
Solution of differential equations with

Genetic Programming and the

Stochastic Bernstein Interpolation

Daniel Howard
Biocomputing and Developmental Systems Group

University of Limerick, Ireland
DanielHoward@sunrisemalvern.freeserve.co.uk

Joseph Kolibal
Department of Mathematics

University of Southern Mississippi, USA
Joseph.Kolibal@usm.edu

BDS-TR-2005-001

June 19, 2005

Biocomputing-Developmental Systems Group
University of Limerick

Ireland



BDS-TR-2005-001 2



Abstract

This report introduces a method for the solution of the Convection-Diffusion
equations (CDE) that combines Genetic Programming with Stochastic Bern-
stein Interpolation. Significantly, it is being used to solve a problem that has
resisted analysis for a long time using other methods. Although the method
in this report solves the one-dimensional CDE which has also been solved an-
alytically and optimally, our strategy of combining the Stochastic Bernstein
Interpolation method with GP allows for the method to extend to higher di-
mensions, and thus it shows how to construct GP based methods for solving
a range of computational problems in multiple dimensions which have hitherto
resisted numerical solution.



BDS-TR-2005-001 1

1 Introduction

The numerical solution of non-self-adjoint differential equations, e.g. the convection-
diffusion equation (CDE), remains one of the greatest unsolved challenges in the
field of Numerical Analysis (Süli et al, 1980) (Morton, 1996).

An interesting method for solution of differential equations with Genetic
Programming was introduced and demonstrated in (section 10.7 in Koza, 1992).
This method evolved the solution to differential equations. Satisfaction of the
differential equation was measured at a number of test points, and satisfaction of
the initial condition was also tested. Both of these became weighted components
of the fitness measure.

An alternative Genetic Programming based method for solution of the two
boundary value CDE was introduced in (Howard and Roberts, 2001). This used
Genetic Programming to evolve a variable length vector of real numbers. These
served as the constants of a monomial of increasing order. When the monomial
was pre-multiplied by the factor x(1 − x) the CDE boundary conditions were
satisfied a-priori. Since derivatives could now be obtained analytically from the
evolved constants, the integral of the square of the differential equation could
also be obtained analytically over the domain (0,1). Thus, eliminating the need
for test points in the domain.

The method of (Howard and Roberts, 2001) however is compromised in more
than one dimension because it is generally not possible to prescribe arbitrary
Dirichlet boundary conditions. It is not always possible to modify the evolved
polynomials to satisfy these boundary conditions.

The method that is introduced in this report borrows aspects of both of
the aforementioned methods. It employs test points to sample the satisfaction
of the CDE in the domain (Koza, 1992), and it also evolves a set of constants.
The method uniquely combines Genetic Programming with Stochastic Bernstein
Interpolation (SBI). SBI was recently developed by Joseph Kolibal and is a
patent pending method of data interpolation.

Section 2 introduces the Stochastic Bernstein Interpolation. Section 3 gives
the strategy for its evolutionary computation. Section 4 presents the combined
GP-SBI interpolation method for numerically approximating the solution of
CDE. Section 5 illustrates results and discovered properties of this method.
Discussion and Conclusions follow with information about ideas for further work.

Appendix A describes in more detail the fundamental mathematical limita-
tion of weighted residuals methods for solution of convection diffusion problems.
This is followed by other appendices that provide more information on SBI.

2 Stochastic Bernstein Interpolation

The development of a unified approach to data regularization began with an ob-
servation on the area preserving properties of the Bernstein polynomials and a
desire to construct more computable approximations which share this property.
These approximations generalized to a broader set of methods built around the
product of row and column sum one matrix products, which yield the Bernstein-
style interpolation methods, connecting area preservation, stochasticity, approx-
imation and interpolation. As most of the computational procedures that are
described involve nothing more than the accumulation of sums in which order



BDS-TR-2005-001 2

does not matter, or inverting and multiplying matrices, the approach should
be highly parallelizable using standard tools already developed for parallelizing
matrix algebra. Furthermore, through the construction of Bernstein bases, the
methods can be applied efficiently to large data sets in O(n) operations.

The Bernstein functions which are introduced share many of the desirable
approximation properties of the well known Bernstein polynomials. These func-
tions provide a natural extension of the Bernstein polynomials to a continuum
model, however they incorporate desirable features which make them usable
where the application of Bernstein polynomials is untenable. These functions
allow for flexible control over smoothing; improve computational efficiency for
large n; and, permit the use of non-uniformly spaced data. The Bernstein func-
tions can be used for constructing high frequency filters, error averaging, and
function recovery. As such, they provide a convenient alternative to classical
methods, e.g., least squares methods. The extension is accomplished by al-
lowing the binomial probability distribution to become a Gaussian probability
distribution, along with the appropriate change of variables. The new families
of functions are characterized by a free parameter, equivalent to the thermal
diffusivity in heat conduction problems, and allow for greater control of the
function than is possible with polynomials. These functions can be applied to
solve problems in:

1. Data Approximation and Interpolation – The ability to accurately inter-
polate or construct appropriate functional approximations between data
points is crucial to many engineering and science applications with incom-
plete data sets. In the case of data approximation, the method provides
for accurate approximation with very controllable smoothing and provides
a uniform approximation to the data, with absolutely no spurious extrema
being introduced (wiggles). In the case of interpolation, the original data
points are included in all interpolated curves, and false extrema and spu-
rious wiggles can be minimized (near monotonicity).

2. Data Recovery – Recovering the underlying characteristics of noisy data
sets is imperative to understanding the behavior of many processes. The
method is able to accomplish this task well even for very noisy data for
which the errors, i.e. the noise, approaches zero net deviation from the
data on arbitrary subsets of the domain (that is, the noise statistically has
a central tendency; For cases where the noise is markedly skewed away
from this central limit, the results will reflect the skewing of the noise.
In these cases the technique must be applied with appropriate statistical
models to remove the bias).

3. Data Error Filtration – Removing noise from data is important in regard
to improving the quality of the data. The method can be used to filter dif-
ferent frequency components of noisy data, thereby improving the quality
of the data. This approach is valid so long as the noise is of much higher
frequency than the signal, and the range of validity of the approach can
be extended by combining this with spectral shift methods.

