular expression r applied on a string s deterministi-
cally extracts zero, one or more snippets. We denote the
(possibly empty) set of such snippets, that we call extrac-
tions, by ½X s�r.

3.2 Problem Statement

The problem input consists of a set of examples, where an
example ðs;XsÞ is a string s associated with a (possibly
empty) set of non-overlapping snippets Xs � X s. String s
may be, e.g., a text line, or an email message, or a log file
and so on. Set Xs represents the desired extractions from s,
whereas snippets in X s nXs are not to be extracted.

Intuitively, the problem consists in learning a regular
expression r̂ whose extraction behavior is consistent with
the provided examples—r̂ should extract from each string s
only the desired extractions Xs. Furthermore, r̂ should cap-
ture the pattern describing the extractions, thereby generaliz-
ing beyond the provided examples. In other words, the
examples constitute an incomplete specification of the
extraction behavior of an ideal and unknown regular
expression r?. The learning algorithm should aim at infer-
ring the extraction behavior of r? rather than merely obtain-
ing from the example strings exactly the desired extractions.
We formalize this intuition as follows.

LetE andE? be two different sets of examples, both repre-
senting the extraction behavior of a target regular expression
r?. The problem consists in learning, from only the examples
in E, a regular expression r̂ which maximizes its F-measure
on E?, i.e., the harmonic mean of precision and recall w.r.t.
the desired extractions from the examples inE?:

Precðr̂; E?Þ :¼
P

ðs;XsÞ2E? ½X s�r̂ \Xs

�
�

�
�

P
ðs;XsÞ2E? ½X s�r̂

�
�

�
�

Recðr̂; E?Þ :¼
P

ðs;XsÞ2E? ½X s�r̂ \Xs

�
�

�
�

P
ðs;XsÞ2E? Xsj j :

The greater the F-measure of r̂ on E?, the more similar the
extraction behaviour of r̂ and r?.

We call the pair of sets of examples ðE;E?Þ a problem
instance. In our experimental evaluation we built several
problem instances starting from quite complex target
expressions r? and strings consisting of real world datasets
(e.g., logs, HTML lines, Twitter posts, and alike). Of course,
in a practical deployment of the system set E? is not avail-
able because the target expression r? is not known.

3.2.1 Observations on the Problem Statement

We point out that characterizing the features of a problem
instance which may impact the quality of a generated solu-
tion is beyond the scope of this paper. Assessing the

difficulty of a given problem instance, either in general or
when solved by a specific approach, is an important theoreti-
cal and practical problem. Several communities have long
started addressing this specific issue, e.g., in information
retrieval [35], [36] or in pattern classification [37], [38].
Obtaining practically useful indications, though, is still a
largely open problem, in particular, in evolutionary comput-
ing [39] as well as inmore general search heuristics [40], [41].

A notable class of problem instances is the one which we
call with context. Intuitively, these are the problem instances
in which a given sequence of characters is the textual content
of snippet to be extracted and also the textual content of a
snippet which is not to be extracted. For example, consider a
problem instance with the two examples ð I ] have ] 12 ]

dogs; ;Þ and ð Today ] is ] 7-12-11; f1211gÞ. This problem
instance is with context because the sequence of characters
12 is not to be extracted from the first example but is to be
extracted from the second example. The discriminant
between the two cases is in the portion of the string sur-
rounding the sequence 12, that is, in its context. Of course,
similar scenarios could occur with respect to sequences of
characters in the same example rather than in different exam-
ples—e.g., assuming an email message is an example, one
might want to extract only the email addresses following a
Reply-To: header name.

4 OUR APPROACH

Our approach is based on Genetic Programming [16]. GP is an
evolutionary computing paradigm in which candidate solu-
tions for a target problem, called individuals, are encoded as
trees. A problem-dependent numerical function, called fit-
ness, must be defined in order to quantify the ability of each
individual to solve the target problem. This function is usu-
ally implemented by computing a performance index of the
individual on a predefined set of problem instances, called
the learning set. A GP execution consists of an heuristic and
stochastic search in the solution space, looking for a solution
with optimal fitness. To this end, an initial population of
individuals is built, usually at random, and an iterative pro-
cedure is performed which consists in (i) building new indi-
viduals from existing ones using genetic operators (usually
crossover and mutation), (ii) adding new individuals to the
population, and (iii) discarding worst individuals.

The procedure is repeated a predefined number of times
or until a predefined condition is met (e.g., a solution with
perfect fitness is found).

We carefully adapted the general framework outlined
above to the specific problem of regular expression genera-
tion from examples. Our GP procedure is built upon our
earlier proposal [15]—the numerous improvements were
listed in the introduction. We describe this procedure in
detail in the next sections: encoding of regular expressions
as trees (Section 4.1.1), fitness definition (Section 4.1.2), con-
struction of the initial population and its evolution for
exploring the solution space (Section 4.1.3). Next, we
describe our separate-and-conquer strategy (Section 4.1.4)
and the overall organization of GP searches (Section 4.2).

4.1 GP Search

We designed a GP searchwhich takes a training set T as input
and outputs a regular expression r̂. The training set is
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composed of tuples ðs;Xd
s ;X

u
s Þ, the components of each tuple

being as follows: (i) a string s; (ii) a set of snippets Xd
s repre-

senting the desired extractions from s; (iii) a set of snippets
Xu

s representing the undesired extractions from s, i.e., no
snippet of s overlapping a snippet inXu

s should be extracted.
The training set T must be constructed such that 8s 2 T

(i) Xd
s \Xu

s ¼ ;, and, (ii) snippets in Xd
s [Xu

s must not over-
lap each other.

The goal of a GP search is to generate a regular expression

r such that 8s 2 T ; Xd
s ¼ ½X s�r. We recall that, from a broader

point of view, the generated regular expression r should gen-
eralize beyond the examples in T (see Section 3.2).

4.1.1 Tree Representation

In our proposal an individual is a tree which represents a
regular expression r. Each node in a tree is associated with a
label, which is a string representing basic components of a
regular expressions that are available to the GP search (dis-
cussed in detail below). Labels of non-leaf nodes include
the placeholder symbol �: each children of a node is associ-
ated with an occurrence of symbol � in the label of that
node. The regular expression represented by a tree is the
string constructed by means of a depth-first post-order visit
of the tree. In detail, we execute a string transformation of the
root node of that tree. The string transformation of a node is
a string obtained from the node label where each � symbol
is replaced by the string transformation of the associated
child. Fig. 1 shows two examples of tree representations of
regular expressions.

