
FINAL DRAFT ACCEPTED FOR IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1

Automatic Component-wise Design of
Multi-objective Evolutionary Algorithms

Leonardo C. T. Bezerra, Manuel López-Ibáñez, and Thomas Stützle

Abstract—Multi-objective evolutionary algorithms are typi-
cally proposed, studied and applied as monolithic blocks with
a few numerical parameters that need to be set. Few works have
studied how the algorithmic components of these evolutionary
algorithms can be classified and combined to produce new algo-
rithmic designs. The motivation for studies of this latter type stem
from the development of flexible software frameworks and the
usage of automatic algorithm configuration methods to find novel
algorithm designs. In this paper, we propose a multi-objective
evolutionary algorithm template and a new conceptual view of its
components that surpasses existing frameworks in both the num-
ber of algorithms that can be instantiated from the template and
the flexibility to produce novel algorithmic designs. We empiri-
cally demonstrate the flexibility of our proposed framework by
automatically designing multi-objective evolutionary algorithms
for continuous and combinatorial optimization problems. The
automatically designed algorithms are often able to outperform
six traditional multi-objective evolutionary algorithms from the
literature, even after tuning their numerical parameters.

Index Terms—Multiobjective optimization, evolutionary al-
gorithms, permutation flowshop problem, automatic algorithm
configuration.

I. INTRODUCTION

MULTI-OBJECTIVE evolutionary algorithms (MOEAs)
are a central research topic in evolutionary computation

as evidenced by the number of different proposals in the
literature [1–8]. The traditional study of MOEAs considers
these algorithms as monolithic units [9, 10] and only few arti-
cles have considered the contribution of individual algorithmic
components of MOEAs to performance [11–13]. These latter
empirical studies indicate that (i) performance improvements
may be achieved by replacing the algorithmic components
of well-established MOEAs by alternative options from other
MOEAs and that (ii) the benefits of such changes become
more important when applying MOEAs to scenarios different
from those for which they were originally designed.

The component-wise view of MOEAs consists in identifying
individual algorithmic components in different MOEAs that
have the same function and, thus, could be replaced by
alternative procedures taken either from different MOEAs or

L. C. T. Bezerra, M. López-Ibáñez, and T. Stützle are with the IRIDIA
laboratory at CoDE, Université Libre de Bruxelles, 1050, Belgium.
email: {lteonaci,manuel.lopez-ibanez,stuetzle}@ulb.ac.be
This is the final draft version accepted by IEEE Transactions on Evolutionary
Computation on 27 August, 2015. DOI: 10.1109/TEVC.2015.2474158
This research has received funding from the COMEX project (P7/36) within
the Interuniversity Attraction Poles Programme of the Belgian Science Policy
Office. L. C. T. Bezerra, M. López-Ibáñez, and T. Stützle acknowledge support
from the Belgian F.R.S.-FNRS, of which they are a FRIA fellow, a post-
doctoral researcher, and a senior research associate, respectively.

newly devised. Examples are the fitness and diversity compo-
nents that appear in many MOEAs [11, 14]. This component-
wise view has two main benefits. First, it allows algorithm
designers to identify the various options available for each
algorithmic component and whether a particular combination
of components, i.e., an algorithm “design”, has already been
proposed. Second, it allows algorithm users to adapt the design
of MOEAs to their particular application scenario.

One motivation for this component-wise view of MOEAs
is the development of software frameworks that help prac-
titioners apply and adapt MOEAs to their own application
scenarios. Unfortunately, the design of most MOEA frame-
works focuses on applying existing MOEAs to new scenarios,
rather than on flexibly combining their components to produce
new designs [15–17]. Even MOEA frameworks that allow
the combination of algorithmic components from different
MOEAs [14] are limited to MOEAs that are structurally
similar, for example, based on the traditional fitness and
diversity components. More recent MOEAs that differ from
this template, such as HypE [5] and SMS-EMOA [6], cannot
be instantiated from algorithmic components through such
frameworks. We see two reasons behind this lack of flexibility.
First, the analysis of MOEA components has relied on how the
algorithms were described by their original authors, and only
few works try to generalize functionally equivalent concepts
of MOEAs into broader concepts [11, 14, 18, 19]. Second, a
high degree of flexibility in a software framework may be
deemed undesired, since some configurations may produce
unreasonable algorithm designs or the number of possible
configurations may be too large for human designers.

In this paper, we propose a new conceptual view of MOEA
components that allows instantiating, from the same algorith-
mic template, a larger number of MOEAs from the literature
than existing MOEA frameworks. For example, we are able to
instantiate at least six well-known MOEAs from the literature:
MOGA [1], NSGA-II [2], SPEA2 [3], IBEA [4], HypE [5],
and SMS-EMOA [6]. More importantly, our framework allows
to produce a large number of novel MOEA designs that are,
in principle, reasonable from a human designer point of view.
This is achieved by reformulating the traditional distinction
between fitness and diversity components [11, 14] as pref-
erences composed by set-partitioning, quality and diversity
metrics [19]. In addition, different preferences may be used for
mating and environmental selection. Our proposal also formal-
izes the distinction between internal and external populations
and archives, which allows us to describe, using alternative
options for the same components, algorithms as different as
SPEA2 and SMS-EMOA. Our proposal is implemented in a

http://dx.doi.org/10.1109/TEVC.2015.2474158

2 FINAL DRAFT ACCEPTED FOR IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

software framework from which novel MOEA designs can be
instantiated by properly selecting the values of the various
algorithmic components and numerical parameters.

Following previous work on automatic design [20], we
apply an offline automatic configuration method, irace [21], to
our proposed framework, considering the various algorithmic
components as categorical parameters to be set. In this sense,
the configuration space searched by irace is actually a design
space, where different MOEA components can be combined
to generate unique and possibly novel MOEA designs.

We automatically design several MOEAs, called here Auto-
MOEAs, for several application scenarios. Our scenarios were
selected to provide insights on several questions about MOEA
design. The first question is whether the benchmark that guides
the design process has a strong influence in the performance of
the resulting design. Thus, we consider continuous optimiza-
tion problems, in particular, two benchmark sets, DTLZ [10]
and WFG [22], with two, three, and five objectives, since
MOEAs have been primarily designed for these problems. Our
results indicate that the best MOEA design depends strongly
on which benchmark is used for the automatic design.

A second question in MOEA design is the trade-off between
computationally expensive components and the quality of the
results. Thus, we consider two different stopping criteria for
the MOEAs: maximum number of function evaluations (FEs)
and maximum runtime. By using these two setups, we are able
to represent problems with computationally demanding func-
tion evaluations as well as problems where the computational
overhead of MOEA components is relevant. Although the
former is the typical setup considered in the MOEA literature,
the conclusions obtained may not apply to the latter setup. This
is demonstrated by the fact that the AutoMOEAs produced
for each setup show remarkable differences. In most cases,
for both setups, the AutoMOEAs are able to match, and often
significantly surpass, the results obtained by the MOEAs from
the literature, even after tuning their numerical parameters.

Finally, we study the differences between the AutoMOEAs
obtained for the continuous optimization benchmarks and
those obtained for various multi-objective combinatorial opti-
mization problems. In a preliminary version of this work [23],
we considered four multi-objective variants of the permutation
flow shop problem (PFSP), varying the number and nature
of the objectives. Since MOEAs from the literature were not
originally devised for such problems, it is not surprising that
we were able to generate AutoMOEAs that outperformed
them. Nonetheless, the best MOEA designs differ enough
from what is considered the state-of-the-art in the MOEA
literature that we briefly comment the results here. These
results and the remarkable differences between the MOEAs
designed for continuous optimization and those designed for
combinatorial optimization provide further motivation for the
automatic design of MOEAs.

Our overall goal is to empirically demonstrate that it is
possible to find novel MOEA designs that outperform the
MOEAs from the literature by means of automatically con-
figuring the components of our proposed MOEA template.
Another objective of this paper is to reformulate diverse
MOEAs into a common conceptual view that generalizes

Algorithm 1 AutoMOEA template proposed in this work.
1: pop ← Initialization ()
2: if type (popext) != none
3: popext ← pop

4: repeat
5: pool ← BuildMatingPool (pop)
6: popnew ← Variation (pool)
7: popnew ← Evaluation (popnew)
8: pop ← Replacement (pop, popnew)
9: if type (popext) = bounded then

10: popext ← ReplacementExt (popext, popnew)
11: else if type (popext) = unbounded then
12: popext ← popext ∪ pop

13: until termination criteria met
14: if type (popext) = none
15: return pop
16: else
17: return popext

functionally-equivalent algorithmic components and describes
the available design choices. A final objective is to investigate
which design choices (instead of which monolithic MOEAs)
are more appropriate for the various scenarios described above.

The remainder of this paper is structured as follows.
Section II presents in detail our component-wise MOEA
framework. We present empirical results and discussion for
continuous and combinatorial problems in Sections III and IV,
respectively, and conclude in Section V.

II. A TEMPLATE FOR DESIGNING MOEAS

The AutoMOEA template we propose for instantiating and
designing MOEAs is shown in Algorithm 1. As we will
explain below, from this template we can not only instantiate
many well-known MOEAs, but also many new ones that
have never been explored so far. The proposed template is
based on the view that MOEAs can be seen as extensions of
traditional single-objective EAs such as genetic algorithms [1–
5], evolution strategies [6, 24], or differential evolution [25],
extended by algorithm components that deal with the multi-
objective aspects. In our template, we encapsulate the lower-
level procedures in components such as Variation, which
applies variation operators to the mating pool (pool). Ad-
ditional components for tackling multi-objective problems in
the Pareto sense are encapsulated in the BuildMatingPool and
Replacement procedures (see lines 5 and 8 of the template,
respectively). In addition, MOEAs often use their internal
population (pop) as a bounded-size approximation to the
Pareto front (i.e., as an archive) and many of them add the
possibility of keeping an external (bounded or unbounded)
archive (popext).

Next, we describe the multi-objective components, how to
instantiate some well-known MOEAs from our template, and
how our approach differs from existing frameworks.