4. Data/Image Deconvolution – Deconvolving data enables the recovery of
features not readily seen or understood within the existing image or data
set. This feature has a broad range of applications in numerous medical,
industrial, scientific, and military applications. Similar to data recovery,



BDS-TR-2005-001 3

the proposed methodology can be employed to recover image details, ef-
fectively de-blurring an image.

Moreover, since these functions allow for robust representation of functions
which are sampled at discrete points, they also allow for the robust determina-
tion of the derivatives of a function, which are computable as linear combinations
of Gaussian terms.

The construction of a Bernstein interpolant is developed from the Bernstein
function approximation through a deconvolution-reconvolution process. In turn,
this can be recognized as being part of a broader approach to constructing in-
terpolants relative to any probability density function, or mollifier which can
be normalized to a probability density function. For interpolating particularly
rough or noisy data, the Bernstein interpolation technique using Bernstein inter-
polation provides a robust mechanism for producing smooth interpolants which
are relatively free of spurious artifacts. The construction gives rise to inter-
polants which are infinitely differentiable over the entire domain, not just twice
differentiable as cubic splines, and they can be constructed to be ripple-free,
unlike trigonometric interpolants.

Interpolation requires solving an associated deconvolution problem. For-
mally, this step involves solving a linear system of equations which constructs
the set of pseudo-data points which, when approximated by a Bernstein func-
tion, maps to the original data. Thus, this two step construction interpolates the
data; points between the original data are filled in with a smooth curve which
joins the original data points to each other. Because it is possible to control the
deconvolution and smoothing process locally, it is possible to construct nearly
oscillation free interpolants to data which exhibit large changes in magnitude
(e.g., step discontinuities).

In practice, it is more practicable to construct the interpolant using a Bern-
stein basis, consisting of Bernstein functions which interpolate known discrete
data points. Using these and the fact that these functions form a basis for the
vector space of interpolating Bernstein functions, allows the construction of the
interpolant directly without the need to solve any large linear system in order
to obtain the interpolant. The Bernstein function basis elements must be ob-
tained by inverting the appropriate linear system, however these depend only on
the mesh spacing (abscissa values) and not the data values (ordinates). Thus,
for example for fixed grids, the basis needs only be constructed once, while for
variable sized grids with variable mesh, the basis would have to be constructed
for each grid used. The new interpolated or approximated data may consist of
uniformly distributed points, or can be non-uniformly distributed in any given
manner (the data need not be ordered).

2.1 The behavior of SBI and the free parameter σ

A parameter of the SBI controls the amount of turning or wiggle of the function
between interpolation points. This is due to the intrinsic smoothing parameter
that is contained in the definition of the Bernstein functions. the value of the
free parameter σ at each x in the domain determines the rate at which solution
of the heat equation is evolved. Large diffusion values give large change. Small
diffusion values give small change.



BDS-TR-2005-001 4

While this result applies to stochastic interpolation using Bernstein functions
as well as to stochastic approximation using Bernstein functions, the results are
most conveniently illustrated using Bernstein approximation. In regard to Bern-
stein approximations, the choice of diffusion coefficient σ alters the convergence
of the sequence of the Bernstein functions. Interesting choices for σ can be
constructed using:

• Nodal point vanishing diffusion, σ = δ2
∏

i∈I(xi−x)2, where I ∈ {0, 1, . . . , n}.
The Bernstein approximation will adhere to the points xi, since no diffu-
sion can occur at these points.

The case of I = {0, n} is the standard one, i.e., in constructing the
Bernstein function from the Bernstein polynomial, a term of the form
sigma = 1/sqrtx(1− x)/2 arises as an argument to the Gaussian func-
tion, and can be interpreted as a diffusion parameter. Since the diffusion
parameter σ is greatest at x = 1/2, is monotonically increasing on (0, 1/2),
and is monotonically decreasing on (1/2, 1), it is obvious that the great-
est diffusion and hence greatest smoothing occurs at x = 1/2 with no
smoothing at the endpoints, i.e., the function is interpolating there, as is
the Bernstein polynomial.

• Alternatively, can set I = ∅ in which case we have constant damping
throughout the interval and σ = δ2. In this case the smoothing is equal
throughout the domain and at no points is the Bernstein function approx-
imation interpolating.

The consequences of using different values of the diffusion coefficient on
a uniformly spaced grid are illustrated for the function f(x) = cos(12πx) in
Figs.1 and 2. Using a diffusion coefficient which is constant, as in Fig.2, avoids
having the rate of convergence depend on x, and so is used in the construction
of stochastic interpolants using Bernstein functions. Varying the value of σ
from about 0.01 to 1.5 allows the construction of interpolants in which the
amount of wiggle and ripple between interpolation points can be controlled.
The smaller sigma is, the more prone the function is to develop a ripple, while
the larger sigma is, the more prone the function is to develop larger overshoots,
i.e., wiggles.

2.2 Pseudo-code for the method

Pseudo-Code (linear model):

1. Read data {(xi, yi)}, i = 0, n− 1;

2. Convert data coordinates to lie on unit interval;

3. Construct convolution matrix Ann (depends on xi and smoothing parame-
ter) using the generator of the row space (typically a Bernstein function).

4. Construct de-convolution matrix, A−1
nn ;

5. Construct augmented matrix ˜Amn using the same generator of the row
space m > n;

6. Evaluate ÃmnA−1
nny to obtain output data {yi}, i = 0,m− 1;



BDS-TR-2005-001 5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

f(x)

(a)

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

(b)

x

Figure 1: Varying the diffusion coefficient: (a) δ = 2.0, (b) δ = 1.0 (standard
diffusion coefficient) base on sampling the function f(x) = cos(12πx) at 100
points with σ = δ2x(1− x).

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

f(x)

(c)

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

(d)

x

Figure 2: Varying the diffusion coefficient: (c) δ = 0.5, and (d) δ = 0.25, based
on sampling f(x) = cos(12πx) at 100 points with σ = δ2.