Available labels are divided in two sets: a set of prede-
fined labels which represent regular expression constructs,
and a set of T -dependent labels constructed as described
below. In other words, unlike the previous work in [15], the
GP search explores a space composed of candidate solutions
assembled from general regular expression constructs and
from components constructed before starting the GP search
by analyzing the provided examples. The rationale for
T -dependent labels consists in attempting to shrink the size
of the solution space by identifying those sequences of char-
acters which occurs often in the desired extractions (or
“around” them) and making these sequences available to
the GP search as unbreakable building blocks. For instance,
in the task of generating a regular expression for extracting
URLs, the string http could be an useful such block.

Predefined labels are the following: character classes (\d,
\w), predefined ranges (a-z, A-Z), digits (0, ..., 9), predefined

characters (\., :, ,, ;, _, =, ”, ’,\\ , /, \?, \!, \}, \{, \(, \), \[, \],<,
>, @, #, ] ), concatenator (�� � � � �), set of (un)possible

matches ([�], [⌃�]), possessive quantifiers (��þ , �++, �?+,
�{�,�}+), non-capturing group ((?:�)), and lookarounds
((?<=�), (?<!�), (?=�), (?!�)). We include possessive quanti-
fiers and we do not include greedy and lazy quantifiers3

because greedy and lazy quantifiers have worst-case expo-
nential complexity, which results in execution times for fit-
ness evaluation too long to be practical [15]. Unlike the
previouswork in [15], we include lookarounds for addressing
problem instances with context, i.e., scenarios where a given
sequence of characters has or has not to be extracted depend-
ing on its surroundings (Section 3.2.1). Lookaround is a short-
hand for regular expression constructs which allow defining
constraints on the text that either precedes or follows the snip-
pet to be extracted, in the form of text thatmust ormust not be
present (see [34] for details). For instance, the regular expres-
sion r ¼ ð? <¼ \d\d-\d\d-Þ\d++ contains a lookaround
operator, the positive lookbehind operator, that specifies which
text must precede the snippet to be extracted. Given the string
s ¼ born: ] 02-03-1979; ] graduated: ] 21-07-04; ] age : ] 35, the
set of extractions ½X s�r contains 1;97912 and 0437, but not 3544.
Some notable regular expression implementations (namely
JavaScript) does not workwith lookbehind.

Note that the mere addition of one or more regular
expression operators does not necessarily broaden the scope
of the system. The more the available constructs, the larger
the search space: a system with too many operators to
choose from may end up generating poor solutions. In fact,
during our early redesign with the proposal in [15] we were
unable to exploit lookaround operators effectively.

The set of T -dependent labels contains token labels and
partial range labels.

Token labels are generated as follows. A multiset Td of
candidate tokens is built by applying the regular expres-
sion \w+|\s+|[⌃\w\s]+ to each desired extraction in T :

that is, Td contains all the extractions obtained by that

regular expression on each element of
S

ðs;Xd
s ;X

u
s Þ2T X

d
s .

Then, the occurrency rate of each candidate token is com-

puted as its multiplicity in Td divided by j
S

ðs;Xd
s ;X

u
s Þ2T X

d
s j.

Finally, candidate tokens with an occurrency rate which is
greater than 80 percent are retained as token labels. The
same procedure is executed with respect to candidate

Fig. 1. Example of the population initialization from a training set of two examples: four individuals ra; rb; rc; rd are generated from the only desired
extraction xs1 . The trees corresponding to two of them are shown: note that, in rd, height is a token label (see Section 4.1.1). The subscript of the indi-
viduals (a-d) corresponds to the specific points described in Section 4.1.3.

3. Greedy quantifiers:�*�+�?� {�,�}. Lazy quantifiers:�*?�+?�??�{�,�}?
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tokens obtained from undesired extractions (only in tuples

ðs;Xd
s ;X

u
s Þ for which Xd

s 6¼ ;).
Partial range labels are obtained as the largest intervals of

alphanumeric characters whose elements occur in the

desired extractions (i.e., in
S

ðs;Xd
s ;X

u
s Þ2T X

d
s ). For instance, a-

c and l-n are two partial ranges labels obtained from the

strings cabin and male.

4.1.2 Fitness

The fitness definition, i.e., how to quantify the quality of a
candidate solution for the problem being solved, is a funda-
mental design decision in GP. Several practical applications
are based on a multiobjective approach, where the quality of a
candidate solution is assessed by means of two fitness
indexes: one for quantifying performance, the other for quan-
tifying a complexity index of the solution, typically its size.
Such an approach has proven to be very effective at prevent-
ing bloat, i.e., the proliferation of candidate solutions that
grow bigger in size without any corresponding improvement
in performance [42].

We developed a fitness definition in which the perfor-
mance of the solution is taken into account by two perfor-
mance indexes (differently from the single one used in [15]):
one considers examples at the level of full extractions; the
other considers instead each example as a character
sequence where each character, specified by its value and
position, is to be classified between extracted versus non
extracted. The aim of the latter is to rewards small improve-
ments at the character level in the extraction behavior, even
when they do not result in new full snippets correctly
extracted. The same aim motivated the fitness definition
of [15], but here we accommodate a scenario with multiple
extractions for each example, which was not tailored by the
cited paper. We couple the two performance indexes with
length of the regular expression, thereby resulting in three
fitness indexes.

Our fitness definition requires comparing the actual
extractions generated by a regular expression to the
desired extractions. To this end, we define two operators
over sets of snippets. Let Xs and X0

s be two sets of snip-
pets of s. The snippet set difference Xs �X0

s is the set com-
posed of each snippet in X s which satisfies the following
conditions: (i) is a subsnippet of, or is equal to, one or
more snippets in Xs, (ii) does not overlap any snippet in
X0

s, (iii) is not a subsnippet of any snippet which meets
the two previous conditions.