A. Preference relations in mating and replacement

The mating and environmental selection procedures per-
formed by MOEAs depend on ranking solutions according to
a preference relation. In general, given two solutions θ1 and θ2

and a metric Ψ to be minimized (without loss of generality), a
relation ≺Ψ is defined as θ1 ≺Ψ θ2 ⇐⇒ Ψ(θ1) < Ψ(θ2). In

BEZERRA, LÓPEZ-IBÁÑEZ AND STÜTZLE: AUTOMATIC COMPONENT-WISE DESIGN OF MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS 3

Table I
MAIN ALGORITHMIC COMPONENTS OF AUTOMOEA

Component Parameters

Preference 〈Set-partitioning, Quality, Diversity 〉
BuildMatingPool 〈PreferenceMat, Selection 〉

Replacement 〈PreferenceRep, Removal 〉
ReplacementExt 〈PreferenceExt, RemovalExt 〉

our MOEA template, solutions are ranked according to general
preference relations [19] defined as a sequence of three
lower-level preference relations: a set-partitioning relation, a
quality metric and a diversity metric. First, a set-partitioning
relation ranks solutions in a Pareto-compliant way, but does
not distinguish between nondominated solutions. These cor-
respond to traditional fitness components such as dominance
depth (NSGA-II) and dominance strength (SPEA2). Because
of the nature of these metrics, multiple solutions are often
equally ranked. Therefore, at a second step, we use refine-
ment relations based on Pareto-compliant quality indicators to
discriminate between equally ranked solutions. We apply these
refinement relations to the equally ranked partitions, but we do
not alter the cross-partition ranks. This means that if a solution
θ1 is ranked better than another solution θ2 according to a set-
partitioning relation, then a refinement relation would never
contradict this. The third type of relation is based on diversity
metrics. These metrics do not focus on Pareto dominance,
but rather on allowing MOEAs to maintain a population that
represents different trade-offs between the objectives. The
structure for these general preference relations is encapsulated
in component Preference (Table I). Additionally, any of the
three components of Preference might be empty (none), which
means that the next component takes effect. If all three
components are empty, the ranking is random.

The options available for composing preference relations in
our template are given in Table II. This formulation of prefer-
ence relations provides flexibility when designing MOEAs for
different real-world optimization scenarios. For instance, set-
partitioning relations may provide enough convergence given
a problem with few objectives and for which the computation
overhead of quality metrics may be deemed excessive. On
the other extreme, given a problem with a large number of
objectives, the number of incomparable candidate solutions
may be too large such that set-partitioning relations do not
provide enough convergence pressure. In other cases, the time
required for computing the quality metrics may be negligible
compared with the cost of evaluating candidate solutions.
We also remark that the original proposal by Zitzler et al.
[19] allows for more complex preference models (e.g. using
multiple refinement relations based on quality indicators in
a sequence), but our proposal here suffices to replicate most
MOEAs from the literature and allows defining new preference
relations in a flexible and consistent way. Furthermore, the
general preference relations we adopt overcome the problems
faced by existing frameworks when instantiating some recent
MOEAs such as SMS-EMOA and HypE. In particular, these
algorithms include components that simultaneously account
for convergence and diversity, and hence do not fit the tradi-

Table II
ALGORITHMIC COMPONENT OPTIONS AVAILABLE FOR AUTOMOEA

Component Domain

Set-partitioning

none (—)
dominance count
dominance rank
dominance strength
dominance depth
dominance depth-rank

Quality

none (—)
binary indicator (Iε or I−H)
exclusive hypervolume contribution (I1H)
shared hypervolume contribution (IhH)

Diversity

none (—)
niche sharing
k-th nearest neighbor (kNN)
crowding distance

Selection

deterministic tournament (DT)
stochastic tournament (ST)
random

Removal

{
sequential
one-shot

type (pop) { fixed-size, bounded }

type (popext) { none, bounded, unbounded }

tional separation between fitness and diversity metrics [11, 14].
The mating and environmental selection procedures

(BuildMatingPool and Replacement) are defined in depen-
dence of the general preference relations described above.
BuildMatingPool comprises a preference relation PreferenceMat

and a selection method Selection as shown in Table I. The
methods for selection we implement for this work are listed
in Table II. In particular, the tournament selection method
can be used either deterministically or stochastically. While
deterministic tournaments always favor the best individual
according to PreferenceMat, stochastic tournaments choose,
with a probability γ, the solution preferable according to
PreferenceMat. Random selection chooses individuals with uni-
form probability, and so no preference relation is used.

Component Replacement is composed of a preference re-
lation PreferenceRep and a removal policy Removal. Table II
lists the removal policy options we implement. Sequential (or
iterative [5]) removal [26] discards one solution at a time and
recomputes the preference relation before the next solution is
discarded. One-shot removal [5] computes preference relations
once and discards the worst solutions altogether. Although
the information provided by the sequential removal policy is
more accurate, this policy is computationally more demanding,
which may compromise its performance in time-constrained
scenarios. Additionally, if the number of offspring per gen-
eration λ is set to 1 (steady-state selection), the different
alternatives for component Removal become equivalent.

The ability of using different preference relations for mating
and environmental selection is, in fact, another novel feature
of our template over the templates implemented by existing
MOEA frameworks. Although earlier MOEAs did not foresee
the benefits of this design choice, more recent algorithms such

4 FINAL DRAFT ACCEPTED FOR IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

Table III
DIFFERENT TYPES OF ARCHIVES AVAILABLE FOR AUTOMOEA

Archive Type µ0 FS MC DS EP Replacement

type (pop) = fixed-size µ + µ + + Replacement
type (pop) = bounded µ · µr − µ − + Replacement

type (popext) = bounded |pop0|≺ − Next − − ReplacementExt
type (popext) = unbounded |pop0|≺ − ∞ − − —

FS: fixed-size; MC: maximum capacity; DS: dominated solutions; EP: part of
the evolutionary process; |pop0|≺: size after removing dominated solutions

as SMS-EMOA and HypE already make use of it to minimize
the computational overhead of quality metrics such as the hy-
pervolume. From a more general point of view, the flexibility
provided by this design choice can be used to improve the
effectiveness of the algorithm in several other ways, e.g., by
combining exploitative and explorative strategies.

B. Population and archives

A population is a set of individuals, dominated and non-
dominated alike, that are subject to the evolutionary process.
By contrast, an archive is an auxiliary set used for storing
nondominated solutions found during a single run of the algo-
rithm. In our template, we model an archive as a generalized
population that may (i) only keep nondominated solutions,
(ii) have unbounded capacity, and/or (iii) take part in the
evolutionary process. We provide two archives for MOEAs to
use: an internal archive pop that takes part in the evolutionary
process and can be used as a regular population or as a
bounded-size archive, and an external archive popext that
does not participate in the evolutionary process.

All options implemented here for pop and popext are listed
in Table II, and we present a summary of their characteristics
in Table III. If pop is set to have a fixed size (type (pop) =
fixed-size), then pop behaves like a regular population of size
µ and may contain dominated solutions. Otherwise, pop is
used as a bounded internal archive (type (pop) = bounded),
accepting only nondominated solutions until its maximum
capacity µ is reached. Once the maximum capacity is reached,
a replacement is carried out by component Replacement
mimicking an archive bounding method [27]. When used as
a bounded internal archive, pop presents two other important
characteristics. First, the initial number of solutions µ0 in pop
is controlled by a numerical parameter µr ∈ [0.1, 1], i.e., µ0 =
µr · µ. Second, the preference relation used by this bounded
internal archive does not use set-partitioning relations, since
all solutions are already nondominated. These characteristics
make pop flexible enough to allow us instantiate archive-
based algorithms such as PAES [24], as well as algorithms
such as SPEA2, which are population-based but use an archive
that interferes in the evolutionary process [11].

By contrast, the external archive popext can be used by
MOEAs in three different ways. First, as traditionally used
in the literature, the archive can be bounded to a maximum
capacity Next and once the maximum capacity is reached, a
replacement is carried out (see also line 10 of Algorithm 1).
Component ReplacementExt is defined analogously to Re-
placement, but with its own PreferenceExt and RemovalExt

options (see Table I). Since all solutions kept by the archive
are nondominated, PreferenceExt does not use a set-partitioning
relation. For application scenarios where the number of non-
dominated solutions is low, MOEAs can either use an archive
without capacity constraints, i.e., type (popext) = unbounded,
or not use an external archive at all, i.e., type (popext) = none.

The ability of using a different preference relation for main-
taining the external archive opens a number of possibilities
for MOEA designers. For example, the preference relations
used for mating and replacement of the (internal) population
could lack the limit-stable property [26] (that is, even given
infinite time, the population will not converge to a stable set)
in order to promote exploration, while the external preference
relation could be both limit-stable and limit-optimal such that,
eventually, the external archive will converge to an optimal
(bounded) archive [26].

C. Differences from existing frameworks

A number of MOEA software frameworks can be found in
the literature [14–17]. Together, they have made the applica-
tion of MOEAs to new scenarios much easier by establishing a
clear separation between problem-dependent and independent
components. These software frameworks include implementa-
tions of the most popular MOEAs, however, their algorithmic
components are often not directly inter-changeable. Thus,
designing a novel MOEA by combining existing components
in novel ways using most of these frameworks is not a
straightforward task that can be done in an automatic manner,
since they were not created with this goal in mind.

The framework that most closely resembles our proposed
template is ParadisEO-MOEO [14], which provides a “unified
model” for MOEAs that allows both the instantiation and the
design of novel MOEAs using a template. However, the gen-
erality of the template used by ParadisEO-MOEO is limited
when compared to the template we present here in at least four
major aspects. First, ParadisEO-MOEO uses the traditional
approach of preference relations built solely from fitness and
diversity components, which is insufficient to represent com-
plex preference relations as we do in this work. Second, these
fitness and diversity components cannot be used with different
behaviors for mating and replacement. This is highlighted
by the fact that the default implementation of SPEA2 in
ParadisEO-MOEO is not instantiated via their template, but
requires an external archiver specifically designed for SPEA2
to work. Moreover, using the template provided by ParadisEO-
MOEO, one cannot instantiate or design algorithms that use
different preference relations for mating and replacement,
such as HypE or SMS-EMOA. Third, our internal population
definition is a unique contribution, since it allows us to
instantiate both population-based and archive-based MOEAs,
such as PAES. Finally, many of the components we use in
this work are not available in ParadisEO-MOEO, such as the
I1
H and IhH quality indicators, or are only partially available,

such as the sequential removal policy. Altogether, these aspects
limit the number of MOEAs that can be represented using
the template provided by ParadisEO-MOEO, and hence the
number of possible designs one can instantiate through it.

BEZERRA, LÓPEZ-IBÁÑEZ AND STÜTZLE: AUTOMATIC COMPONENT-WISE DESIGN OF MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS 5

Table IV
INSTANTIATION OF MOEAS FROM OUR PROPOSED TEMPLATE.

BuildMatingPool Replacement

Algorithm Selection SetPart Quality Diversity SetPart Quality Diversity Removal

MOGA [1] DT dom. rank — niche-sharing — — — generational
NSGA-II [2] DT dom. depth — crowding dist. dom. depth — crowding dist. one-shot

SPEA2 [3] DT dom. strength — kNN dom. strength — kNN sequential
IBEA [4] DT — binary indicator — — binary indicator — one-shot
HypE [5] DT — IhH — dom. depth IhH — sequential

SMS-EMOA [6] random — — — dom. depth-rank I1H — —

(All MOEAs above use type (pop) = fixed-size and type (popext) = none; in addition, SMS-EMOA uses λ = 1)

The novelty of our proposal lies in the algorithmic template
and the definition of its components, rather than in the software
implementing them. In fact, the implementation of most of
our algorithmic components is taken from the ParadisEO-
MOEO [14], PISA [15], and PaGMO [16] frameworks, al-
though we substantially modified them to work together within
our algorithmic template. Nonetheless, it would be feasible
to implement our proposed template within any of these
frameworks, and we would like to encourage others to do so.