7. Convert the output to the world coordinate system.

Note that in constructing A and Ã the choice of smoothing parameters affects
the results. This can be a single value for all xi, or it can be a function.



BDS-TR-2005-001 6

2.3 Signal pre-conditioning

Signal pre-conditioning can be achieved using stochastic interpolation (deconvolution-
convolution operators). Stochastic interpolation provides a mechanism for smooth-
ing or filtering signals through a discrete convolution process, as well as de-
convolving it to yield a pre-image which can be used to emphasize and enhance
anomalies, detail, and signal fluctuations.

Stochastic interpolation using Bernstein functions uses a discrete convolution
operator which is (nearly) area preserving and which yields infinitely differen-
tiable interpolants which can be over and under relaxed to yield smooth families
of curves which represent the underlying data. In particular, by over-relaxing
the interpolation the technique can remove clutter from extremely noisy signals
to achieve smooth function recovery.

If the signal is under-relaxed, the process instead produces smooth func-
tions which are characterized by being highly oscillatory in the neighborhood
of rapid deviations of the data; conversely, if the data is derived from smooth
functions which contain no high frequency deviations, then under-relaxing the
data yields curves which are nearly identical to the original curve, i.e., smooth
data are eigenfunctions with eigenvalue 1 of the deconvolution operator. This
may provide a very sensitive mechanism for characterizing regions of rapid data
fluctuation. Thus, these methods can either directly provide effective noise re-
moval, or can be used with other methods as a data pre-conditioner, particularly
when attempting to solve difficult inverse problems.

2.4 Function interpolation

An advantage of function recovery using stochastic Bernstein methods is that
it unifies traditional tasks such as function approximation, function smoothing,
and function interpolation. Stochastic Bernstein interpolation results when the
convolution and deconvolution steps are equal in measure. In all cases the result
is a smooth (i.e., infinitely differentiable function) which fits the sampled data.
The process yields excellent interpolants, even for very rough data.

Consider the function (line shown in green) in Fig. 3

f(z) = cos(3z) exp(abs(cos(exp((z + 5)/3))))

sampled at 1000 points, and compare it with a deconvolution of this data.
Notice that the red line or graph of the pre-image of the function is the same
as the data where the function is smooth, however it oscillates extensively at
the three points where f has a discontinuous derivative. Thus deconvolution is
a sensitive measure of function smoothness, and can be used to adaptively tune
performance.

The function is next interpolated on 100 points (red x’s) that are uniformly
sampled along the interval, shown plotted in figure 4. The interpolant is now
shown in green and the function is now plotted in blue. There is a very slight
ripple around the second kink of f , however this can be tightened up as the
method was applied in a straightforward manner without doing anything special
to improve the results.



BDS-TR-2005-001 7

Figure 3: Function and its deconvolution. Green line is the function and the
red line is the pre-image of the function (data ges.out)

3 Genetic Programming evolution of SBI

The idea is to evolve the data for the method. It involves design of a Genetic
Programming method for arriving at the data vector. One advantage of the SBI
is that it can work with an unstructured grid, i.e. both the points of the input
values {(xi, yi)}, i = 0, n − 1 and those of the output data {yi}, i = 0,m − 1
values need not be equally distributed.
The aforementioned pseudo-code now becomes:



BDS-TR-2005-001 8

Figure 4: Interpolation of f using 100 interpolation points (red crosses data
ges.dat). Function in blue, interpolant in green.

1. Genetic Programming evolution of {(xi, yi)}, i = 0, n− 1;

2. Convert data coordinates to lie on unit interval;

3. Construct convolution matrix Ann (depends on xi and smoothing parame-
ter) using the generator of the row space (typically a Bernstein function).

4. Construct de-convolution matrix, A−1
nn ;



BDS-TR-2005-001 9

5. Construct augmented matrix ˜Amn using the same generator of the row
space m > n;

6. Evaluate ÃmnA−1
nny to obtain output data {yi}, i = 0,m− 1;

7. Convert the output to the world coordinate system (solution to the CDE).

8. Derivatives: {dyi/dx}, i = 0,m − 1 and {d2yi/dx2}, i = 0,m − 1 are
constructed by gradient versions of Ãmn.

9. the GP fitness measure (satisfaction of the CDE) can now be obtained from
the L2 norm of the pointwise values of the CDE squared: {(d2yi/dx2 −
Pdyi/dx)2}where P is the Peclet number of the CDE. The GP fitness
measure is taken to be the negative of this L2 norm. GP tries to minimize
this error by maximizing fitness.

4 Genetic Programming Solution of CDE

Without loss of generality a Genetic Programming implementation was con-
structed to tackle the one dimensional homogeneous version of the convection
diffusion equation without source terms:

d2T

dx2
− P

dT

dx
= 0

T = 1.0 at x = 0.0
T = 0.0 at x = 1.0

where T is the temperature and P is a constant known as the Peclet Number
which measures the ratio of convection to diffusion. Recall that the SBI works in
the domain (0,1) but that the solution can be mapped to a different functional
domain. In two dimensions, for example, a 2D SBI could be constructed to
attempt the same problem with boundary conditions on edges.

4.1 GP functions and terminals

The objective of the Genetic Programming implementation is to evolve the input
vector to the SBI procedure. The GP formulation functions and terminals were
chosen to be identical to the one that was presented in (Howard and Roberts,
2001) and summarized in table 1. Evaluation of a GP individual produces a
variable size vector of real numbers. Arithmetic functions generate the real
numbers by operating on the ephemeral random constant CS . This is stored as
one byte and can represent up to 256 values. Usually these are equally spaced
in the range [0,1].

A set of record manipulation functions (of parity 2) interacts with the re-
sultant vector. These manipulate two global pointers to the element position
in the vector of resultant coefficients: pointer L for “last index” or tail position
and pointer C for “current position”. Both of these pointers are initially set to
the first position. Function ADD writes its first argument to the vector element
that is pointed to by L. ADD then increments L provided that L < LMAX .
ADD then sets C = L. Function BACK decrements pointer C as long as
C > 0. Function WRITE overwrites the vector element at C with the value



BDS-TR-2005-001 10

Table 1: GP parameters

parameter setting
functions +, -, *, / (x/0 = 1),

ADD, BACK, WRITE,
Wm1, Wm2, Rm1, Rm2

terminals CS

globals LMAX = 50
variable length solution vector
pointers L and C
memories m1 and m2

version steady state GP
kill tournament size 2
breed tournament size 4
regeneration 80% crossover (single child),

20% injection
10% mutation

max tree size 1000 nodes

that is held by one of its arguments. If C < LMAX it increments C but if C > L
it increments L. These functions return their other argument to the GP tree.