For instance, consider string s ¼ I ] said ] I ] wrote ] a ]

ShortPaper and the sets of snippets Xs ¼ fI0; I7;
ShortPaper17g, and X0

s ¼ fI0;Pap22g. It will be Xs �X0
s ¼

fI7; Short17; er25g. The snippet set intersectionXs uX0
s is defined

in the same way except that condition 4.1.2 requires to be a
subsnippet of, or to be equal to, one or more snippets inX0

s. In
the previous example it will beXs uX0

s ¼ fI0;Pap22g.
Each individual r is associated with a fitness tuple

fðrÞ :¼ Precðr; T Þ;Accðr; T Þ; ‘ðrÞð Þ. The first component
Precðr; T Þ of the fitness is the precision on the tuples in T :

Precðr; T Þ :¼
P

ðs;Xd
s ;X

u
s Þ2T ½X s�r \Xd

s

�
�

�
�

P
ðs;Xd

s ;X
u
s Þ2T ½X s�r u ðXd

s [Xu
s Þ

�
�

�
� :

The second component Accðr; T Þ is the average of the
True Positive Character Rate (TPCR) and True Negative
Character Rate (TNCR):

TPCRðr; T Þ :¼
P

ðs;Xd
s ;X

u
s Þ2T ½X s�r uXd

s

�
�

�
�

P
ðs;Xd

s ;X
u
s Þ2T Xd

s

�
�

�
�

TNCRðr; T Þ :¼
P

ðs;Xd
s ;X

u
s Þ2T ðfs0g � ½X s�rÞ uXu

s

�
�

�
�

P
ðs;Xd

s ;X
u
s Þ2T Xu

s

�
�

�
� ;

where kXk is the sum of the length of all the snippets in X
and s0 is the snippet consisting of the whole string s.

Finally, the latter component ‘ðrÞ is the length of the reg-
ular expression r (this index has to be minimized, unlike the
other two indexes which have to be maximized).

We rank individuals based on their fitness tuples as fol-
lows. An individual a Pareto-dominates another individual b if
a is better than b on at least one fitness element and not worse
on the other elements. An individual belongs to the ith frontier
if and only if it is Pareto-dominated only by individuals
belonging to jth frontier, with j < i (individuals in the first
frontier are not Pareto-dominated by any other individual).
Based on these definitions, we first sort individuals based on
the Pareto frontier they belong to. Second, we establish a total
order among individuals belonging to the same Pareto fron-
tier based on a lexicographic ordering among fitness indexes.

4.1.3 Initialization and Evolution

Our GP search operates on a fixed-size population of npop

individuals. We build the initial population basing on the
training set T , unlike the usual approach in GP which con-
sists of building the entire population at random (as in [15]).
We generate four individuals from each snippet in each
example, all generated so as to extract that snippet. The
rationale is to provide a sort of good starting point and use-
ful genetic material for the search.

In detail, for each snippet xs in
S

ðs;Xd
s ;X

u
s Þ2T X

d
s , we gen-

erate four individuals as described below—Fig. 1 shows an
example of the procedure applied to a single snippet.

a) A tree is generated from the textual content of xs using,
whenever possible andwith decreasing priority,

(i) nodes with token label to represent the corre-
sponding tokens, (ii) nodes with the label \d to repre-
sent digits, (iii) subtrees corresponding to [a-zA-Z] to
represent alphabetic characters, (iv) nodeswith prede-
fined characters labels to represent corresponding
characters, and (v) nodes with the label . for all other
characters.

b) A tree is generated as in a, then subtrees composed
only of nodes with two labels, one being the concate-
nator�� and the other a generic label l, are replaced
by the subtree corresponding to lþþ.

c) Two snippets xbehinds and xahead
s are considered such

that their length is at most 10‘ðxsÞ and they immedi-

ately precede (xbehind
s ) or succeed (xahead

s ) xs in the
corresponding tuple—they are not considered if xs

stays at the beginning or at the end of the string,

respectively. Then, a tree for each snippet xbehind
s , xs,

and xahead
s is built as in a. Finally, a tree is built such

that it corresponds to the concatenation of
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(i) a lookbehind node whose child is the tree

obtained from xbehinds , (ii) the tree obtained from xs,
and (iii) a lookahead node whose child is the tree

obtained from xaheads .
d) A tree is generated as in c and then modified as in b,

by compacting subtrees of repeated leaf nodes. For

lookbehind trees, subtrees are replaced by lf1;mgþ,

rather than lþþ, where l is the repeated label and m

is the number of its occurrences in the subtree. This

change is made to accommodate a limitation of com-

mon regular expression libraries which do not allow

for ++ and *+ to occur within lookbehinds.
If the number of individuals generated from the training

set T is greater than npop, exceeding individuals are removed
at random; otherwise, missing individuals are generated at
randomwith a Ramped half-and-hald method [16], each one
with a tree depth chosen randomly within the interval 2-15.
Whenever an individual is generated whose string transfor-
mation is not a valid regular expression, it is discarded and a
new one is generated.

Once the initial population is built, it is evolved itera-
tively as follows. At each iteration (called generation), npop

new individuals are generated: 80 percent by crossover of
pairs of individuals of the current population, 10 percent by
mutation of individuals of the current population, 10 percent
generated randomly with a Ramped half-and-half method.
Crossover is a genetic operator which takes two individuals
and outputs two new individuals that are identical to the
input individuals except for two randomly selected subtrees
that are swapped. Mutation is a genetic operator which
takes an individual and outputs a new individual identical
to the input individual except for a randomly selected sub-
tree that is replaced by a new randomly generated subtree.
The choice of an individual (or a pair of individuals) to
undergo mutation (or crossover) is made with a tournament
selection: seven individuals are randomly picked in the cur-
rent population and the one with the best fitness is selected.
A new population is built from the resulting 2npop individu-
als, by retaining only the best npop of them.

The above procedure includes a genotypic diversity enforce-
ment criterion, which was not present in [15], (a very similar
mechanism is used in [43]): whenever an individual r1 is gen-
erated whose string transformation is the same as one of an
existing individual r2 (i.e., one in the current population or
one previously generated in the current iteration), r1 is dis-
carded and a new one is generated.

The iterative procedure is repeated until one of the two
following conditions is met:

(i) a number of ngen iterations have been performed, or
(ii) the fitness tuple of the best individual has remained
unchanged for nstop consecutive iterations.

The string transformation of the best individual of the
population at the end of the last iteration is the outcome of
the GP search.

4.1.4 Separate-and-Conquer

A problem instance may include desired extractions which
are structurally very different from each other. For example,
dates may be expressed in a myriad of different formats
and learning a single pattern capable of expressing all these

formats may be very difficult. While problem instance of
this sort could be theoretically addressed by including the
or operator | among the building blocks available to the GP
search for building candidate solutions, in practice such a
design choice is ineffective. As it turned out from our analy-
ses, that we omit for brevity, inclusion of the or operator
generally leads to poor solutions, probably because of the
much increased size of the solution space along with the dif-
ficulty of figuring out when such operator is actually
needed and at which exact point of a candidate solution.