D. Standard MOEAs instantiated via the AutoMOEA template

By carefully selecting the values of each algorithmic com-
ponent, we can instantiate many well-known MOEAs from the
literature using the proposed template. Table IV shows how to
instantiate the six MOEAs we consider in this work, which
we have selected because of their relevance in the literature.
We next describe each of these MOEAs.

1) MOGA [1]: uses dominance ranking as set-partitioning
relation and the niche sharing diversity metric based on the
objective values of the individuals (also known as fitness
sharing). Being one of the earliest MOEAs, MOGA does
not use elitism, which can be implemented as a generational
removal policy. Although we do not include this option for
component Removal in our experiments with the framework,
we use it in MOGA for fidelity to the original proposal.

2) NSGA-II [2]: uses dominance depth (also known as
dominance sorting) for set-partitioning, as well as the crowd-
ing distance diversity metric. The same preference relation is
used for mating and replacement. In addition, NSGA-II uses
one-shot removal.

3) SPEA2 [3]: uses dominance strength as its set-
partitioning relation. Concerning diversity, SPEA2 is the first
algorithm to use different metrics for mating and replace-
ment. For mating, SPEA2 considers the distance between
each individual and its k-th nearest neighbor. Originally, the
default is k = b√µc, where µ is the population size. In
our implementation, we allow k to be set either according
to this default definition or as a numerical parameter. For
replacement, SPEA2 considers the distance from each indi-
vidual to all of the remaining population, and uses sequential
removal. Finally, the external archive of SPEA2 behaves like
a population, as noted by other authors [11], hence it is
equivalent to our fixed-size pop, and its internal population
is equivalent to popnew in our template.

4) IBEA [4]: ranks solutions based on binary quality indi-
cators. Concretely, IBEA computes the pairwise values of a
given binary quality indicator for the whole population. Then,
the preference of each individual is given by the aggregation
of its binary values w.r.t. to the rest of the population. Since
quality indicators sometimes account for diversity, the original
proposal of IBEA does not present a diversity metric. The
most used binary indicators for IBEA are the additive epsilon
indicator (Iε+) and the hypervolume difference (I−H) [28],
which are the options we implement here (see Table II). For
replacement, IBEA also uses sequential removal.

5) HypE [5]: searches the solution space directed by the
shared hypervolume contribution (IhH) of the individuals. This
quality indicator measures the volume of the subspace an
individual exclusively dominates, plus shares of the volumes
that it jointly dominates with up to other h individuals of the
population. Due to its computational overhead, HypE uses a
Monte Carlo simulation to estimate these values for problems
with more than three objectives. For mating selection, HypE
uses the IhH indicator with h = µ, and no set-partitioning
relation or diversity metric. For replacement, HypE uses
dominance depth as set-partitioning, the shared hypervolume
contribution as refinement, sequential removal, and h equal to
the number of solutions that have to be discarded from the
first partition that does not fit in the new population.

6) SMS-EMOA [6]: is a (µ+1)-ES algorithm that uses
the exclusive hypervolume contribution (I1

H) for replacement
(a particular case of the IhH where h = 1). Since it is com-
putationally demanding, SMS-EMOA uses a set-partitioning
relation called dominance depth-rank to reduce the number of
times this indicator is employed. In dominance depth-rank, if
dominance depth returns more than one partition, dominance
rank is used to refine the first partition that does not fit the
new population. The exclusive hypervolume contribution is
only used otherwise.

To ensure the correctness of our implementation, we have
empirically verified that its performance matches the original
implementations of the MOEAs provided by the authors (or
when not available, by third-party ones). In the following ex-
periments, we compare these six standard MOEAs with novel
MOEAs instantiated from our template. Our analysis covers
several scenarios, ranging from continuous to combinatorial,
presented in Sections III and IV, respectively.

6 FINAL DRAFT ACCEPTED FOR IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

III. AUTOMATICALLY DESIGNING MOEAS FOR
CONTINUOUS OPTIMIZATION PROBLEMS

Our experimental investigation has two main goals. The
first is to assess how automatically designed MOEAs (we call
them AutoMOEAs in this paper) perform compared to several
standard MOEAs that can be instantiated from our framework.
Second, we want to investigate how much the structure of
the AutoMOEAs varies depending on the benchmark and the
number of objectives considered.

The benchmark problems that have been considered at the
design time of an algorithm may implicitly or explicitly bias
the algorithm design. Here we study this effect by considering
two different benchmark sets, the DTLZ set [10] and the
WFG set [22]. The DTLZ benchmark set was originally
proposed as an improvement over the ZDT benchmark [9]
to allow scalability in the number of objectives considered.
Since our work focuses on unconstrained problems, we limit
the DTLZ benchmark set to problems DTLZ1–DTLZ7. Al-
though this benchmark has been widely used in the literature,
some important characteristics of MOEAs are not assessed,
particularly their performance on flat landscapes, deceptive,
and nonseparable problems. Therefore, we also consider the
WFG set, which was proposed later than many of the MOEAs
we use in this work. Here, we use the nine exemplary functions
proposed by the authors, WFG1–WFG9. Following [22], we
set the ratio between position and distance variables to 1/6.

Each benchmark set is used with two, three and five
objectives. We separate between different number of objectives
as it is known before running an algorithm and, obviously, an
algorithm configuration that performs well for a low number
of objectives (e.g. 2 or 3) need not perform well for more ob-
jectives (e.g. 5). We then design AutoMOEAs for each of the
six scenarios obtained from the combinations of benchmark
set (DTLZ and WFG) and number of objectives (2, 3, and 5).

A. AutoMOEA design setup

The parameter space we use for the automatic design of
the MOEAs is given in Tables I, II and V, where pc and
pm ∈ [0, 1] respectively stand for the probability of applying
crossover to a given pair of individuals, and the probability
of applying mutation to a given individual. We use the
SBX crossover operator and polynomial mutation, which have
associated numerical parameters ηc and ηm (the distribution
indices). Furthermore, different mutation schemes can be used
by MOEAs for real-parameter optimization [29]. Here, we
implement two options: (i) bitwise, which sets the mutation
probability per variable such that on average one variable is
mutated per individual chosen for mutation; and (ii) fixed,
where the mutation probability per individual mutated is set by
the user as a parameter pv ∈ [0.01, 1]. We do not include more
evolutionary operators and schemes to focus on the high-level
multi-objective components that characterize MOEAs.

As the automatic offline parameter configuration tool we use
irace [21], which has been adapted to handle multi-objective
algorithms by using the hypervolume indicator as follows.
First, the candidates generated by irace are given a maximum
number of function evaluations (FE). Following [5], we set

Table V
PARAMETER SPACE FOR TUNING ALL MOEAS FOR CONTINUOUS

OPTIMIZATION.

Parameter µ = |pop| λ = |popnew| pc, pm ηc, ηm

Domain {10, 20, . . . , 100} 1 or λr · µ [0, 1] {1, . . . , 50}
λr ∈ [0.1, 2]

Condition Additional parameter Domain

type (pop) = bounded µr [0.1, 2]

type (popext) = bounded Next {100, 300, 500}

mutation scheme = fixed pv [0.01, 1]

Selection = DT tournament size {2, 4, 8}

Selection = ST γ [0.6, 0.9]

Quality = binary indicator indicator Iε, I−H
Diversity = sharing σshare [0.1, 1]

Diversity = kNN kmethod {default, k}
(as part of Mating) k ∈ {1, . . . , 9}

this number to 10 000 FEs. Then we assess the quality of
the approximation fronts produced by each candidate by com-
puting their hypervolume relative percentage deviation (Irpd

H).
Concretely, given a reference Pareto front P and an approx-
imation front A, Irpd

H (A) = (IH(P) − IH(A)) / IH(P). To
compute the IH metric, we discard all solutions with objective
values worse than the upper bound u = [10]M , and use
the reference point r = [11]M . Concerning the reference
fronts we use in this work, we have initially generated 1 000
random Pareto optimal solutions for each problem size using
the methodology described in the original papers where the
benchmarks were proposed. However, we noticed that many of
these initial sets presented poor hypervolume since solutions
were not well spread. We improved these reference sets by
adding nondominated solutions found by running traditional
MOEAs for 100 000 FEs using their default parameters 10
times on each problem instance, for all problems where we
identified this issue (WFG1–9 and DTLZ4).

Experiments are run on a single core of Intel Xeon E5410
CPUs, running at 2.33GHz with 6MB cache size under Cluster
Rocks Linux version 6.0/CentOS 6.3. To keep our experiments
feasible in time, we limit the maximum runtime of a single
run to 10 minutes. For all configurations that correspond to the
standard MOEAs, this time limit is high enough to perform
all 10 000 FEs. In fact, we have empirically verified that, on
average, 85% of the candidates produced by irace use all FEs
allowed within this time limit. The few configurations that do
not use all available FEs are typically the ones that combine
many computationally costly components at once, e.g., an
external archive replacement based on the shared hypervol-
ume contribution, nearest neighbor diversity, and sequential
removal. For these configurations, we assess their performance
based on the approximation fronts they return when reaching
the time limit. Given the large search space for designing the
AutoMOEAs, we give irace a tuning budget of 20 000 runs.
In our computational setup, the wall-clock time used by irace
is equivalent to designing a MOEA over the weekend.

BEZERRA, LÓPEZ-IBÁÑEZ AND STÜTZLE: AUTOMATIC COMPONENT-WISE DESIGN OF MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS 7

Table VI
PARAMETERS SELECTED BY IRACE FOR THE AUTOMOEAS.