Moreover, the function set is enhanced with two memories m1 and m2 ma-
nipulated by functions again of two arguments: Wm1 returns its first argument
to the GP tree and writes the content of its second argument to overwrite m1
and similarly for Wm1 and m2. Functions Rm1 and Rm2 simply return the
contents of m1 and m2 respectively to the GP tree (ignoring the contents of
their arguments).

The GP also implements a user defined parameter value that prevents so-
lutions which produce a variable length vector smaller than a certain size (it
severely punishes candidate solutions that violate this). Although this parame-
ter helped to add variety to the runs, GP was able to overcome it by “nearly
coalescing points” and thus it was not significant.

4.2 Non-uniform data vector and domain adjustment

One implementation is to set the yi values in {(xi, yi)}, i = 0, n − 1 to the
variable length vector that is discovered by GP, and to spread the xi values
uniformly over the domain (0,1) while adding the two boundary conditions as
additional points

The objective of Genetic Programming was to discover {(xi, yi)}, i = 0, n−1
and this involves discovery of both the xi position and the yi value of each data
points (0.0, 1.0) and (1.0, 0.0) respectively.

However, it became apparent that Genetic Programming would value the
freedom to position the points. Furthermore, upon numerical experimentation,
it also became apparent that the Stochastic Bernstein Interpolation process
would benefit from buffer zones outside of the solution region.

For this reasons the following modifications were implemented. The domain
of solution was mapped not to (0, 1) but to (0.2, 0.8) and GP was allowed to



BDS-TR-2005-001 11

choose the position of the points anywhere (with restrictions as explained below)
in the interval (0, 1) and the algorithm to obtain this information from the
variable length vector was implemented as follows:

1. After the new individual is evaluated check whether the size of the resul-
tant vector of real numbers is odd. If it is even discard its last term;

2. the x0 = 0.0 is fixed and y0 is set to the first element of the resultant
vector;

3. the xn = 1.0 is fixed and yn is set to the second element of the resultant
vector;

4. then in turn take tuples of the vector vi vi+1 corresponding to xi and yi

of points in (0,1);

5. in doing this, however, xi for these intermediate points is scaled, converted
to a percentage and then matched to a number of discrete bins which span
the(0,1) domain. These were implemented as 97 bins so that no xi − xi+1

gap could be less than a 0.01 gap.

6. the position of these bins take into account the presence of the boundary
conditions which are prescribed exactly (not evolved) as (0.2, 1.0) and
(0.8, 0.0) respectively.

The differential equation required a simple scaling of 0.6 to enable the solu-
tion to be mapped out from the (0.2,0.8) domain to the (0,1) domain:

0.6
d2T

dx2
− P

dT

dx
= 0

T = 1.0 at x = 0.2
T = 0.0 at x = 0.8

where T is the temperature and P is a constant known as the Peclet Number
which measures the ratio of convection to diffusion.

4.3 Fitness measure

As described in the aforementioned SBI pseudo-code the fitness was calculated
over m output data points {yi}, i = 0,m − 1. The location of these points can
be user defined. A set of 241 points was probabilistically varied using a Latin
sampling so that these would be proportionately distributed in the domain (0.2,
0.8).

There are a number of choices for the fitness measure and two were experi-
mented with:

1. compute 0.6 d2y
dx2 − P dy

dx and square it at the location of each SBI output
point. Average the resultant and take its square root. This is a measure of
error and the negative of this measure was used as the measure of fitness.

2. when generating the random locations divide (0.2,0.8) into 60 regions.
Each region has 4 uniform gaps and involves 5 output points and the
square of 0.6 d2y

dx2 −P dy
dx can be integrated using the five point Boole’s rule,

for example, which has a good degree of accuracy.



BDS-TR-2005-001 12

3. although it is possible to obtain the analytical integral of the square of
0.6 d2y

dx2 − P dy
dx , it was not attempted as it is an arduous task. Regard-

less, computing this analytical integral would still involve the value of the
derivatives recovered at the location of the output points.

4.4 Derivatives

The derivatives of y are readily available from the Stochastic Bernstein Ap-
proximation by construction of derivatives of the augmented matrix ˜Amn. An
alternative method would compute the derivatives by central, forward or back-
ward differences in the output vector values yi.

It was discovered that the SBI computed derivatives were smoother than
those recovered with finite differences. There are good reasons for this. The
SBI computed derivatives were used in nearly all experiments. The Genetic
Programming approximation was also successful with finite difference recovered
derivatives.

5 Experimental Results

As we are developing this new method under different fronts, this section is an
exposé of results and interesting observations obtained under experimentation
with different implementation variants. Our objectives are to use the model
problem to gain further understanding of the behavior of the method with a
view to its deployment in multi-dimensional systems.

5.1 Lower value of Peclet number runs

The value of σ in the SBI method was set at σ = 1.0 throughout all of the low
Peclet number runs.

Figure 5 is a typical result of the output yi values for a very low Peclet
number (Pe = 1) numerical approximation with the GP-SBI method. This was
obtained when the method used a random sample of output points and the
integration region was over (0,1) - prior to the changes discussed in the previous
section where the domain of the problem is embedded in (0.2,0.8).

Figure 6 illustrates typical results at a slightly higher Peclet number. These
figures now also show the value of the absolute value of d2y

dx2 − P dy
dx at each of

the output points.
In figure 7 and figure 8 at P = 4 the domain was not formally mapped to

(0.2,0.8) but the boundary conditions brought inside the domain. However, for
illustration the error was evaluated over the (0.2,0.8) range only. Distribution
of values of the absolute value of d2y

dx2 − P dy
dx at each output point is shown in

the inset graph. Note in this example that the boundary conditions were not
chosen as T = 1.0 and as T = 0.0 at 0.2 and 0.8 respectively but other bound-
ary condition values were selected. This aims to illustrate that any boundary
conditions can be implemented with the method.