To address this important practical problem we designed
a separate-and-conquer search procedure (which we previ-
ously sketched in [20]) that does not require the or operator
yet is able to realize automatically whether multiple pat-
terns are required and, in that case, to actually generate
such patterns with an appropriate trade-off between speci-
ficity and generality.

A separate-and-conquer search consists of an iterative
procedure in which, at each iteration, a GP search is per-
formed and the snippets correctly extracted by the set of
regular expressions generated so far are removed from the
training set for the next iteration. This general scheme [17]
is useful to cope with scenarios in which several problem
sub-instances that are not explicitly delimited could be
identified, such as in various forms of rule inference [18],
[19], [44]. In detail, initially the target regular expression r̂
is set to the empty string, then the following sequence of
steps is repeated:

1) Perform a GP search on T and obtain r.
2) If Precðr; T Þ ¼ 1, then assign r̂ :¼ r̂jr (i.e., concate-

nate r̂, the regular expression or operator |, and r),
otherwise terminate.

3) For each ðs;Xd
s ;X

u
s Þ 2 T , assignXd

s :¼ Xd
s n ½X s�r̂;

4) If
S

ðs;Xd
s ;X

u
s Þ2T X

d
s is empty, then terminate.

In other words, at each iteration we require the currently
generated regular expression r to have perfect precision
(step 2): i.e., r must extract only snippets which are indeed
to be extracted, but it might miss some other snippets. Since
r̂ is built up with the or operator, it extracts every snippet
which is extracted by at least one of its components: it fol-
lows that r̂ will have perfect precision and a recall greater
than each of its components. The constraint on perfect preci-
sion of step 2 is indeed the reason for which we chose to
favor the precision among individuals of the same Pareto
frontier (see Section 4.1.2): the most prominent objective is
exactly to maximize Precðp; T Þ. Subsequent iterations will
target the snippets still missed by r̂ (step 3).

The GP search at step 1 is performed with nstop � ngen, so
as to leave “difficult” examples for subsequent iterations of
the separate-and-conquer procedure (by allowing an early
termination of the search) and to avoid to over-focus on a
training set when no significant improvements appear to be
achievable.

4.2 High Level Organization of GP Searches

Since a GP execution is a stochastic procedure, we follow a
common approach in evolutionary algorithms which con-
sists in executing multiple independent searches on the
same training set and then selecting one of the solutions
according to a predefined criterion.
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In detail, we proceed as follows.

1) We partition the setE of examples available for learn-
ing in two setsEt andEv.

2) We build the training set T of the GP search based on
Et (see below) and keepEv not available to the search.

3) We execute 2njob independent GP searches, all with
the same T but each with a different random seed.
We call each such search a job. Execution of this step
generates a pool of 2njob solutions.

4) We compute the F-measure of each of the 2njob solu-
tions on the full set of learning examples E ¼ Et [Ev

and select the solutionwith best F-measure.
In other words, we use Ev as a validation set for assessing

the generalization ability of a proposed solution on exam-
ples that were not available to the learning process—i.e., to
prevent overfitting while promoting generalization.

The partitioning of E is made randomly so that the num-
ber of the snippets in Et and Ev are roughly the same, i.e.,P

ðs;XsÞ2Et
Xsj j �

P
ðs;XsÞ2Ev

Xsj j. The training set T for jobs is

built simply: for each ðs;XsÞ 2 Et, a triplet ðs;Xs; fs0g �XsÞ
is inserted in T (i.e.,Xd

s :¼ Xs andXu
s :¼ fs0g �Xs).

In order to broaden the spectrum of problem instances
that can be addressed effectively, we do not execute all the
2njob jobs in the same way. Instead, we execute njob jobs
according to separate-and-conquer, while each of the other
njob jobs consist of a single GP search where all the available
generations (i.e., nstop ¼ ngen) are devoted to learning a sin-
gle pattern on the full training set T .

5 EXPERIMENTAL EVALUATION

We carried out a thorough experimental evaluation for
addressing the following questions: 1) How does our
method perform on realistic problem instances, even w.r.t.
manual authorship of regular expressions? 2) How do other
relevant methods perform compared to ours? 3) What is the
role of some of the key features of our proposal? We analyze
each question in the following sections.

We implemented the method here proposed as a Java
application4 in which jobs are executed in parallel. The imple-
mentation includes some significant optimizations aimed at
speeding up executions: a full description can be found in our
technical report [45]. We tuned the values for the parameters
njob, npop, ngen and nstop (the latter actuallymatters only in sep-
arate-and-conquer jobs) after exploratory experimentation
and taking into account the abundant state of the art about
GP. We set njob ¼ 16 (4 for the web version), npop ¼ 500,
ngen ¼ 1;000 and nstop ¼ 200.

5.1 Extraction Tasks and Datasets

We considered 20 different extraction tasks defined by rele-
vant combinations of 17 entity types to be extracted from 12
text corpora. We made available5 part of the extraction
tasks: we excluded those previously used in other works

and those which cannot be included for privacy issues (e.g.,
those containing email addresses).

Table 1 (four leftmost columns) shows salient information
about the 20 extraction tasks: number of examples jE0j, their
overall length (in thousands of characters)

P
ðs;XsÞ2E0

‘ðsÞ, and
overall number of snippets

P
ðs;XsÞ2E0

jXsj. The name of each

extraction task is composed of the name of the corpus (see
below) followed by the name of the entity type to be extracted.
Entity names should be self-explanatory: Username corre-
sponds to extracting only the username from Twitter citations
(e.g., only MaleLabTs instead of @MaleLabTs); Email-ForTo
corresponds to extracting email addresses appearing after the
strings for: or to: (possibly capitalized). It seems fair to claim
that these extraction tasks are quite challenging and represen-
tative of realworld applications. Names endingwith a � suffix
indicate extraction taskswith context (Section 3.2.1).

The text corpora are listed below. Some of them have
been used in previous works about text extraction with the
same (or similar) entity types to be extracted—all corpora
but the last three ones have been used also in [15].

ReLIE-Web: portions of several web pages from the publicly
available University of Michigan Web page collection.
Used in [10].

ReLIE-Email: portions of the body of several emails from
the publicly available Enron email collection. Used
in [10], [13].

Cetinkaya-HTML: lines of the HTML source of three web
pages. Used in [24].

Cetinkaya-Web: lines of plain text taken from three web
pages after rendering. Used in [24].

Twitter: 50,000 Twitter messages collected using the Twitter
Streaming API.

Log: 20,000 log entries collected from our lab gateway server
running the vuurmuur firewall software.