BuildMatingPool Replacement ReplacementExt Numerical

Selection SetPart Quality Diversity SetPart Quality Diversity Removal Quality Diversity Removal µ µr λ λr pc pm ηc ηv

DTLZ 2-obj DT (8) — — crowding depth-rank Iε sharing — — crowding sequential 100 0.85 1 — 0.63 0.67 35 25

DTLZ 3-obj DT (8) depth-rank Iε kNN rank I1H sharing — I1H — sequential 80 0.77 1 — 0.58 0.63 2 15

DTLZ 5-obj DT (8) rank I1H crowding depth I1H — — Iε crowding one shot 40 — 1 — 0.35 0.62 42 5

WFG 2-obj DT (8) rank — crowding depth-rank I1H — — IhH crowding one shot 20 — 1 — 0.11 0.33 31 11

WFG 3-obj DT (4) count I1H crowding strength I1H sharing sequential I1H kNN sequential 10 — — 0.86 0.11 0.49 39 13

WFG 5-obj DT (8) count IhH crowding — I1H — sequential IhH crowding one shot 30 — — 1.07 0.71 0.66 34 12

(All AutoMOEAs use the bitwise mutation scheme, and type (popext) = bounded with Next = 500, except for AutoW2, for which Next = 300.
In addition, all but AutoD2 and AutoD3 use type (pop) = fixed-size, and all but AutoW3 and AutoW5 use steady-state replacement, i.e., λ = 1)

Hypervolume RPD

AutoMOEA

HypE

IBEA

MOGA

NSGA−II

SMS−EMOA

SPEA2

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

DTLZ4.2.30

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●●●●●

●

● ●●

DTLZ6.2.30

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●●

● ●●

●●●●●

●

●●●●

● ●

●●●● ●

DTLZ7.2.30

Hypervolume RPD

AutoMOEA

HypE

IBEA

MOGA

NSGA−II

SMS−EMOA

SPEA2

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●

●●●

●●

●●

●●●

DTLZ4.3.30

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●●

●

DTLZ6.3.30

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●●

DTLZ7.3.30

Hypervolume RPD

AutoMOEA

HypE

IBEA

MOGA

NSGA−II

SMS−EMOA

SPEA2

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●●●●●

●●●

●●●●●●

●●●●●

●●

●●●●

●●●

DTLZ4.5.30

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●●

DTLZ6.5.30

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●●

●

● ●● ●●

●● ●

DTLZ7.5.30

Additive Epsilon Indicator

AutoMOEA D5

HypE D5

IBEA D5

MOGA D5

NSGA−II D5

SMS−EMOA D5

SPEA2 D5

0 2 4 6 8 10

●

●

●

●

●●

DTLZ1.5.30

0 2 4 6 8 10

●

●

●

●

●

●

●

●●

●

●

●

DTLZ2.5.30

0 2 4 6 8 10

●

●

●

DTLZ3.5.30

0 2 4 6 8 10

●

●

●

●

●

●

●

●●●●●

●●●●●

●●●●●●●●●●

●●●

●●●●●●●●

●●●

DTLZ4.5.30

0 2 4 6 8 10

●

●

●

●

●

●

●

●●

●●●

●●

●●●

DTLZ5.5.30

0 2 4 6 8 10

●

●

●

●

●

●

●

●

●

●

DTLZ6.5.30

0 2 4 6 8 10

●

●

●

●

●

●

●

●● ●

● ●●●●●

●●

DTLZ7.5.30

Figure 1. Performance boxplots for all algorithms on selected 30-variable DTLZ benchmark problems. Top: Irpd
H for problems with 2, 3, and 5 objectives (from

left to right, respectively). Bottom: Iε for 5-objective problems.

B. Performance comparison setup

In the context of continuous optimization, benchmark sets
try to be as heterogeneous as possible in order to capture as
many potential features of unknown real-world problems as
possible. As a consequence of how such benchmarks are de-
signed, partitioning them into disjoint sets of functions would
result in a training set for tuning that is not representative of
the test set. Here, we go a step further of what is the standard
in continuous optimization benchmarking, and the functions
used in the tuning and test always differ in the number of vari-
ables (nvar). Concretely, we use nvar ∈ {20, . . . , 60} \ ntesting
for tuning, where ntesting = {30, 40, 50} are the sizes we re-
serve for testing. We also take the precaution of differentiating
the effect of tuning the numerical parameters of MOEAs from
the effect of designing novel MOEAs. Although the literature
proposes default numerical parameters per benchmark [5, 6,
10, 22], we have found that major performance improvements
can be achieved by tuning these numerical parameters1. Hence,
in the remainder of the paper, all standard MOEAs have
been tuned for the corresponding scenario, using the same
numerical parameter space as for AutoMOEA (Table V)2. We
prefer this approach of comparing standard MOEAs to the
AutoMOEAs as there may be interactions between numerical

1For brevity, this analysis is provided as supplementary material [30],
together with the tuned configurations of all MOEAs.

2Configurations that would change the MOEA design as defined by
Table IV are not allowed when tuning numerical parameter settings.

and structural parameters that change the MOEA design and
therefore transferring numerical parameter settings from one
to another algorithm may bias the algorithm comparisons. For
each of these tunings, we also give irace a tuning budget of
20 000 runs.

To compare different algorithms, we first run each algorithm
25 times on the testing benchmarks. In addition to the hyper-
volume RPD, we also compute the additive ε-indicator (Iε) of
the approximation sets w.r.t. the reference fronts. The compar-
ison is done visually by means of boxplots, and analytically
through rank sums. To assess statistical significance, we adopt
Friedman’s non-parametrical test and its associated post-hoc
method at 99% confidence. For brevity, we omit the Iε results
when they agree with the Irpd

H ones. The full set of results is
provided as supplementary material [30].

C. Results and discussion

The designs of the AutoMOEAs selected by irace for each
of the scenarios we consider are shown in Table VI. All
AutoMOEAs use replacement preference relations comprising
set-partitioning and indicator-based components (very often
the I1

H), as well as large external archives. Surprisingly,
the only exception to this pattern is AutoMOEAW5, which
does not use any set-partitioning metric for replacement.
Concerning the external archive, the number of nondominated
solutions in these problems is large, demanding an external
archive, but prohibiting an unbounded one. In particular, most

8 FINAL DRAFT ACCEPTED FOR IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

Table VII
SUM OF RANKS DEPICTING THE PERFORMANCE OF MOEAS ON

CONTINUOUS SETS ACCORDING TO THE Irpd
H . ∆R IS THE CRITICAL RANK

SUM DIFFERENCE FOR FRIEDMAN’S TEST WITH 99% CONFIDENCE.

DTLZ WFG

2-obj 3-obj 5-obj 2-obj 3-obj 5-obj
∆R = 126 ∆R = 127 ∆R = 107 ∆R = 169 ∆R = 130 ∆R = 97

AutoD2 AutoD3 AutoD5 AutoW2 AutoW3 AutoW5
(1339) (1500) (1002) (1692) (1375) (1170)

SPEA2D2 IBEAD3 SMSD5 SPEA2W2 SMSW3 SMSW5
(1562) (1719) (1550) (2097) (1796) (1567)

IBEAD2 SMSD3 IBEAD5 NSGA-IIW2 IBEAW3 IBEAW5
(1940) (1918) (1867) (2542) (1843) (1746)

NSGA-IID2 HypED3 SPEA2D5 SMSW2 SPEA2W3 SPEA2W5
(2143) (2019) (2345) (2621) (2600) (2747)

HypED2 SPEA2D3 NSGA-IID5 IBEAW2 NSGA-IIW3 NSGA-IIW5
(2338) (2164) (2346) (2777) (3315) (3029)

SMSD2 NSGA-IID3 HypED5 HypEW2 HypEW3 MOGAW5
(2406) (2528) (2674) (2851) (3431) (4268)

MOGAD2 MOGAD3 MOGAD5 MOGAW2 MOGAW3 HypEW5
(2970) (2851) (2915) (4320) (4540) (4373)

AutoMOEAs use a PreferenceExt that combines quality and
diversity metrics, a combination that has been shown to work
well in some cases [19]. One pattern we also observe in
these external archives is that the exclusive hypervolume
contribution (I1

H) indicator is always coupled with sequential
removal, while the remaining indicators are used with one
shot replacement. This is likely explained by the increased
computational overhead incurred by the computation of the
hypervolume and our use of a maximum time limit.

Two other design choices have been frequently se-
lected, namely steady-state replacement (λ = 1) and the
BuildMatingPool component. Steady-state replacement has
been shown to lead to effective results when runtime is not
too limited [13]. As for BuildMatingPool, all AutoMOEAs use
eight-ary deterministic tournament (except for AutoMOEAW3

which uses four-ary tournaments), reflecting the need for
convergence pressure that the problems demand. In addition,
all MOEAs use crowding distance as diversity metric, the most
extreme case being AutoMOEAD2, which relies solely on this
metric when selecting for mating.

Despite these patterns, it is hard to establish general guide-
lines for selecting components when we consider a specific
benchmark or a specific number of objectives. However, as we
will discuss in more detail below, the Irpd

H rank sum analysis
given in Table VII shows that each of these AutoMOEA
variants perform very well on the scenarios for which they
were designed. This confirms that different scenarios demand
different components, and that the component-wise design
proposed here provides enough flexibility to meet this need.
Next, we discuss the performance of the algorithms for each
of the benchmarks considered in detail.

1) DTLZ benchmark: Although this benchmark has been
extensively used in the literature, most of the results can
be considered novel, as the number of variables we use is
larger than traditionally adopted. For DTLZ2 and DTLZ5, this
increase in the number of variables is not enough to make
these functions difficult, and all MOEAs find approximation
sets with Irpd

H very close to zero. Conversely, functions DTLZ1

and DTLZ3 become so difficult that no MOEA is able to find
solutions within the bounds we set. The Irpd

H of the remaining
functions are shown in Figure 1 (top), and we examine them
individually. We remark that we zoom these boxplots on the
[0,0.4] range as this is the actual area of interest for this
indicator. For brevity, we show only boxplots of the 30-
variable functions, but we remark that the results for the other
problem sizes are consistent with these ones.

DTLZ4 is a function that presents bias, and MOEAs are
sometimes unable to find well-spread approximation fronts.
This explains the variance we observe on the 2-objective
boxplots. Still, algorithms like SMS-EMOA and MOGA are
able to perform well on most runs. Function DTLZ6 presents
a different kind of bias, making it difficult for several MOEAs
to converge to the actual fronts, specially as the number of ob-
jectives grows. This time the only MOEAs that maintain good
performance in all scenarios are IBEA and the AutoMOEAs.
Finally, DTLZ7 is a disconnected function that MOEAs are
able to solve with two objectives, but that becomes much
harder with five objectives. SMS-EMOA and the AutoMOEAs
are the only algorithms that present high performance in all
scenarios, but once more the AutoMOEAs find approximation
fronts with lower Irpd

H more often than SMS-EMOA. Overall,
the rank sums achieved by the AutoMOEAs are much lower
than those of the remaining algorithms as shown in Table VII,
which considers all problems and all test sizes.