The SBI calculated derivatives at the output value locations are plotted in
figure 8 together with the analytical solution for the derivatives. It is nearly
always the case that the GP formulation approximates the first derivative closer
to the analytical solution than it approximates the second derivative. Usually,



BDS-TR-2005-001 13

Figure 5: A result at a very low Peclet number. The magenta curve is the exact
analytical solution and the blue line is the SBI approximation. The picture in
the inset shows the position and value of the interpolation points: two internal
points that were evolved by GP together with the boundary conditions. The
output data was obtained at 200 random locations.

the error is more pronounced in the end regions. Figure 9 more clearly illustrates
this phenomenon for a candidate solution at an earlier GP generation. This was
one motivation for embedding the domain of interest in the (0.2,0.8) region.
The other reason is described in the following section.

Figure 10 is from a run that accomplishes a similar level of error to that of
figure 7 but now the GP solution evolved one fewer interpolation point.

5.2 FD derivatives versus SBI derivatives

It was interesting to note that if the derivatives are computed using finite dif-
ferences they can experience some oscillation which translates as a source of
difference to the fitness function. The SBI derivatives involve every point in
the approximation and consequently are smoother than the very localized FD
computed derivatives. Figure 11 illustrates how “clouds of dust” of points start
to appear in the diagram. In practice this does not affect the GP evolution
process which obtains the solution at these low Peclet numbers. The derivatives
tend to get smoother at higher generations and reduce with reducing error of
approximation.



BDS-TR-2005-001 14

Figure 6: Two results at another low Peclet number Pe = 2 (the magenta curve
is the exact analytical solution and the blue line is the SBI approximation) but
now showing the distribution of the absolute error in the differential equation
at the output points. The smaller pictures in the inset shows the position and
value of the interpolation points and as in the previous figure, the output data
was obtained at 200 random locations.

5.3 Higher value of Peclet number runs

As discussed previously the free parameter σ must be of equal value when build-
ing the matrix to compute the pre-image and when building the matrix to re-



BDS-TR-2005-001 15

Figure 7: This result at P = 4 implemented the method of embedding the
domain of evaluation into the (0.2-0.8). The image also illustrates the GP
evolved interpolation points at x = 0 and x = 1 and two other points evolved
inside the (0.2-0.8) region. Note that interpolation points corresponding to
some boundary conditions are prescribed as constant values (not affected by
evolution) at x = 0.2 and at x = 0.8.

Figure 8: Graph of the derivatives calculated by the SBI approximation (in
blue) as compared to the analytical solution for the derivatives (in magenta) at
the output values. The graph on the left is the first derivative and the graph
on the right is the second derivative.

covering the interpolation. If this is not the case then the points will not be



BDS-TR-2005-001 16

Figure 9: Candidate solution at an earlier generation. Graph of the derivatives
calculated by the SBI approximation (in blue) as compared to the analytical
solution for the derivatives (in magenta) at the output values. The graph on
the left is the first derivative and the graph on the right is the second derivative.
Better accuracy in the first derivative than in the second derivative is more
clearly illustrated.

Figure 10: A result that used 6 interpolation points similar to the result of
figure 7 that instead used 7 interpolation points

interpolated and the boundary conditions will not be satisfied. For this reason
the value of σ was kept of equal value.

The value of σ in the SBI method was set at σ = 1.0 throughout all of the
low Peclet number runs. However, for the higher Peclet number computations
P > 10 it became necessary to drop the value of σ to lower values.

A value of σ = 1.0 does not result in good convergence properties at higher
Peclet numbers. However, it was discovered that reducing the value of σ signifi-
cantly could produce results which followed the right shape and were very close



BDS-TR-2005-001 17

Figure 11: Illustrating derivatives computed using the finite difference measure:
first derivative (left), second derivative (right).

to the analytical solution at high values of the Peclet number.
Figure 12 was a successful run at P = 20. These runs implement the embed-

ding of the domain of computation in (0.2,0.8) with the appropriate scaling of
the CDE so that the error as shown in the figure is the value of the absolute value
of 0.6 d2y

dx2 −P dy
dx . The scaling factor of 0.6 means that the Genetic Programming

SBI approximation tackled a higher Peclet number (effectively 33).
Figure 12 illustrates two important observations:

1. consider the graph of the error and note how GP uses the buffer space
(0.8,1.0) to turn the function upwards (so as to achieve a rapid lift in the
function outside the area of interest);

2. note how GP has evolved more points than was required and simply clus-
ters them (within the allowable gaps as explained previously) in the region
near 1.0 effectively turning these into a single point.

We carried out only a few runs of the method on Pe = 100 using a GP
population of 10, 000 running it at a “dangerously low value” of σ to σ = 0.01.
Although the error remained quite high (L2 norm = 66.0 using 241 sampling
points) the resulting values showed the correct shape for both the solution and
its derivatives (figure 13). Note the “stair-casing effect” in the solution owing
to the very low value of σ.

6 Discussion

The traditional view of numerical approximation is that an increasing number of
approximation points is required to achieve a more accurate approximation (h



BDS-TR-2005-001 18

Figure 12: Results at higher Peclet numbers (P = 20) blue is the GP-SBI
and magenta is the analytical solution. Clockwise from top left: solution; first
derivative; second derivative; error; evolved and prescribed interpolation points
(see text). Note that the first four figures have been rescaled to the (0,1) range
from their original (0.2,0.8) range by the appropriate coordinate transformation.

refinement) and or a higher order of approximation is required (p refinement).
However, Genetic Programming managed to obtain qualitatively good approx-
imations at high Peclet number by manipulating the natural oscillations that
are inherent in an approximation by manipulating the location of the sample
points. It opportunistically evolved interpolation points outside of the domain
of interest to turn the SBI appropriately. A low value of sigma assisted this
process because it makes the resulting function more “stiff” as has been ex-
plained previously in this report.