Email-Headers: 101 headers obtained from several emails
collected from personal mail boxes of our lab staff.

NoProfit-HTML: lines of the HTML source of the address
book web page of a local nonprofit association.

Web-HTML: lines of the HTML source of several pages.
CongressBills: 600 US Congress bills from the THOMAS

online database. In order to vary the format of the dates,
we changed the format of the dates as to obtain 9 differ-
ent formats—including three formats in which the
month is expressed by name rather than by number.

BibTeX: 200 bibliographic references in the form of BibTeX
elements obtained with Google Scholar.

Reference: 198 bibliographic references (the same of the Bib-
TeX corpus with two removals) formatted according to
the Springer LNCS format.

5.2 Proposed Method Effectiveness

We evaluated our method as follows. For each extraction
task we built several problem instances ðE;E?Þ differing in
the overall number of snippets

P
ðs;XsÞ2E jXsj available for

learning. In each problem instance we partitioned the set of
examples E0 in a learning set E and a testing set
E? ¼ E0 n E. We experimented with the values 24; 50; 100
for the number of snippets in E. We applied our method
five times for each of those values, by randomly varying the
composition of E and hence E?, and averaged the obtained

4. The source code is available on https://github.com/MaLeLabTs/
RegexGenerator. A web-based version of the application is available on
http://regex.inginf.units.it.

5. http://machinelearning.inginf.units.it/data-and-tools/annotated-
strings-for-learning-text-extractors
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TABLE 1
Results and Salient Information about the Extraction Tasks

On E On E?

Extraction task E0 jE0j
P

E0
‘ðsÞ

P
E0

jXsj
P

E jXsj LR Fm Prec Rec Fm EC TtL

ReLIE-Web/All-URL 3,877 4,240 502 24 5.0 99.2 90.0 91.9 90.9 2.6 15
50 10.0 99.2 92.1 95.0 93.5 6.4 35
100 19.9 98.9 94.8 96.5 95.6 13.7 71

ReLIE-Web/HTTP-URL 3,877 4,240 499 24 5.0 99.2 86.3 89.0 87.6 2.5 11
50 10.0 99.0 91.0 93.3 92.2 5.8 32
100 20.0 98.8 92.9 96.8 94.8 13.1 66

ReLIE-Email/Phone-Number 41,832 8,805 5,184 24 0.5 97.7 37.1 92.6 48.3 3.4 8
50 1.0 99.0 29.9 96.6 43.3 6.0 16
100 1.9 98.9 22.7 98.3 35.8 14.4 39

Cetinkaya-HTML/href 3,425 154 214 24 11.7 100.0 98.7 99.2 98.9 2.5 12
50 23.4 100.0 98.1 98.7 98.4 4.9 26
100 46.7 99.8 98.4 99.1 98.8 9.0 59

Cetinkaya-HTML/href-Content� 3,425 154 214 24 11.7 98.4 74.9 98.7 80.6 2.4 16
50 23.4 98.5 85.1 98.8 88.2 4.8 29
100 46.7 98.5 83.2 96.8 86.2 10.5 67

Cetinkaya-Web/All-URL 1,234 39 168 24 14.9 99.2 99.4 98.8 99.1 1.7 3
50 29.8 100.0 95.5 98.6 96.9 3.2 8
100 59.5 99.5 98.8 98.8 98.8 5.2 16

Twitter/Hashtag+Citation 50,000 4,344 56,994 24 0.1 100.0 98.8 100.0 99.4 1.2 3
50 0.1 99.6 99.2 100.0 99.6 2.2 4
100 0.2 99.8 99.0 100.0 99.5 4.6 7

Twitter/All-URL 50,000 4,344 14,628 24 0.2 100.0 94.7 98.5 96.6 1.8 3
50 0.3 100.0 96.2 98.3 97.2 3.4 8
100 0.7 99.4 96.1 98.0 97.0 7.7 16

Twitter/Username� 50,000 4,344 42,352 24 0.1 100.0 99.3 100.0 99.7 1.2 2
50 0.1 100.0 99.2 100.0 99.6 2.2 2
100 0.2 99.9 99.3 100.0 99.7 4.6 2

Log/IP 20,000 4,126 75,958 24 0.1 100.0 99.8 100.0 99.9 1.3 2
50 0.1 100.0 99.7 100.0 99.8 2.3 2
100 0.2 100.0 99.8 100.0 99.9 4.6 3

Log/MAC 20,000 4,126 38,812 24 0.1 100.0 100.0 100.0 100.0 2.0 2
50 0.1 100.0 100.0 99.4 99.7 4.3 3
100 0.3 100.0 100.0 99.4 99.7 8.3 6

Email-Headers/IP 101 261 848 24 2.9 97.5 86.7 87.9 86.9 5.9 18
50 5.9 92.7 90.9 82.2 86.0 14.0 56
100 11.8 94.5 95.2 84.9 89.6 28.5 89

Email-Headers/Email-ForTo� 101 261 331 24 7.6 78.5 70.7 52.5 59.3 17.9 131
50 15.1 71.5 76.4 52.8 62.0 33.7 398
100 30.2 79.8 90.4 66.6 76.4 65.5 429

NoProfit-HTML/Email 25,590 860 1,094 24 2.3 100.0 83.2 100.0 85.5 0.9 2
50 4.6 100.0 100.0 100.0 100.0 1.9 3
100 9.1 100.0 100.0 100.0 100.0 3.7 7

Web-HTML/Heading 49,026 4,541 1,083 24 2.3 99.2 93.1 89.4 91.2 7.6 30
50 4.6 96.2 93.3 90.2 91.7 15.3 83
100 9.2 99.2 98.2 96.2 97.2 29.7 256

Web-HTML/Heading-Content� 49,026 4,541 1,083 24 2.3 93.6 95.5 80.1 86.6 6.6 76
50 4.6 95.9 99.1 85.8 91.8 13.6 168
100 9.2 98.9 99.4 96.1 97.7 28.0 379

CongressBill/Date 600 16,511 3,085 24 0.8 64.5 57.1 52.3 50.0 2.1 30
50 1.6 72.1 55.4 81.3 64.1 6.9 584
100 3.2 76.1 62.7 81.4 69.7 11.3 513

BibTeX/Title 200 54 200 24 12.5 89.6 79.1 65.1 70.7 5.1 43
50 25.0 90.3 82.6 74.3 78.0 11.1 141
100 50.0 82.0 84.8 63.4 72.1 21.5 218

BibTeX/Author 200 54 589 24 4.2 92.9 90.5 78.1 83.1 2.0 8
50 8.5 93.9 89.9 86.1 87.7 4.1 20
100 17.0 90.7 91.9 81.6 86.2 7.5 34

References/First-Author� 198 30 198 24 12.6 99.0 99.7 96.0 97.8 2.8 12
50 25.3 96.3 99.6 93.6 96.5 5.4 26
100 50.5 100.0 100.0 100.0 100.0 12.4 56

The overall length
P

ðs;XsÞ2E0
‘ðsÞ of examples is expressed in thousands of characters. EC is expressed in 1010 evaluated characters; TtL is expressed in minutes.
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figures of precision and recall over the five repetitions.
Hence, we analyzed 300 problem instances—five repetitions
for each of the 60 different combinations of extraction task
and number of snippets for learning.