The results given by the Iε indicator are mostly consistent
with the ones provided by the Irpd

H , except for the 5-objective
problems shown in Figure 1 (bottom). As discussed for the
Irpd
H , the performance of all MOEAs in DTLZ1 and DTLZ3

is so poor that solutions lie outside the boundaries we pre-
established. Only SMS-EMOA and AutoMOEAD5 are able to
reach results on DTLZ1 inside these boundaries. Concerning
DTLZ2, DTLZ4, and DTLZ5, even though all MOEAs find
approximation sets with Irpd

H close to zero, the Iε tells us
that only AutoMOEAW5, SMS-EMOA, and IBEA are able to
converge to the actual fronts in functions DTLZ2 and DTLZ5,
and only AutoMOEAW5 in DTLZ4. Another function where
the performance of the MOEAs is worse according to the
Iε than according to the Irpd

H is DTLZ6, which is explained
by the difficulty of converging we have previously discussed.
Finally, the general performance of all MOEAs according to
the Iε for DTLZ7 are actually better than according to the Irpd

H

ones, which can be explained by the disconnectedness of this
problem. Overall, the Iε rank sum analysis is consistent with
the Irpd

H analysis given in Table VII.
2) WFG benchmark: The performance of all MOEAs in

the WFG problems is shown in Fig. 2. For brevity, we omit
functions WFG4–WFG7 and WFG9 as we have noticed that
the performance of all MOEAs is very similar on the WFG
concave functions (WFG4–WFG9). We also remark that the
boxplots of the Irpd

H and the Iε indicators are very similar, and
for this reason we omit the latter. Concerning the functions
depicted in Fig. 2, one can clearly see a separation between
WFG1 and WFG2 from the remaining functions. These two
convex problems pose difficulties for MOEAs to converge
regardless of the number of objectives. As for the other group
of problems, MOEAs are able to perform well both on 2

BEZERRA, LÓPEZ-IBÁÑEZ AND STÜTZLE: AUTOMATIC COMPONENT-WISE DESIGN OF MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS 9

Hypervolume RPD

AutoMOEA W2

HypE W2

IBEA W2

MOGA W2

NSGA−II W2

SMS−EMOA W2

SPEA2 W2

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●

●

●● ●●

●

●●●

WFG1.2.30

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

● ●●

●●

●

●●● ●●●●●

WFG2.2.30

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●●●●

●

●●

●

WFG3.2.30

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●

●●

●●●

WFG8.2.30

Hypervolume RPD

AutoMOEA W3

HypE W3

IBEA W3

MOGA W3

NSGA−II W3

SMS−EMOA W3

SPEA2 W3

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

WFG1.3.30

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●●●●●

●●●●●●

● ●●●●●●

●●●● ●●●

WFG2.3.30

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●●●

●●

●

●

WFG3.3.30

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●

●

●

●

●●

WFG8.3.30

Hypervolume RPD

AutoMOEA W5

HypE W5

IBEA W5

MOGA W5

NSGA−II W5

SMS−EMOA W5

SPEA2 W5

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●● ●●

●●●

●

WFG1.5.30

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●

●●

●

WFG2.5.30

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●

●

●●●

WFG3.5.30

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●

●●

●●

●

WFG8.5.30

Figure 2. Hypervolume RPD on selected WFG benchmark problems with 30
variables. From top to bottom, 2, 3, and 5 objectives.

and 3 objectives, with the exception of MOGA. Looking
into the 5-objective problems in more detail, we notice that
MOGA, NSGA-II, and HypE are unable to converge to the
actual fronts, and so is SPEA2 for WFG3, WFG5, WFG7,
and WFG9. IBEA, SMS-EMOA, and AutoMOEAW5 show the
best performance on all problems except WFG3, where no
MOEA is able to match the performance of AutoMOEAW5.

The rank sum analysis of the Irpd
H results given in Ta-

ble VII confirms that the AutoMOEAs designed for the WFG
benchmark display the best performance among all MOEAs
considered, and so does the rank sum analysis of the Iε
indicator (see [30]). As for the remaining MOEAs, the rank
sums of the algorithms are not consistent across different
metrics, which indicates that some MOEAs favor convergence
while others favor keeping a good trade-off between solutions
(or are simply unable to find/preserve extreme solutions).

D. Experiments with a different stopping criterion

As shown by the results discussed above, standard MOEAs
tend to perform better on the scenarios for which they have
been properly tuned. Besides the benchmark set and the
number of objectives considered, another major factor that
affects the performance of algorithms is the stopping criterion
used to terminate their runs. In continuous optimization, a
maximum number of function evaluations (FE) is typically
used because some applications present computationally costly
FEs. As a result, algorithm designers tend to devise algorithms
that are able to reach high-quality solutions with as few FEs as
possible. Moreover, the time spent by the algorithms comput-
ing metrics or discarding solutions is not considered an issue in
these scenarios and, hence, very fast and very slow algorithms
are often considered equal. For instance, SMS-EMOA requires
almost 10 minutes for executing 10 000 FEs in our computer
environment, while IBEA terminates in seconds. However, in
many practical situations the computational cost of the FEs

may not be high enough to justify large computation times.
In such scenarios, fast algorithms such as IBEA or NSGA-II
could likely outperform slow ones such as SMS-EMOA by
seeing many more solutions within a maximum runtime. By
contrast, our design approach should be able to deal with such
changes naturally. In this section, we investigate the structure
of the AutoMOEAs generated and their performance relative
to other MOEAs when all algorithms are given a maximum
time limit of one minute CPU time. For brevity, we focus
only on the AutoMOEAs designed and tested on the WFG
benchmark for two, three and five objectives:

1) WFG, 2-objective (W2): AutoMOEA1min
W2 uses a interme-

diate population size, a high number of offspring, and a large
external archive based on crowding. Mating relies solely on
crowding distance, whereas replacement is done based on
dominance depth and the Iε indicator. Both the external archive
and the population removal are sequential. The structure
of this algorithm is quite interesting because it combines
computationally expensive components (large external archive
with sequential removal) with computationally cheap ones
(crowding distance, dominance depth, and the Iε), adapting
to the maximum runtime it is given. The Irpd

H performance
of AutoMOEA1min

W2 is shown in Fig. 3 (top). We notice that
the problem with most significant changes is WFG1, where
the Irpd

H of all algorithms is greatly improved. Although all
MOEAs perform similarly, the rank sum analysis given in
Table VIII indicates that AutoMOEA1min

W2 performs better on a
larger number of problems, both according to the Irpd

H and the
Iε. Concerning the remaining MOEAs, IBEA and NSGA-II
rank equivalently according to the Irpd

H , but IBEA performs
better than NSGA-II more often according to the Iε.

2) WFG, 3-objective (W3): AutoMOEA1min
W3 uses a large

bounded internal archive, default number of offspring
(λr = 1.0), and no external archive. The PreferenceMat compo-
nent is based on nearest neighbor density, while PreferenceRep

uses the exclusive hypervolume contribution (I1
H) and sequen-

tial removal. This combination of components is coherent with
this scenario, as the bounded internal archive and the I1

H

provide convergence pressure at a low computational cost,
and the nearest neighbor diversity has shown good results
for SPEA2. Performance-wise, we see from Fig. 3 (sec-
ond top-most plot) that again many algorithms present good
performance according to the Irpd

H . Overall, the rank sum
analysis given in Table VIII indicates IBEA displays better Irpd

H

performance more often than AutoMOEA1min
W3 , but the opposite

happens for Iε. This is actually surprising, since AutoMOEA1min
W3

has been tuned for the Irpd
H and uses the I1

H indicator as its
replacement mechanism, when IBEA uses the Iε instead.

3) WFG, 5-objective (W5): As the previous scenarios have
indicated, IBEA is quite effective when facing a runtime-
constrained scenario. The structure of AutoMOEA1min

W5 confirms
this, as this algorithm presents the same exact components
from IBEA, but can be considered a refinement of that
algorithm as AutoMOEA1min

W5 uses crowding diversity both for
mating and environmental selection. The similarity between
these algorithms reflects on the boxplots shown in Fig. 3 (two
bottom-most plots), and is confirmed by the rank sums given in
Table VIII. We see that the crowding distance metric is unable

10 FINAL DRAFT ACCEPTED FOR IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

Hypervolume RPD

AutoMOEA W2

HypE W2

IBEA W2

MOGA W2

NSGA−II W2

SMS−EMOA W2

SPEA2 W2

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●

●

●●●

●●●

●

WFG1.2.30

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●● ●

●●

●●●●

●●

WFG2.2.30

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●

●●

●

●

WFG3.2.30

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●

●●

●

●●●●●

●

WFG8.2.30

Hypervolume RPD

AutoMOEA W3

HypE W3

IBEA W3

MOGA W3

NSGA−II W3

SMS−EMOA W3

SPEA2 W3

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●

●

●●●

WFG1.3.30

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●●●●

●●●●●●

●●●●●

WFG2.3.30

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●

●●

●●

●

●●

●●

●●●

WFG3.3.30

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●●●

●

●●●

●

●

●

●

WFG8.3.30

Hypervolume RPD

AutoMOEA W5

HypE W5

IBEA W5

MOGA W5

NSGA−II W5

SMS−EMOA W5

SPEA2 W5

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●

●

●

●●●

●

WFG1.5.30

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●

●●

●●

WFG2.5.30

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●●●●

WFG3.5.30

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●●

●

● ●

●●

WFG8.5.30

Additive Epsilon Indicator

AutoMOEA W5

HypE W5

IBEA W5

MOGA W5

NSGA−II W5

SMS−EMOA W5

SPEA2 W5

0 2 4 6 8 10

●

●

●

●

●

●

●

●

●

●

WFG1.5.30

0 2 4 6 8 10

●

●

●

●

●

●

●

●

●●

●●●●

●●

●

WFG2.5.30

0 2 4 6 8 10

●

●

●

●

●

●

●

●

●

WFG3.5.30

0 2 4 6 8 10

●

●

●

●

●

●

●

●●●

●

●

WFG8.5.30

Figure 3. Performance of all MOEAs tuned for a maximum runtime on
selected 30-variable WFG problems. From top to bottom, Irpd

H results for 2,
3, and 5 objectives.The bottom-most plot depict the Iε results on 5 objectives.

to improve the Iε performance of a MOEA, but the Irpd
H per-

formance of AutoMOEA1min
W5 is greatly improved. Concerning

the performance of the remaining algorithms on WFG1, we
see that the Iε points to a better performance of all MOEAs
than the Irpd

H , except for NSGA-II and SPEA2. Additional
experiments have shown that this is explained by the way
MOEAs approach this function’s front: they first converge to
a small region of the objective space and, only later, they start
spreading accross the Pareto front. We also observe the same
discrepancy between the different metrics when we analyze
MOGA on WFG2. This discrepancy holds for all MOEAs
on WFG3, except two: SMS-EMOA, which now performs
better on the Irpd

H , and SPEA2, which now performs better
on the Iε. On the concave functions, represented by WFG8,
the hypervolume-based SMS-EMOA and HypE present better
performance on the Irpd

H than on the Iε, and so does SPEA2.
Overall, the results shown in this section have confirmed

that the overhead incurred by MOEA components can greatly
impair their efficiency when facing a problem that is not
computationally expensive, but requires a constrained runtime.