7 Conclusions and further work

The method shows a lot of promise for a number of reasons:

1. It can be extended to multi-dimensions where different boundary con-
ditions can be naturally imposed and the fitness measure only needs to
concern itself with satisfaction of the differential equation as the boundary
conditions are exactly interpolated.

2. Unlike previous methods it is impossible for the method to produce a
large drop between points to return trivial solutions (a problem that had
plagued earlier attempts at solving the problem with a regression GP)



BDS-TR-2005-001 19

Figure 13: Results at higher Peclet numbers (P = 100) blue is the GP-SBI
and magenta is the analytical solution. Clockwise from top left: solution; first
derivative; second derivative; error; evolved and prescribed interpolation points.
Note that the first four figures have been rescaled to the (0,1) range from their
original (0.2,0.8) range by the appropriate coordinate transformation. GP has
made a lot of effort to get the function to turn appropriately by manipulating
the interpolation points outside of the domain of interest, i.e. in the regions
(0.0,0.2) and (0.8,1.0).

3. It seems that only a few number of points need to be prescribed as inter-
polants. Consequently the Gauss elimination of the matrix system A−1

nny
which needs to be performed at every fitness evaluation is currently in-
expensive. However, we already have an excellent pseudo-inverse of this
matrix that maintains the interpolation at the boundaries. We will be
investigating this further.

4. Calculation of the derivatives using localized finite differences or some
other technique can free up sigma. Currently, sigma needs to be set to
a constant throughout to enable an easy computation of derivatives. If
sigma could be varied by GP or prescribed for example at 2D boundaries
to stiffen the points there, this could be a useful facility. Local calculation
of derivatives may have its drawbacks.

5. Although the Pe = 100 solution of figure 13 exhibits a ramp like nature
owing to the low sigma value, it is important to realize that sigma can be
varied as a post processor to improve the gradients in the solution for the
same set of fixed interpolation points.

6. We need to continue to investigate the behavior of the system and better
to understand the search space for different Peclet numbers.



BDS-TR-2005-001 20

We also plan to work on the mathematics of the SBI:

• Improving the converge of the method at the edges of the domain. Presently,
the method ranges from O(h4) to O(h6) over almost the entirely of the
domain, however near the edges, this reduces to about O(h1), which is
clearly a source of difficulty. In particular, estimates of the derivatives
become increasingly difficult to obtain near either boundary point. The
difficulty in part lies in the fact that in the integral formulation of the
Bernstein function, the development of the approximation is done using
a piecewise constant approximation to the data fj . Increasing this, along
with modifications of the Bernstein functions diffusion coefficient may lead
to improved modelling of the interpolant and its derivatives near the edge
of the domain.

• Extending stochastic methods to full multidimensional methods, i.e., not
the one-dimensional interpolation done in each of the coordinate direc-
tions, has several advantages in dealing with the solution of multidimen-
sional partial differential equations. The full development of this extension
is quite feasible analytically, however carrying out the work remains to be
done.

• Improving the computational speed of Bernstein Interpolation. Recent
advances have reduced the cost of inverting the matrices to (n2), which is
achieved by modifying the structure of the deconvolution matrices so that
they are Toeplitz. In addition, further advantage can be taken of block
decomposition of the problem, or of using overlapping computational sten-
cils, as is done for finite difference methods, however the goal is to achieve
a recursive structure, thus leading to methods which are computationally
on the order of the FFT to compute.

References

[1] K W Morton (1996) Numerical Solution of Convection Diffusion Problems,
Chapman & Hall, 0-412-564440-8.

[2] E Süli, T Murdoch, K W Morton, (1980) Optimal er-
ror estimation for Petrov-Galerkin methods in two dimen-
sions, Oxford University Numerical Analysis Report NA-90/22
(http://web.comlab.ox.ac.uk/oucl/publications/natr/na-90-22.html).

[3] J R Koza (1992) Genetic Programming, MIT Press.

[4] D Howard, S C Roberts (2001) Genetic Programming Solution of the Con-
vection Diffusion Equation, GECCO 2001, pg. 34-41.

[5] J Kolibal, C Saltiel (2005) Data Regularization Using Stochastic Methods
submitted to: SIAM Journal on Numerical Analysis. Paper ID is: Manu-
script # 063083.

[6] K W Morton, I J Sobey (1991) Discretization of a convection-diffusion
equation, Oxford University Numerical Analysis Research Report NA-91/4
(http://web.comlab.ox.ac.uk/oucl/publications/natr/na-91-4.html).



BDS-TR-2005-001 21

[7] P Gresho, R L Lee (1981) Don’t suppress the wiggles, they are telling you
something. Computers & Fluids 9, 223-253.

Appendix A : Current state of the art and its
limitations

This section describes the limitations of any numerical approximation of non-
self-adjoint partial differential equations (the heat equation, the Navier-Stokes
equations, etc.) with the Weighted Residuals Methods (WRM).

Consider a simplified member of this class of differential equation: the 1D
steady-state homogeneous convection diffusion equation (a two point boundary
value problem):

d2T

dx2
− P

dT

dx
= 0

T = 1.0 at x = 0.0
T = 0.0 at x = 1.0

where T is the temperature unknown over the domain [0,1] and P is the Peclet
number or the ratio of convection to diffusion.

The Weighted Residuals Method for numerical solution of this differential
equation divides the domain [0,1] into a number of regions (called cells or el-
ements) by means of nodes. Simple functions φ (usually linear or quadratic)
are defined on a node and have a small local support over the adjacent two
elements as illustrated in figure. At any point in (0,1) the temperature T is
obtained by taking the sum of products of nodal temperatures Ti and nodal
functions φi or T =

∑n
i=1 φiTi, where n is the number of such nodal functions

and temperatures.
Consider the self-adjoint version of the convection diffusion equation when

P = 0 and the differential equation at any point with the nodal functions and
unknowns:

n∑
i=1

d2φi

dx2
Ti = 0

The Weighted Residuals Method writes a nodal differential equation by pre-
multiplying this expression with another function, the weighting function wi

at node i and defined similarly to the φi. Furthermore it takes the expression
under the integral sign:

n∑
j=1

n∑
i=1

∫
wj

d2φi

dx2
Ti = 0

Integration by parts is required to reduce differentiability requirements on φi

(weak formulation) resulting in:



BDS-TR-2005-001 22

n∑
j=1

n∑
i=1

∫
dwj

dx

dφi

dx
Ti =

n∑
j=1

∫
Ω

wj
dφi

dx
Ti

where Ω is the boundary integral (it has lower dimensionality: in the 1D case it
is a nodal value; in the 2D case it is an edge, and in the 3D case it is a surface).