Table 1 summarizes our main results. The table has 60
rows, one for each combination of extraction task and num-
ber of snippets for learning. Sixth and seventh columns con-
tain the number of snippets for learning and the learning
ratio (LR) defined as the ratio between the number of snip-
pets for learning and the number of snippets in the full
extraction task E0. The remaining columns on the left illus-
trate performance indexes of the learned regular expression
r̂: F-measure on the learning data E and, most importantly,
precision, recall, and F-Measure on the testing data E?. The
two last columns provide indexes for assessing the compu-
tational effort: EC is the overall number of characters which
have been evaluated by candidate regular expressions—
e.g., a population of 100 individuals applied to a set E
including strings totaling 1,000 characters for 100 genera-

tions corresponds to EC ¼ 107. Figures in the table are

expressed in multiples of 1010. TtL is the time required for
solving a problem instance: we used a machine powered
with a 6 core Intel Xeon E5-2440 (2.40 GHz) equipped with
32 GB of RAM.

The key outcome of this experimental campaign is that F-
measure on testing data is very high in nearly all scenarios
analyzed. This result is particularly relevant in itself and
becomes even more relevant in light of the very low LR val-
ues of our experimental setting, which indicate that our
method is indeed able to find solutions that generalize effec-
tively. It can also be seen that, in many extraction tasks, F-
measure is very high also when the learning information
includes only 24 snippets. This suggests that the proposed
method can be very effective even with few examples.

The only extraction task in which F-measure is definitely
unsatisfactory—in the range 35:8–48:3 percent—is ReLIE-E-
mail/Phone-Number. This task was executed with LR in
the range 0:5–1:9 percent. We executed this task again with
LR � 80 percent, a value much closer to the values usually
used in machine learning literature and obtained a much
higher F-measure on the testing data E?: � 85 percent. We
believe that this result demonstrates the quality of our
approach even for this task. We carefully analyzed the
results for ReLIE-Email/Phone-Number and we believe
that this task is unlikely to be solved effectively with a very
low LR. In particular, it can be seen from Table 1 that the
generated regular expressions exhibit a rather high recall
(92:6–98:3 percent) and a low precision (37:1–22:7 percent)
on E?—i.e., they tend to extract all the relevant snippets but
also unrelevant portions of the strings in E?. We manually
inspected the learning data E and verified that they are not
adequately representative of the data that are not to be
extracted: they did not contain substrings which look like,
but are not, phone numbers.

Concerning the impact of the number of snippets
available for learning, results of Table 1 generally confirm
that the more information available for learning, the better
the obtained F-measure. There are indeed a few anomalies
to this trend which, we believe, are due to the very low
LR values and the highly challenging nature of the extrac-
tion tasks.

With respect to the computational effort (i.e., EC and TtL),
our experimental evaluation shows that the time needed to
learn a regular expression for a problem instance is often in
the order of a few tens of minutes. We also found, as
expected, that TtL depends approximately linearly from
EC, which itself strongly depends on the aggregate “size” of
the learning information in terms of characters, i.e.,P

ðs;XsÞ2E ‘ðsÞ. While the absolute value of TtL would seem

to discourage the on-the-fly usage of our method, our expe-
rience with its web-based implementation suggests that
TtLs do not hamper the practicality of our tool. Moreover,
we believe that TtL should be assessed from a relative point
of view: a user highly skilled in regular expression writing
probably would not even use our tool, while a user moder-
ately skilled or unskilled at all may solve problems that
would otherwise be unable to solve—see also Section 5.3.

We found that tasks which may take advantage of mod-
ern regular expression constructs (lookarounds, possessive
quantifiers) tend to require a longer execution time. We
think this finding is motivated by the fact that our tool oper-
ates with a real-world regular expression engine (the one
included in the Java platform): that engine cannot guarantee
that the processing time of every regular expression grows
linearly with the input string length, because the previously
mentioned constructs cannot be implemented using autom-
ata; it follows that tasks in which the evolution tends to
favor regular expressions with modern constructs, take
much longer times to be solved.

A list of the generated regular expressions is available in
our technical report [45].

5.3 Comparison with Human Operators

In order to assess the ability of our method to compete with
human operators, we executed an experiment using a web
application which we crafted ad hoc.

The web app presented concise instructions about the
experiment (“write a regular expression for extracting text
portions which follow a pattern specified by examples”)
and then asked the user to indicate the level of familiarity
with regular expressions—one among novice, intermediate,
and experienced. The web app then proposed a sequence of
extraction tasks: for each task the web app showed a text on
which the snippets to be extracted were highlighted; the
user could write and modify a regular expression in an
input field at will; the web app immediately highlighted the
snippets actually extracted by the current expression along
with the corresponding extraction mistakes (if any). The
web app also showed the F-measure and the user was
informed that a value of 100 percent meant a perfect score
on the task. The user was not required to obtain a perfect F-
measure before going to the next task—i.e., he could give
up on a task. In the limit, he could also not write any regular
expression for a task (unanswered task). The web app
recorded, for each task and for each user, the authored regu-
lar expression and the overall time spent.

We included in the web app 9 of the extraction tasks pre-
sented in the Section 5.1. For each task, we chose exactly theE
set we used while experimenting with our method for repeti-
tion 1 and

P
E jXsj ¼ 24. We spread a link to the web app

among CS graduate and undergraduate students of our Uni-
versity. Each user interacted with the web app autonomously
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and in an unconstrained enviroment—in particular, users
were allowed to (and not explicitly instructed not to) refer to
any knowledge base concerning regular expressions.