E. Cross-benchmark setup

One may suspect that the better performance of the Auto-
MOEAs for the specific benchmark sets towards which they
are tuned comes at the price of poorer performance on other
benchmark sets. To examine whether this happens in our
case, we applied the various MOEA algorithms tuned for
one benchmark set to the respective other one, that is, the

Table VIII
SUM OF RANKS DEPICTING THE PERFORMANCE OF MOEAS TUNED FOR A

MAXIMUM RUNTIME. ALGORITHMS IN BOLDFACE PRESENT RANK SUMS
NOT SIGNIFICANTLY HIGHER THAN THE LOWEST RANKED.

W2
Irpd
H

AutoW2 NSGA-II IBEA SMS SPEA2 HypE MOGA
(1700) (1909) (1912) (2678) (3082) (3360) (4259)

Iε AutoW2 IBEA NSGA-II HypE SMS SPEA2 MOGA
(1402) (1868) (2158) (2995) (3050) (3190) (4237)

W3
Irpd
H

IBEA AutoW3 SMS HypE NSGA-II SPEA2 MOGA
(1363) (1651) (2328) (2566) (2986) (3445) (4561)

Iε AutoW3 IBEA SMS SPEA2 NSGA-II HypE MOGA
(1184) (1380) (2240) (2959) (3109) (3658) (4369)

W5
Irpd
H

AutoW5 IBEA SMS NSGA-II SPEA2 MOGA HypE
(1192) (1446) (2072) (2676) (2857) (4274) (4383)

Iε AutoW5 IBEA SMS NSGA-II SPEA2 MOGA HypE
(1052) (1084) (2717) (2721) (2932) (4075) (4319)

(∆R values from top to bottom: 157, 155, 136, 122, 102, 97)

Table IX
SUM OF RANKS DEPICTING THE PERFORMANCE OF MOEAS FOR THE

CROSS-BENCHMARK SETUP. ∆R IS THE CRITICAL RANK SUM DIFFERENCE
FOR FRIEDMAN’S TEST WITH 99% CONFIDENCE.

DTLZ WFG

2-obj 3-obj 5-obj 2-obj 3-obj 5-obj
∆R = 118 ∆R = 126 ∆R = 118 ∆R = 165 ∆R = 119 ∆R = 118

AutoW2 AutoW3 AutoW5 SPEA2D2 AutoD3 AutoD5
(1142) (1292) (1420) (1376) (1491) (1420)

SPEA2W2 IBEAW3 SMSW5 NSGA-IID2 IBEAD3 SMSD5
(1692) (1692) (1485) (2334) (1663) (1485)

IBEAW2 SMSW3 IBEAW5 IBEAD2 SMSD3 IBEAD5
(1858) (1937) (1774) (2409) (1739) (1774)

NSGA-IIW2 SPEA2W3 NSGA-IIW5 HypED2 SPEA2D3 NSGA-IID5
(1929) (2067) (2279) (2666) (2395) (2279)

SMSW2 NSGA-IIW3 SPEA2W5 SMSD2 NSGA-IID3 SPEA2D5
(2443) (2451) (2291) (2904) (3360) (2291)

MOGAW2 MOGAW3 HypEW5 AutoD2 HypED3 HypED5
(2791) (2547) (2625) (2966) (3702) (2625)

HypEW2 HypEW3 MOGAW5 MOGAD2 MOGAD3 MOGAD5
(2844) (2712) (2824) (4245) (4550) (2824)

algorithms tuned on the WFG training set of functions to the
DTLZ benchmark set and vice versa. We did this analysis only
for the setup where MOEAs are given a maximum number of
FEs to use, and we focus on the rank sum analysis of the Irpd

H .
The results of this analysis are given in Table IX. In most
cases, the relative order among the algorithms remains very
similar to the one encountered in Table VII. In five out of six
cases the AutoMOEA algorithms remain the best performing
ones, AutoMOEAW2 being the only exception. The results for
the Iε are consistent with these ones for all scenarios, despite
minor differences. The full analysis of this cross-benchmark
setup is provided as supplementary material [30].

F. Concluding remarks

The experiments conducted in this section have confirmed
the importance of the automatic design methodology for devel-
oping MOEAs for continuous optimization, highlighting both
its effectiveness and flexibility. Under all application scenarios
and setups considered here, the AutoMOEAs were able to
present a robust behavior and often outperform all standard
MOEAs. At the same time, the performance of these standard

BEZERRA, LÓPEZ-IBÁÑEZ AND STÜTZLE: AUTOMATIC COMPONENT-WISE DESIGN OF MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS 11

MOEAs varied considerably. Although IBEA performed well
on both setups we adopted, the AutoMOEAs designed here
were able to consistently outperform it in the majority of cases.

IV. AUTOMATICALLY DESIGNING MOEAS FOR
COMBINATORIAL OPTIMIZATION PROBLEMS

In a preliminary evaluation of our proposed framework [23],
we applied the automatic MOEA design for tackling four
multi-objective permutation flow shop problems (MO-PFSP),
a well-known class of multi-objective combinatorial prob-
lems. Although many MOEAs have not been designed with
combinatorial optimization problems in mind, many of the
MOEAs we considered in Section III have been adapted to
such problems using problem-specific variation operators [31].
Our results with the component-wise approach we propose
here led to much better performance than standard MOEAs,
and therefore we discuss the insights they produced.

The multi-objective PFSP is a widely studied, practically
relevant problem [31, 32] that is structurally different from
continuous problems. Thus, we expected that the AutoMOEA
designs for the MO-PFSP use different components when
compared to those we have previously discussed in Section III.
We considered four variants of the MO-PFSP that combine
the three most used objective functions from the PFSP lit-
erature, which are makespan (Cmax), total flow time (TFT),
and total tardiness (TT). In particular, we considered three
bi-objective variants, Cmax-TFT, Cmax-TT, and TFT-TT, and the
three-objective variant Cmax-TFT-TT. All problems are NP-hard
as already the underlying single-objective PFSPs are.

We used irace to devise five AutoMOEAs: a variant specific
for each of the four variants, and a general one that tackles
all four MO-PFSP variants (PFSP).

A. Experimental setup

The experimental setup for the MO-PFSP experiments
follows runtime-constrained scenarios as presented in Sec-
tion III but with some differences to be mentioned. First,
following [32], we allow algorithms to run for a maximum
of t = 0.1 · n · m seconds, where n and m are the number
of jobs and machines, respectively. Second, the MO-PFSP
literature has already shown that the number of nondominated
solutions for these problems is low, and hence we run all
algorithms with an unbounded external archive. Third, we use
the regular IH indicator instead of the previous metrics we
used for continuous optimization. For tuning, irace was given
a budget of 20 000 algorithm runs for designing the general
AutoMOEAPFSP, and 5 000 for designing each of the variant-
specific AutoMOEAs and for tuning the standard MOEAs. The
parameter space used for tuning the standard MOEAs and all
AutoMOEAs is the same as presented in the previous section,
except for the problem-dependent ones. Following [12], all
MOEAs use two-point crossover, and the insert and exchange
mutation operators. For testing, each algorithm was run 10
times on each test instance, and the results presented here are
the mean hypervolume over these 10 runs. All test instances
are different from the instances used in the tuning. In addition,
the testing set considers instances with 5, 10, and 20 machines,

while the tuning set uses only instances with 20 machines.
For full details we refer to the original paper [23] and to
the supplementary material [30]. Next, we discuss the main
experimental results and insights from this analysis.

B. Experimental results and discussion

1) AutoMOEA designs for the PFSP: The tuned designs
of the AutoMOEAs are shown in Table X, and present two
commonalities. First, all AutoMOEAs use a bounded internal
archive, which reflects the need for convergence pressure
for solving combinatorial problems such as the MO-PFSP.
Second, all algorithms use a high value for the offspring fac-
tor (λr), which is always larger than 1.4. This is explained by
the time-constrained setup used for combinatorial optimization
since the number of offspring per generation influences the
trade-off between the number of solutions seen versus the time
spent computing metrics [12]. More precisely, if an algorithm
produces too few solutions per generation, it will spend most
of its time computing selection metrics rather than evaluating
new solutions. Conversely, the number of offspring cannot be
set to a very high value or this would reduce the number of
generations, hindering the evolutionary process.

Besides these two components that are used by all Auto-
MOEAs, we also highlight other design choices that were
often selected by irace. For mating, the crowding diversity
operator was used by three of the five AutoMOEAs. In-
terestingly, the more general AutoMOEAPFSP uses the same
BuildMatingPool components from AutoMOEACmax-TT. Also,
the only design that uses a quality indicator in component
PreferenceMat is AutoMOEACmax-TFT. For replacement, three
components are again used by most of the designs: the binary
ε-indicator or the shared hypervolume contribution as quality
indicators, crowding distance as diversity metric, and one-shot
removal. In fact, the only design that contradicts this pattern
is AutoMOEATFT-TT, which uses fitness sharing for diversity
and sequential removal. Concerning numerical parameters, an
interesting (and apparently contradictory) observation is the
fact that all variant-specific AutoMOEA designs favor the
exchange mutation operator (pX > 0.5), but AutoMOEAPFSP

favors the insertion mutation operator. This is likely explained
by the different tuning budgets used, since larger budgets are
particularly beneficial for fine-tuning numerical parameters.

2) Design comparison with previous AutoMOEAs: When
compared to the AutoMOEAs devised for continuous opti-
mization, we noticed that most design choices differ consider-
ably with the switch in application domain. For instance, while
all continuous AutoMOEAs use deterministic tournament for
mating, three out of five AutoMOEAs for the MO-PFSP
use some form of randomized selection. In addition, nearly
none of the AutoMOEAs designed for the MO-PFSP use
quality metrics in PreferenceMat, while almost all continuous
AutoMOEAs did. We do remark, though, the number of Auto-
MOEAs that use crowding diversity, both for continuous and
combinatorial domains. Concerning component Replacement,
we first remark that all PFSP use a bounded internal archive
and none are steady-state, the opposite of what often happened
with the continuous AutoMOEAs. As for PreferenceRep, both

12 FINAL DRAFT ACCEPTED FOR IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

Table X
PARAMETERS SELECTED BY IRACE FOR THE AUTOMOEAS. ALL DESIGNS USE AN INTERNAL ARCHIVE INSTEAD OF A REGULAR POPULATION.