This is now a matrix system of equations of the form:

Au = b

ajiui = bj

aji =
∫

dwj

dx

dφi

dx

bj =
∫

Ω

wj
dφi

dx
Ti

where A is the square matrix of size nxn u is the vector of nodal unknowns,
i.e. T , and b is the right hand side vector both of size n. In order to obtain the
vector of nodal unknown matrix A needs to be inverted, i.e. u = A−1b. Usually,
the system of equations is solved by Gauss elimination. Note that the system
is usually banded because functions φi and wi have local support.

An important assumption is the Galerkin weighting. This replaces wi by φi

to make matrix A symmetric and positive definite:

aji =
∫

dφj

dx

dφi

dx

As stated, this matrix system coincides with the Ritz Method. A functional
F (u) is a landscape that must be searched. However, this landscape is defined
by a quadratic functional and therefore the minimizer is immediately provided
by setting its first derivative with respect to u to zero. The resulting û is a
minimizer provided the matrix A is positive definite.

F (u) =
1
2
uT Au− bT u + c

dF

du
= Au− b

d2F

du2
= A

dF

du
= 0 or Aû = b

The solution of the matrix system of equations defined by a Galerkin weighted
residual method for a self-adjoint problem (P = 0) is a “direct” search method
(one step) of search over the landscape F (u).

Consider what happens when P > 0. The first effect is to make the matrix
A an unsymmetrical matrix. More importantly, for a given P and width of
each element (the spacing between nodal points in [0,1]) the matrix A is no



BDS-TR-2005-001 23

longer positive definite. When this occurs then the equivalence between the
Ritz method and the Galerkin WRM is gone. Solution of the matrix system
no longer provides the minimization of the functional F (u) because this is no
longer quadratic. The solution of the matrix equations is highly oscillatory and
has no resemblance to the true solution.

Over the past thirty five years, engineers and mathematicians have tried to
address this problem by restoring the Ritz equivalence through the manipula-
tion of the weighting functions wi. Methods which use a different weighting
function to φi are popularly known as Petrov-Galerkin methods. C. J. Hemker,
a Dutch mathematician, introduced a function for wi which perfectly restores
the equivalence to the Ritz method for the 1D case (the case presented in this
section). This function is in turn a function of P and of the difference between
the points. The finite difference method has introduced equivalent schemes to
those of the finite element method in one dimension (Morton and Sobey, 1991)
called “upwind differences”. However, in all cases these Petrov-Galerkin func-
tions cannot easily constructed (they are certainly not the cross product of 1D
Hemker functions) for: (a) multi-dimensional differential equations (partial dif-
ferential equations); (b) non-linear differential equations (such as Navier-Stokes
equations) other than in the most trivial of cases.

In partial differential equations and in non-linear differential equations, such
techniques as: upwind differences (finite differences method); artificial viscosity
(finite volume method); streamline upwinding or SUPG (finite element method);
can provide deceptively smooth result which are solutions to a different set of
differential equations to the one intended (Gresho and Lee, 1981). Over the
past 35 years this problem has been addressed but never solved. The reasons is
that properly restoring the equivalence to the Ritz method for such differential
equations is a formidable challenge which is problem and geometry dependent.
Even in simple cases when it is known how to it is just too difficult to do so, in
other cases the required function is unknown.

Appendix B - Additional information on SBI

The new method has excellent representational fidelity (appendix D) and a good
candidate for function recovery from experimental measurements which contain
clutter. Its other advantages are:

1. This technique is robust, i.e., it always converges numerically;

2. It is adaptable to any data ordering in any dimension;

3. The method is hierarchical, i.e., data can be added at any time to improve
the results.

4. The method is not harmonic, but it is spectral, i.e., it is possible to con-
struct a sequence of components whose sum converges to the same result.

5. The method can be made adaptive through:

(a) spectral decomposition,

(b) windowing,



BDS-TR-2005-001 24

(c) tuning the convolution coefficients (these can be functions of the
data), and

(d) choosing the stochastic components using statistical theory.

SBI never throws away spectral information, it simply attenuates it. For
example, all recovered functions are infinitely differentiable.

Another difference to other spectral methods concerns the approximation in
L1. Figures 14 to 16 illustrate equivalent approximations in L1. The recovered
function is similarly close to the data in all cases (in terms of the evolution of
the function). The method is very flexible because different results can resemble
analysis by a spectral method and are obtained by adjusting a free deconvolution
parameter.

Figure 17 illustrates this feature extraction in the region from x = 1.7 to
x = 2.3 (approximately). It is the result of the following procedure:

1. Take the data from the function recovery that used 1,000 as the deconvo-
lution parameter (right plot of figure 15).

2. Extract the smooth function on a dense set (about 1,000 points) in the
region of interest.

3. Re-approximate using the previous approximation.

The resulting curve in figure 17 does a much better job of approximating
the function in this region. The procedure amounts to cloning this segment of
the curve, intensifying its attributes and then extracting the smooth underlying
feature from this curve. This may be compared with the response to function
recovery using 1,000 as the deconvolution parameter (right plot of figure 15)
from x = 1.7 to x = 2.3. It illustrates “windowing properties” (design of CWT
and window Fourier transforms were motivated by this need).

That is not quite multi-resolution analysis the way wavelets do it, but it is
comparable. An advantage of this novel approach is that it easily extends to
multiple dimensions (interpolation is a bit more difficult to do, but approxima-
tion is not).