We gathered results from 73 users—60 percent novice, 20
percent intermediate, and 20 percent experienced. Several
tasks were left unanswered: 42 percent for novice, 40 per-
cent for intermediate, and 12 percent for experienced. The
average time for solving the answered tasks was 16.1, 4.8,
and 4.7 min, respectively. As a comparison, our method on
the very same data required TtL ¼ 10:4min on the average.

The key finding is in Table 2, which shows the F-measure
on E? for each task. It can be seen that the F-measure
obtained by our method is almost always greater than or
equal to the one obtained by human users (on the average).
The only exceptions are: the ReLIE-Email/Phone-Number
task (whose peculiarity has been analyzed in Section 5.2); the
Web-HTML/Heading task, in which our method improves
over novice users and is only slightly worse than intermedi-
ate users. We believe this result is remarkable and highly
encouraging. Indeed, we are not aware of any proposal for
automatic generation of regular expressions in which human
operators were used as a baseline. A full description of the
results can be found in the companion report [45].

5.4 Comparison with Other Methods

The previous section considered a baseline in terms of
human operators. In this section we consider a baseline in
terms of other approaches for learning text extractors from
examples: Smart State Labeling DFA Learning (SSL-DFA) [46],
FlashExtract [33], and GP-Regex [15]. These methods are rep-
resentative of the state of the art for learning syntactical pat-
terns (see also Section 2), but differ in the actual nature of
the learned artifact: SSL-DFA produces Deterministic Finite
Automata, FlashExtract produces extraction programs
expressed in a specific language, and GP-Regex produces
regular expressions. Results obtained with SSL-DFA were
significantly worse than those of the other methods, hence
we chose to not describe them in this paper: full details can
be found in our technical report [45]. We remark that GP-
Regex was compared against the approaches of [10], [13] on
two datasets used by the latter and exhibited better accu-
racy, even with a learning set smaller by more than one
order of magnitude [15]; and, that the authors of [10], [13]
showed that their approaches exhibited performance simi-
lar to Conditional Random Fields (CRFs).

FlashExtract is a powerful and sophisticated framework
for extracting multiple different fields automatically in semi-
structured documents [33]. It consists of an inductive synthe-
sis algorithm for synthesizing data extraction programs from
few examples, inwhich programs are expressed in any under-
lying domain-specific language supporting a predefined alge-
bra of few core operators. The cited work presents also a
language designed to operate on text which perfectly fits the
extraction problem considered in this paper. The findings
of [33] resulted in a tool included in the Windows Powershell
as the ConvertFrom-String command: we used this tool to
perform the experiments. The current FlashExtract imple-
mentation does not allow reusing a program induced by a
given set of examples. Thus, in our experimentation the two
phases of learning and testing were not separated: we
invoked the tool by specifying as input the examples inE and
the strings in E?; we obtained as output a set of substrings
extracted from E? based on the description in E (which we
had to recast in the syntax required by the tool). Inmany cases
the tool crashed, thereby preventing the extraction to actually
complete.We highlighted these cases in the results.

GP-Regex is the method we proposed in [15] and the
base for the research here presented. The numerous differ-
ences between our method and GP-Regex were listed in the
introduction. We emphasize again that in GP-Regex each
example consists of a string and at most one single snippet
to be extracted from that string. In order to build learning
examples suitable for GP-Regex, we considered for each
ðs;XsÞ, only the leftmost snippet inXs, if any.

We selected seven extraction tasks including tasks with
context and tasks in which snippets exhibit widely differing
formats. We exercised all methods with the same experi-
mental settings described in Section 5.1, thereby obtaining
105 problem instances—five repetitions for each of the 21
different combinations of extraction task and number of
snippets for learning.

Table 3 shows the results in terms of F-measure forP
E jXsj ¼ 100—results for other values for

P
E jXsj are

omitted due to space constraints. The foremost outcome of
this comparison is that our method clearly outperforms all
the other methods (except for ReLIE-Email/Phone-Number,
discussed below). The performance gap with FlashExtract is
substantial—at the expense of a much longer TtL, though.
We are not able to provide any principled interpretation for
this result. We may only speculate that our approach is per-
haps more suitable for coping with loosely structured or
unstructured datasets than FlashExtract. We also noticed
that, for many problem instances, the ConvertFrom-String

TABLE 2
F-Measure for

P
E jXsj ¼ 24 Obtained by Human Operators

(Novice (SN), Intermediate (SI), and Experienced
(SE)) and Our Approach (O)

Extraction task SN SI SE O

ReLIE-Web/All-URL 74.7 90.2 80.6 95.5
ReLIE-Web/HTTP-URL 77.3 83.0 76.6 82.3
ReLIE-Email/Phone-Number 70.2 84.7 91.0 34.6
Cetinkaya-HTML/href 91.6 98.8 98.8 100.0
Cetinkaya-Web/All-URL 95.2 98.3 98.6 99.0
Log/IP 91.0 100.0 100.0 100.0
Log/MAC 87.6 91.7 100.0 100.0
Web-HTML/Heading 82.3 90.9 95.6 90.0
BibTeX/Author� 64.6 50.1 81.4 90.3

TABLE 3
F-Measure for

P
E jXsj ¼ 100 with FlashExtract (F),

GP-Regex (G), and Our Approach (O)

Extraction task F G O

ReLIE-Web/All-URL 21.5 93.0 95.6
ReLIE-Email/Phone-Number 	 90.2 35.8
Cetinkaya-HTML/href 32.3 89.6 98.8
Cetinkaya-Web/All-URL 61.8 94.9 98.8
Twitter/Hashtag+Citation 	 100.0 99.6
Web-HTML/Heading-Content� 	 10.2 97.7
CongressBill/Date 	 38.0 70.7
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tool crashed, thereby preventing the extraction to actually
complete. For the extraction tasks for which at least one on
five repetition completed without errors, Table 3 shows the
F-measure averaged across the completed executions. In the
other cases, we were not able to obtain any extraction pro-
gram, neither splitting the testing set in small chunks: those
cases are denoted with an en dash (	) in the table.

Concerning GP-Regex, we should isolate two groups of
extraction tasks:

(i) those that requires either a context (Web-HTML/
Heading-Content�) or the ability to learn widely differing
patterns (CongressBill/Date), (ii) all the other tasks.

The key observation is that our current proposal improves
over GP-Regex in all cases (except for ReLIE-Email/Phone-
Number), the improvement being substantial in case 5.4.
Indeed, our current proposal makes it possible to handle
both Web-HTML/Heading-Content� and CongressBill/
Date with good accuracy, while GP-Regex does not. It is also
interesting to observe that in case 5.4 GP-Regex provides
much better accuracy than FlashExtract, while in case 5.4
GP-Regex is either comparable to thosemethods or worse.