BuildMatingPool Replacement Numerical

Selection SetPart Quality Diversity SetPart Quality Diversity Removal µ µr λr pc pmut pX

Cmax-TFT DT (2) — I1H crowding — Iε crowding one-shot 80 0.3 1.5 0.38 0.82 0.71

Cmax-TT random — — — — IhH crowding one-shot 30 0.94 1.63 0.34 0.95 0.81

TFT-TT ST (0.9) — — crowding — Iε sharing (0.87) sequential 70 0.94 1.47 0.77 0.99 0.63

Cmax-TFT-TT DT (2) — — crowding — IhH crowding one-shot 40 0.26 1.68 0.36 0.85 0.74

All variants (PFSP) random — — — — IhH — one-shot 60 0.73 1.53 0.17 0.76 0.40

Table XI
SUM OF RANKS DEPICTING THE OVERALL PERFORMANCE OF MOEAS ON COMBINATORIAL PROBLEMS. ALL ALGORITHMS HAVE BEEN TUNED FOR THE
SCENARIOS CONSIDERED. ∆R IS THE CRITICAL RANK SUM DIFFERENCE FOR FRIEDMAN’S TEST WITH 99% CONFIDENCE. ALGORITHMS IN BOLDFACE

PRESENT RANK SUMS NOT SIGNIFICANTLY HIGHER THAN THE LOWEST RANKED.

Cmax-TFT AutoMOEA AutoMOEA IBEA NSGA-II SPEA2 HypE MOGA SMS-EMOA
∆R = 68 PFSP (249) Cmax-TFT (301) (398) (472) (479) (585) (687) (788)

Cmax-TT AutoMOEA AutoMOEA NSGA-II SPEA2 IBEA HypE SMS-EMOA MOGA
∆R = 55 Cmax-TT (209) PFSP (253) (357) (464) (547) (574) (770) (786)

TFT-TT MOGA IBEA AutoMOEA HypE NSGA-II AutoMOEA SPEA2 SMS-EMOA
∆R = 85 (304) (371) TFT-TT (475) (499) (499) PFSP (553) (615) (644)

Cmax-TFT-TT AutoMOEA AutoMOEA IBEA SPEA2 HypE NSGA-II SMS-EMOA MOGA
∆R = 55 Cmax-TFT-TT (161) PFSP (251) (417) (525) (528) (541) (735) (802)

continuous and combinatorial AutoMOEAs consider domi-
nance, quality metrics, and (very often) the crowding distance
diversity metric. Finally, if we compare the external archive
removal policy used by continuous AutoMOEAs with the
internal archive ones used by the PFSP AutoMOEAs, we
notice a much clearer pattern here, pointing to the effectiveness
of the one shot policy for the PFSP.

3) Overall performance comparison: We analyzed the per-
formance of all algorithms and variants using the rank sum
analysis given in Table XI. In general, the AutoMOEAs
perform much better than the standard MOEAs. Among these,
IBEA is the algorithm that most often outperforms the others,
while SMS-EMOA presents a particularly poor performance.
The only scenario that contradicts this pattern is TFT-TT.

Regarding the comparison between the variant-specific and
the general AutoMOEAs, for most of the variants considered
these two algorithms can be qualified as equally good. The dif-
ference in their rank sums is due to the fact that AutoMOEAPFSP

performs particularly well for the 20-machine instances (the
size used for the tuning), but for the remaining instances the
variant-specific AutoMOEAs consistently outperform it. This
indicates that the representativeness of the tuning set with re-
spect to the test set is limited due to the different instance sizes
present on each. The only variants where results differ slightly
from this pattern are Cmax-TFT, where AutoMOEAPFSP obtains
a lower rank sum than AutoMOEACmax-TFT, and Cmax-TFT-TT,
where the performance of AutoMOEACmax-TFT-TT is statistically
significantly better than that of AutoMOEAPFSP.

Concerning the TFT-TT, it is a problem with a high cor-
relation between the two objectives [32]. As a result, for
large instances the number of nondominated solutions be-
comes particularly small and MOEAs sometimes return non-
dominated sets with very few solutions. This heterogeneity
of the testing set limits the representativeness of the tuning

set affecting irace, as it cannot select a configuration that
performs well across the whole set. To illustrate, we show
the performance of all algorithms on two sets of 20-machine
instances in Fig. 4. For smaller instance sizes like the ones
given in Fig. 4 (left), all algorithms perform similarly, with
AutoMOEATFT-TT performing best in several instances. For the
larger instance sizes given in Fig. 4 (right), however, all
algorithms perform poorly, but MOGA is the one clearly
less affected. When we limit the rank sum analysis to the
testing instances with 20 machines, no significant difference
is found for MOGA, AutoMOEATFT-TT, IBEA, and NSGA-II,
the algorithms that present better performance.

C. Concluding remarks

As seen in this section, the designs of the AutoMOEAs
devised for the PFSP differed in many aspects from those
devised for continuous optimization problems. Nonetheless,
the performance of the AutoMOEAs proves the efficacy of
the automatic MOEA design also for combinatorial opti-
mization. This further highlights the importance of having
a flexible and representative MOEA framework. The good
performance of the variant-specific AutoMOEAs reinforce
this, showing that designing MOEAs for specific problem
variants can lead to promising improvements. A comparison to
a current state-of-the-art algorithm for the three bi-objective
PFSPs is given in the supplementary material for interested
readers [30]. However, reaching state-of-the-art results would
require AutoMOEAs incorporate fine-tuned local search algo-
rithms [31, 32], which is beyond the scope of this paper.

V. CONCLUSION

In this paper, we have proposed a novel conceptual view
of MOEAs to improve the way such algorithms are designed

BEZERRA, LÓPEZ-IBÁÑEZ AND STÜTZLE: AUTOMATIC COMPONENT-WISE DESIGN OF MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS 13

●

●

●

●

●

●

●

●

●

●

TFT−TT 50.20

0.228

0.948

0.228

0.948

0.228

0.948

0.228

0.948

0.228

0.948

0.228

0.948

0.228

0.948

0.228

0.948

0.228

0.948

0.228

0.948

● AutoMOEA AutoPFSP HypE IBEA
MOGA NSGA−II SMS−EMOA SPEA2

●
●

●

●

●

●

●

●

●

●

TFT−TT 200.20

0.0304

0.7943

0.0304

0.7943

0.0304

0.7943

0.0304

0.7943

0.0304

0.7943

0.0304

0.7943

0.0304

0.7943

0.0304

0.7943

0.0304

0.7943

0.0304

0.7943

● AutoMOEA AutoPFSP HypE IBEA
MOGA NSGA−II SMS−EMOA SPEA2

Figure 4. Mean hypervolume on 10 instances of TFT-TT. Left: 50 jobs, 20 machines. Right: 200 jobs, 20 machines. Each vertical line depicts one instance.

or applied to new scenarios. By considering MOEAs as com-
binations of lower-level components, such as preference rela-
tions and archives, our approach allows tailoring algorithms
according to the characteristics of the target application. We
have empirically demonstrated the efficacy of this component-
wise view by automatically designing novel, efficient MOEAs
for several application scenarios comprising continuous and
combinatorial optimization problems. Concretely, we have
proposed a flexible framework that extends both the number
of algorithms that can be instantiated from a single template
and the number of novel MOEA designs that can be produced
from it. To navigate this large design space, we have used an
offline parameter configuration tool, irace, following similar
research work on other multi-objective metaheuristics [20].

An important focus of our work is the generalization aspect
of the automatic design process. More precisely, a critical
attribute of automatic configuration is the separation between
training and testing scenarios, as highlighted in Birattari’s
PhD thesis [33], increasingly many other publications in this
area [34–37], and also in the policy on heuristic search of
the Journal of Heuristics [38]. In the context of continuous
optimization, we have implemented this separation by using
different dimensions of the functions within a benchmark set
for training and testing, and additionally by conducting cross-
benchmark experiments. For the MO-PFSPs studied, we have
training instances that are different from the testing instances.

The applications of the conceptual view we propose here
are numerous. First, by designing novel MOEAs to specific
problem classes, one could identify particularly effective com-
ponents for a given class. For instance, continuous benchmark
sets often include disconnected problems. Using the method-
ology proposed here, one could create a benchmark set of
disconnected problems and analyze AutoMOEAs specifically
devised for this benchmark. Moreover, by comparing designs
devised for several characteristic-driven benchmark sets like
this one, patterns could likely be found, helping in future
MOEA design when the characteristics of a given application
are known in advance.

A second and promising application is to couple the auto-
matic design methodology with iterative design-space analysis

tools such as ablation analysis [39]. This method generates
intermediate configurations between pairs of algorithm de-
signs, and hence can provide important insights about the
contribution of individual components. One example of such
approach would be to ablate between the AutoMOEAs devised
for three and five objectives, and see how the intermediate
configurations perform in these scenarios. Since related work
has already shown that the contributions of some components
can be much larger than that of others [12], one could possibly
reduce the number of components used by some of these
AutoMOEAs and understand better why they work so well.

Finally, the research presented here can be extended into a
number of interesting directions. Future work should extend
the proposed template to integrate MOEAs that differ consider-
ably from the structure proposed here, such as MOEA/D [25],
MO-CMA-ES [40], and GDE3 [41]. Future extensions should
also allow hybridization with local search, which is cru-
cial to achieve state-of-the-art results in many combinatorial
problems, such as the MO-PFSP [31, 32]. Moreover, recent
work in the MOEA literature has considered problems with a
large number of objectives (10–20) [42]. The specific search
components used by MOEAs designed for these scenarios
should also be considered, such as space partitioning [43],
decomposition [25] and reference points [44].

REFERENCES
[1] C. M. Fonseca and P. J. Fleming, “Genetic algorithms for multiobjective

optimization: Formulation, discussion and generalization,” in ICGA.
Morgan Kaufmann Publishers, 1993, pp. 416–423.

[2] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multi-objective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Com-
put., vol. 6, no. 2, pp. 182–197, 2002.

[3] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the
strength Pareto evolutionary algorithm for multiobjective optimization,”
in EUROGEN, CIMNE, Barcelona, Spain, 2002, pp. 95–100.

[4] E. Zitzler and S. Künzli, “Indicator-based selection in multiobjective
search,” in PPSN, ser. LNCS, Springer, 2004, vol. 3242, pp. 832–842.

[5] J. Bader and E. Zitzler, “HypE: An algorithm for fast hypervolume-
based many-objective optimization,” Evol. Comput., vol. 19, no. 1, pp.
45–76, 2011.

[6] N. Beume, B. Naujoks, and M. Emmerich, “SMS-EMOA: Multiobjective
selection based on dominated hypervolume,” Eur. J. Oper. Res., vol. 181,
no. 3, pp. 1653–1669, 2007.

[7] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms.
Chichester, UK: Wiley, 2001.

14 FINAL DRAFT ACCEPTED FOR IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

[8] C. A. Coello Coello, G. B. Lamont, and D. A. Van Veldhuizen, Evo-
lutionary Algorithms for Solving Multi-Objective Problems. Springer,
New York, NY, 2007.