Appendix C: SBI and Data Approximation

Consider Fig. 18. Starting with an underlying smooth function, sampling the
function and adding noise at each sample location, the Bernstein function re-
covery obtains a smooth representative function for the data based on the noisy
data. The following questions and answers are offered with respect to figure 18:



BDS-TR-2005-001 25

F
ig

ur
e

14
:

Fu
nc

ti
on

re
co

ve
ry

w
it

h
de

co
nv

ol
ut

io
n

pa
ra

m
et

er
va

lu
e

eq
ua

l
to

1
(l

ef
t)

an
d

eq
ua

l
to

10
(r

ig
ht

).



BDS-TR-2005-001 26

F
ig

ur
e

15
:

Fu
nc

ti
on

re
co

ve
ry

w
it

h
de

co
nv

ol
ut

io
n

pa
ra

m
et

er
va

lu
e

eq
ua

l
to

10
0

(l
ef

t)
an

d
eq

ua
l
to

1,
00

0
(r

ig
ht

).



BDS-TR-2005-001 27

F
ig

ur
e

16
:

Fu
nc

ti
on

re
co

ve
ry

w
it

h
de

co
nv

ol
ut

io
n

pa
ra

m
et

er
va

lu
e

eq
ua

l
to

10
,0

00
(l

ef
t)

an
d

eq
ua

l
to

10
0,

00
0

(r
ig

ht
).



BDS-TR-2005-001 28

Figure 17: Feature extraction.



BDS-TR-2005-001 29

Comment/Question Answer
It looks a reasonable fit. A score of methods may give similar results.

The method is useful because it gives good
results in many cases without tweaking it.

Firstly, about the data:
1. Is x uniformly sampled on [0,1]? It was uniformly sampled, however it need

not be, i.e. the method works on any
arbitrary grid.

2. Is the variance constant across [0,1]? Were the random perturbations generated
of the data? If that is the question, then the
answer is yes. Other models are possible
but that was the simplest.

Secondly, about the fitted curve:
1. What are the boundary conditions? There are no boundary conditions, results
The fit near x=0 looks good, but it is are from the standard linear model, i.e. no
not supported by the data in that region. attempt at any corrections using feedback
Some standard methods (e.g. a standard from any additional information (though
kernel-based method) may perform doing so could have enhanced the results).
poorly at the boundaries, but there The SBI method of convolution does not
are modifications to handle that. You could come from solution of a differential
probably get a similar fit with splines equation.
with appropriate boundary conditions.
2. How do you determine model order? The model does not have any order since
The wiggle towards x=1 seems odd, it is non-polynomial. Instead there is
but who is to say that it is not supported a measure (locally) of the distance
by the data? that the curve is away from the original

data (i.e., it is a convolution with a
mollifier, and can move it further away
or closer to the original curve).

Thirdly about the method:
1. Can the method be used to obtain The model by itself has no statistical
confidence bounds on the curve? components, and since it is not an L2 fit,

there are no best fits, only families of
functions which will be appropriate fits.

In considering these answers readers should note that:

1. In Mathematics, a mollifier is a smooth function f : Rn → R such that:

f(x) ≥ 0 for all x ∈ R
n; f is normalized such that

∫
Rn

f(x)dx = 1;

f(0) = 1. The process requires a mollifier when it is desirable to construct
smooth approximations or interpolations to the data. This is usually desir-
able although this is not necessary. Use of any other normalized function
to construct the row space of the stochastic matrix will construct approx-
imations that rapidly vary from point to point. Using a mollifier means
that the information that is filled in between the know points also varies
smoothly and predictably between these points.

2. Why is the method “non-polynomial”? The representative functions are
close to polynomials on a regular grid but they are not polynomials. The



BDS-TR-2005-001 30

Figure 18: Illustrating function recovery using Bernstein functions, Kn, based
on sampling the function f(x) = u(x) + ε(x) (crosses). The smooth function
u(x) = 4.26(e−3x − 4e−6x + 3e−9x) + 1.28 is shown using a dotted line and a
solid line shows Kn recovered from the data, {(xk,fk)}. The perturbations are
obtained using a normal distribution N(0, 1) scaled by 0.2 to perturb u(x).

polynomials they are close to are the Bernstein polynomials. For the
approximations, the functions are composed of convolutions of error func-
tions, and for the interpolant they are more complicated.

Appendix D: Fidelity of SBI

An important consideration of any method which aims to represent functions is
how well it can do that task. Ultimately, what matters is the representational
fidelity of the method. When it gets that right, everything else follows (multi-
resolution analysis, scalability, and everything else).

This appendix revisits the case used in figures 14 to 16 in which the under-
lying function:

cos(3 ∗ x) ∗ exp(abs(cos(exp((x + 5)/3))))



BDS-TR-2005-001 31

is perturbed, but this time to interpolate the data along with the noise.
The first experiment takes the 1,000 points and interpolates these to 10,000

points uniformly spaced on the interval [0:3]. This gives a richer characterization
of the data, finding a representative smooth function which fits the data and
the noise.

This is a lot of data. Thus, figure 19 shows the data plotted in the interval
[1.7:2.3], and figure 20 gets a closer look in the interval [1.7:1.8].

From these figures it is noticeable that the interpolant has peaks and valleys
where the 1,000 data set did not. In effect, the method is predicting that the
representative smoothing to the noisy data would be shaped as shown in these
two figures.

Notice in the graph on the interval [1.7:1.8] that the curve is smooth.
Instead of the analysis of figures 14 to 16 which used the original coarse data,

a further experiment convolves the interpolated data containing these 10,000
points, which were obtained from the data by interpolation. Figure 21 displays
the results that speak for themselves. The method finds all of the features
of the underlying curve, except for the sudden drop-off at x = 3. However,
there is not enough information at this point to discern that from the data. It
slightly overshoots and smooths out the features, but given the level of noise,
and the fact that this was a biased perturbation, it has done credibly well at
feature extraction. It has correctly predicted all of the features of the underlying
smooth function.



BDS-TR-2005-001 32

Figure 19: Data plotted in the interval [1.7:2.3]



BDS-TR-2005-001 33

Figure 20: Closer look in the interval [1.7:1.8]



BDS-TR-2005-001 34

Figure 21: The method finds all of the features of the underlying curve.