Finally, concerning the ReLIE-Email/Phone-Number
extraction task, we observe that this is the same task with a
sort of anomalous behavior already discussed in the previ-
ous section. In particular, we remark that when executing
our method on this task with LR � 80 percent we obtained
� 85 percent F-measure on the testing data. We could not
execute FlashExtract in those conditions because it always
crashed: the only result that we could obtain is in Table 3,
where F-measure (with very few examples available for
learning) is 69 percent. The reason why GP-Regex happens
to deliver better accuracy on this task is because it tends to
overfit the snippets to be extracted more than the method
here presented. As discussed in the previous section, proc-
essing this task with a very small LR value incurs in a poor
representativeness of the text that is not to be extracted; as it
turns out, thus, the slightly overfitting behavior exhibited
by GP-Regex in this case turns out to be a pro.

5.5 Assessment of Specific Contributions

In order to gain further insights into our proposal, we exe-
cuted a further suite of experiments on a subset of the
extraction tasks aimed at assessing the effect of:

(i) choice of the fitness, (ii) initialization of the population
from E, and (iii) separate-and-conquer jobs.

5.5.1 Fitness

We built a variant of our method in which the fitness tuple
of a solution consists in the F-measure on the examples in

the training set and the length of the corresponding regular
expression: fðrÞ :¼ Fmðr; T Þ; ‘ðrÞð Þ. In other words, we
replace snippet-level precision and character-level accuracy
(see Section 4.1.2 for the exact definition) by snippet-level
F-measure, i.e., by the main performance index desired by
the solution.

Table 4 presents the results. The rightmost column shows
the improvement DFm obtained by our proposal w.r.t. the
method with the fitness modified as above. It can be seen
that the modified method leads to a much worse F-measure,
despite F-measure being exactly the index optimized by
that method: our proposal leads to an improvement, on the
average, around DFm � 60 percent (

P
E jXsj ¼ 100 2 f24;

50; 100g). In other words, driving the evolutionary search by
the key index of interest is not the optimal fitness choice.
This finding corroborates some arguments made in [15] and
augments them with an experimental evaluation.

It is worth to note that for the References/First-Author�

task, the modified method is simply unable to produce a
solution which can correctly extract at least one snippet.
Our explanation is that the solving regular expression for
that task is rather complex, since it includes multiple look-
around operators: light modifications to a regular expres-
sion which includes operators of this kind may result in
very different extraction behaviors. In such a case, a fitness
based on full snippets rather than individual characters
does not acknowledge for small improvements and is not
hence able to drive the evolution—in other words, it
imposes an excessive evolutionary pressure.

5.5.2 Initialization

We built a variant of our method in which the initial popu-
lation is totally built at random, instead of being partially
generated using the snippets of the training set.

Table 5 shows the comparison results, which clearly indi-
cate that the unmodified version is much more effective
(DFm � 25 percent, on the average for

P
E jXsj 2 f24; 50;

100g). The rationale of the population initialization from the
examples was to start the evolutionary search from a “good”
point in the solution space. For this reason we inserted in the
initial population individuals which fitted the snippets to be
extracted while at the same time generalizing beyond them,
e.g., we insert the regular expression \d++-\d++-\d++
from the snippet 07-02-2011 (see Section 4.1.3).

5.5.3 Separate-and-Conquer

We built a variant of our method in which all the 2njob jobs
are executed without the separate-and-conquer strategy, i.e.,
all jobs consist of a single GP search for which nstop ¼ ngen.

TABLE 4
F-Measure for

P
E jXsj ¼ 100 with Our Fitness (O)

and with the F-Measure Based Fitness (F)

Extraction task O F DFm

ReLIE-Web/All-URL 95.6 11.7 83.9
ReLIE-Web/HTTP-URL 94.8 14.8 80.0
Cetinkaya-HTML/href 98.8 98.6 0.2
BibTeX/Title� 72.1 3.3 68.8
BibTeX/Author� 86.2 24.9 61.3
References/First-Author� 100.0 NaN NaN

TABLE 5
F-Measure with

P
E jXsj ¼ 100 with and without Initialization

Extraction task w/ w/o DFm

ReLIE-Web/All-URL 95.6 73.6 22.0
ReLIE-Web/HTTP-URL 94.8 82.6 12.2
Cetinkaya-HTML/href 98.8 48.8 50.0
BibTeX/Title� 72.1 65.1 7.0
BibTeX/Author� 86.2 67.2 19.0
References/First-Author� 100.0 78.7 21.3

1228 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 5, MAY 2016



Table 6 shows the comparison results. For this compari-
son, we considered also an extraction task (CongressBill/
Date) in which the snippets to be extracted exhibit widely
differing formats. As expected, the unmodified method
clearly outperforms the modified one on CongressBill/Date
(DFm � 30 percent for

P
E jXsj 2 f24; 50; 100g). On the other

hand, it can be seen that some not negligible improvement
can be obtained also for other tasks, namely BibTeX/Title�

and BibTeX/Author�. We think that the motivation is in
that those tasks are more difficult and hence the possibility,
enabled by the separate-and-conquer strategy, to split a
problem in smaller subproblems may allow the method to
better cope with such difficulty.

6 CONCLUSIONS

We have described a system for synthesizing a regular
expression automatically, based solely on examples of the
desired behavior. The regular expression is meant to be used
for extraction problems of practical complexity, from text
streams that are either loosely structured or fully unstruc-
tured. As such, our approach is able to handle potentially
large alphabets effectively, thereby overcoming one of the
principal limitations of much existing work in this area, and
has been designed to address such practical needs as con-
text-dependent extractions, widely different formats, and
potentially large and unsegmented input streams.

We have analyzed our proposal experimentally in depth,
by applying it on 20 challenging extraction tasks of realistic
size and complexity, with a very small portion of the dataset
available for learning. The results have been very good and
compared very favorably with significant baseline methods.
Most importantly, the results are highly competitive also
with respect to a pool of more than 70 human operators.

We made publicly available the source code of our sys-
tem (https://github.com/MaLeLabTs/RegexGenerator)
and deployed an implementation as a web app (http://
regex.inginf.units.it).

While our work may certainly be improved and enriched
in several ways—faster learning, interactive learning proce-
dures capable of starting with a very small number of snip-
pets, even better accuracy, just to name a few—we do
believe that our work may constitute a useful solution to a
practically relevant and highly challenging problem.
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