[9] E. Zitzler, L. Thiele, and K. Deb, “Comparison of multiobjective
evolutionary algorithms: Empirical results,” Evol. Comput., vol. 8, no. 2,
pp. 173–195, 2000.

[10] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable test prob-
lems for evolutionary multiobjective optimization,” in Evolutionary
Multiobjective Optimization, ser. Advanced Information and Knowledge
Processing, Springer, London, UK, Jan. 2005, pp. 105–145.

[11] D. A. Van Veldhuizen and G. B. Lamont, “Multiobjective evolutionary
algorithms: Analyzing the state-of-the-art,” Evol. Comput., vol. 8, no. 2,
pp. 125–147, 2000.

[12] L. C. T. Bezerra, M. López-Ibáñez, and T. Stützle, “Deconstructing
multi-objective evolutionary algorithms: An iterative analysis on the
permutation flowshop,” in LION, ser. LNCS, Springer, 2014, vol. 8426,
pp. 57–172.

[13] J. J. Durillo, A. J. Nebro, F. Luna, and E. Alba, “On the effect of the
steady-state selection scheme in multi-objective genetic algorithms,” in
EMO, ser. LNCS, Springer, 2009, vol. 5467, pp. 183–197.

[14] A. Liefooghe, L. Jourdan, and E.-G. Talbi, “A software framework
based on a conceptual unified model for evolutionary multiobjective
optimization: ParadisEO-MOEO,” Eur. J. Oper. Res., vol. 209, no. 2,
pp. 104–112, 2011.

[15] S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler, “PISA – a platform
and programming language independent interface for search algorithms,”
in EMO, ser. LNCS, Springer, 2003, vol. 2632, pp. 494–508.

[16] F. Biscani, D. Izzo, and C. H. Yam, “A global optimisation toolbox for
massively parallel engineering optimisation,” in ICATT, 2010.

[17] C. Igel, V. Heidrich-Meisner, and T. Glasmachers, “Shark,” J. Mach.
Learn. Res., vol. 9, pp. 993–996, 2008.

[18] M. Laumanns, E. Zitzler, and L. Thiele, “A unified model for multi-
objective evolutionary algorithms with elitism,” in IEEE CEC. Piscat-
away, NJ: IEEE Press, Jul. 2000, pp. 46–53.

[19] E. Zitzler, L. Thiele, and J. Bader, “On set-based multiobjective opti-
mization,” IEEE Trans. Evol. Comput., vol. 14, no. 1, pp. 58–79, 2010.

[20] M. López-Ibáñez and T. Stützle, “The automatic design of multi-
objective ant colony optimization algorithms,” IEEE Trans. Evol. Com-
put., vol. 16, no. 6, pp. 861–875, 2012.

[21] M. López-Ibáñez, J. Dubois-Lacoste, T. Stützle, and M. Birattari, “The
irace package, iterated race for automatic algorithm configuration,”
IRIDIA, ULB, Belgium, Tech. Rep. TR/IRIDIA/2011-004, 2011.

[22] S. Huband, P. Hingston, L. Barone, and L. While, “A review of
multiobjective test problems and a scalable test problem toolkit,” IEEE
Trans. Evol. Comput., vol. 10, no. 5, pp. 477–506, 2006.

[23] L. C. T. Bezerra, M. López-Ibáñez, and T. Stützle, “Automatic design of
evolutionary algorithms for multi-objective combinatorial optimization,”
in PPSN 2014, ser. LNCS, Springer, 2014, vol. 8672, pp. 508–517.

[24] J. D. Knowles and D. Corne, “Approximating the nondominated front
using the Pareto archived evolution strategy,” Evol. Comput., vol. 8,
no. 2, pp. 149–172, 2000.

[25] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm
based on decomposition,” IEEE Trans. Evol. Comput., vol. 11, no. 6,
pp. 712–731, 2007.

[26] M. López-Ibáñez, J. D. Knowles, and M. Laumanns, “On sequential
online archiving of objective vectors,” in EMO, ser. LNCS, Springer,
2011, vol. 6576, pp. 46–60.

[27] J. D. Knowles and D. Corne, “Bounded Pareto archiving: Theory
and practice,” in Metaheuristics for Multiobjective Optimisation, ser.
LNEMS, Springer, Berlin, Germany, 2004, vol. 535, pp. 39–64.

[28] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. Grunert
da Fonseca, “Performance assessment of multiobjective optimizers: an
analysis and review,” IEEE Trans. Evol. Comput., vol. 7, no. 2, pp.
117–132, 2003.

[29] K. Deb and D. Deb, “Analysing mutation schemes for real-parameter
genetic algorithms,” Intern. J. Artif. Intell. Soft. Comput., vol. 4, no. 1,
pp. 1–28, 2014.

[30] L. C. T. Bezerra, M. López-Ibáñez, and T. Stützle, “Automatic com-
ponent-wise design of multi-objective evolutionary algorithms,” http://
iridia.ulb.ac.be/supp/IridiaSupp2014-010/, 2015.

[31] G. Minella, R. Ruiz, and M. Ciavotta, “A review and evaluation of mul-
tiobjective algorithms for the flowshop scheduling problem,” INFORMS
Journal on Computing, vol. 20, no. 3, pp. 451–471, 2008.

[32] J. Dubois-Lacoste, M. López-Ibáñez, and T. Stützle, “A hybrid TP+PLS
algorithm for bi-objective flow-shop scheduling problems,” Comput.
Oper. Res., vol. 38, no. 8, pp. 1219–1236, 2011.

[33] M. Birattari, “The problem of tuning metaheuristics as seen from a

machine learning perspective,” Ph.D. dissertation, Université Libre de
Bruxelles, Brussels, Belgium, 2004.

[34] M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp, “A racing al-
gorithm for configuring metaheuristics,” in GECCO, Morgan Kaufmann
Publishers, San Francisco, CA, 2002, pp. 11–18.

[35] H. H. Hoos, “Programming by optimization,” Commun. ACM, vol. 55,
no. 2, pp. 70–80, Feb. 2012.

[36] S. Nguyen, M. Zhang, M. Johnston, and K. Chen Tan, “Genetic
programming for evolving due-date assignment models in job shop
environments,” Evol. Comput., vol. 22, no. 1, pp. 105–138, 2014.

[37] ——, “Automatic design of scheduling policies for dynamic multi-
objective job shop scheduling via cooperative coevolution genetic pro-
gramming,” IEEE Trans. Evol. Comput., vol. 18, no. 2, pp. 193–208,
2014.

[38] “Journal of heuristic policies on heuristic search research,” http://www.
springer.com/journal/10732.

[39] C. Fawcett and H. H. Hoos, “Analysing differences between algorithm
configurations through ablation,” in MIC, 2013, pp. 123–132.

[40] C. Igel, N. Hansen, and S. Roth, “Covariance matrix adaptation for
multi-objective optimization,” Evol. Comput., vol. 15, no. 1, pp. 1–28,
2007.

[41] S. Kukkonen and J. Lampinen, “GDE3: the third evolution step of
generalized differential evolution,” in IEEE CEC. Piscataway, NJ: IEEE
Press, Sep. 2005, pp. 443–450.

[42] C. von Lücken, B. Barán, and C. Brizuela, “A survey on multi-objective
evolutionary algorithms for many-objective problems,” Computational
Optimization and Applications, vol. 58, no. 3, pp. 707–756, 2014.

[43] H. E. Aguirre and K. Tanaka, “Many-objective optimization by space
partitioning and adaptive ε-ranking on MNK-landscapes,” in EMO, ser.
LNCS, Springer, 2009, vol. 5467, pp. 407–422.

[44] K. Deb and S. Jain, “An evolutionary many-objective optimization
algorithm using reference-point-based nondominated sorting approach,
part I: Solving problems with box constraints,” IEEE Trans. Evol.
Comput., vol. 18, no. 4, pp. 577–601, 2014.

Leonardo C. T. Bezerra received the M.S. degree
in systems and computing from the Universidade
federal do Rio Grande do Norte, Brazil, in 2011. He
is currently a FRIA doctoral fellow of the Belgian
F.R.S.-FNRS at the IRIDIA laboratory, Université
libre de Bruxelles (ULB), Brussels, Belgium. His
research interests concern artificial intelligence tech-
niques such as metaheuristics and machine learn-
ing, and their application to operations research, in
particular the automatic design of metaheuristics for
multi-objective optimization.

Manuel López-Ibáñez received the M.S. degree in
computer science from the University of Granada,
Granada, Spain, in 2004, and the Ph.D. degree from
Edinburgh Napier University, Edinburgh, U.K., in
2009. He is currently a Postdoctoral Researcher of
the F.R.S.-FNRS at IRIDIA, ULB, Brussels, Bel-
gium. His current research interests are the engineer-
ing, experimental analysis and automatic configura-
tion of stochastic optimization algorithms for single
and multi-objective optimization problems.

Thomas Stützle received the Ph.D. degree in com-
puter science from Technische Universität Darm-
stadt, Darmstadt, Germany, in 1998. He is a Senior
Research Associate of the F.R.S.-FNRS working
at IRIDIA, ULB, Belgium. He has published ex-
tensively in the area of metaheuristics (more than
200 peer-reviewed articles in journals, conference
proceedings, or edited books). His research interests
range from stochastic local search (SLS) algorithms,
large scale experimental studies, automated design
of algorithms, to SLS algorithms engineering.

http://iridia.ulb.ac.be/supp/IridiaSupp2014-010/
http://iridia.ulb.ac.be/supp/IridiaSupp2014-010/
http://www.springer.com/journal/10732
http://www.springer.com/journal/10732

	Introduction
	A Template for Designing MOEAs
	Preference relations in mating and replacement
	Population and archives
	Differences from existing frameworks
	Standard MOEAs instantiated via the AutoMOEA template
	black MOGA FonFle1993:moga
	black NSGA-II Deb02nsga2
	black SPEA2 ZLT2002a
	black IBEA ZitKun2004ppsn
	black HypE BadZit2011ec
	black SMS-EMOA BeuNauEmm2007ejor

	Automatically Designing MOEAs for Continuous Optimization Problems
	black AutoMOEA design setup
	black Performance comparison setup
	Results and discussion
	DTLZ benchmark
	WFG benchmark

	Experiments with a different stopping criterion
	WFG, 2-objective (W2)
	WFG, 3-objective (W3)
	WFG, 5-objective (W5)

	Cross-benchmark setup
	Concluding remarks

	Automatically Designing MOEAs for Combinatorial Optimization Problems
	Experimental setup
	Experimental results and discussion
	AutoMOEA designs for the PFSP
	Design comparison with previous AutoMOEAs
	Overall performance comparison

	Concluding remarks

	Conclusion
	Biographies
	Leonardo C. T. Bezerra
	Manuel López-Ibáñez
	Thomas Stützle

