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Abstract—Solving real-world complex optimization problems
using simple metaheuristic algorithms is a challenging but at-
tractive task. Making matrix multiplication efficient is one of the
interesting problems. This time-consuming algebric operation is
required in many applications in science and engineering, thus
reducing its complexity targets more efficient computation. In
fact, many of practical and theatrical complicated calculations
can be modeled efficiently as matrix-based operations, there-
fore matrix multiplication is computationally expansive operator
among all others. In this paper, a simple metaheuristic method
based on Micro Genetic Algorithm is proposed to find Strassen’s
equivalent solutions which is an algebraic method to compute the
product of two matrices with minimal number of multiplications.
Since there are numerous optimal solutions, the modeled problem
is a large-scale and highly multi-modal optimization problem.
The proposed method could find more than 160, 000 valid
solutions with same complexity as Strassen’s in a large-scale
search space. Among all discovered solutions found using the
proposed method, there are 701 distinct solutions which is the
maximum number of discovered Strassen’s equivalent solutions
to the best of our knowledge. The proposed algorithm is simple
but very efficient to find more and more solutions, in fact, that is a
great demonstration of “evolution in action” to tackle real-world
complex problems like the current one, which just one set of its
equations has been discovered by the Germen mathematicians
and has remained mysterious for more than 50 years.

Index Terms—Matrix multiplication, Strassen algorithm, Ge-
netic algorithm, Multimodal optimization problem, Restarting
strategy, Real-world problems, Evolution in action.

I. INTRODUCTION

Key matrix multiplication is an extremely important alge-
braic operation with numerous applications in science and en-
gineering. That is the main motivation of proposing a variety of
algorithms to reduce time complexity of matrix multiplication.
The simplest technique to calculate the resultant matrix of
multiplication of two matrices of size n × n has the time
complexity of O(n3) because the resulting matrix has n2

elements and each needs n scalar multiplications and n − 1
additions. Many studies have been conducted to reduce the
number of multiplications. One of the well-known methods
is the Strassen algorithm which decreases the number of
multiplications using a smart technique proposed by Arnold

Schönhage and Volker Strassen in 1971 [1]. By using this
method, the number of multiplications for two matrices of
size 2 × 2 has been reduced to 7. The algorithm works
based on recursive strategy to calculate the multiplication of
n × n matrices by dividing into n/2 × n/2 submatrices and
calculating them. The most challenging part of this algorithm
is finding the bilinear combinations of submatrices as the
optimal solution. Searching for these combining equations is
difficult, because the search space of the problem is extremely
large. Additionally, there are numerous optimal solutions for
this problem, as a result, this problem can be defined as a
highly multimodal large-scale optimization problem.

There are several conducted studies that have utilized meta-
heuristic algorithms to solve this problem. To the best of our
knowledge, the first time that an evolutionary algorithm could
find only one Strassen equivalent solution for 2 × 2 matrix
was reported in [2]. Oh and Moon used Genetic Algorithm
(GA) [3] to find as many as possible solutions [4] for 2×2 ma-
trices. They succeed to discover 608 distinct solutions in nine
recognized groups. Ant colony algorithm is a metaheuristic
and biology-inspired method that is combined with Gaussian
Eliminations to reduce the number of variables and to solve
this optimization problem [5]. A significant achievement of
that study was discovery of a new group of solutions com-
paring to previous works. In addition to proposing the new
methods, several efforts have been made on parallelization of
existing methods to accelerate finding more solutions [6]–[8].
A parallel GA has been proposed in [9] to find a solution
for 3 × 3 matrices with 23 multiplications. The algorithm
could find an accurate solution with 23 and an approximate
solution with 22 multiplications. Morancho [10] has proposed
a parallel implementation of Gaussian Elimination [11] which
is a key algorithm in algebra. His evaluation developed a
case study that searches exhaustively for equations similar
to Strassen’s equations. The algorithm could find 20 Strassen
equivalent solutions for 2×2 matrix multiplication. In addition
to EAs, machine learning aims to solve this problem as well.
For instance, an artificial neural network is proposed in [12]
to learn Strassen multiplication. The network observes a set
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of matrices as inputs and the product matrices as output to
generate Strassen equations by learning network weights. The
network was trained by 108 training samples with error less
than 10−14.

The main goal of this paper is proposing a Micro GA-
based method to find as many as possible solutions for
2 × 2 matrices multiplication. The proposed method applies
two restarting strategy: 1) partially reinitialization if there
is no more improvement in the search process; 2) complete
reinitialization after running the algorithm for a predefined
number of iterations. These strategies along with a proposed
local search lead to discovering more than 160K Starssen’s
equivalent solutions for 2×2 matrices multiplication; by letting
algorithm to search more, it is able to find more and more
solutions.

The remaining parts of this paper are organized as follows.
Section II presents a background review on problem definition
and GA. Section III details a description of the proposed
method. In Section IV, the effectiveness of the proposed
method has been indicated by experiments results. This paper
is concluded in Section V.

II. BACKGROUND REVIEW

In this section, we give an explanation for concepts of
Strassen-like matrix multiplication. The details of GA is also
described in this section.

A. Genetic Algorithm

GA is a well-know biology-inspired algorithm to solve the
optimization problems. The algorithm works in a repetitive
procedure to find the optimal solution. At each iteration, some
stochastic changes are applied to modify current candidate
solutions to generate new ones. Similar to other population-
based optimization algorithms, GA needs a population of
chromosome (i.e., individuals) to move toward the optimal
solution(s) by evolving the population. For this purpose, the
algorithm utilizes crossover and mutation operators to generate
offsprings from current parents in the population.

The offsprings inherit the characteristics of the parents and
will be added to the next generation if they have better fitness
values copmared to their parents. By this method, generations
will be improved in terms of fitness values. Therefore, that is
expected that the algorithm could find optimal solution after
an appropriate number of iterations.

Genetic algorithms are being used to solve a wide variety
of the problems. There are some studies on utilizing GA
for tackling mathematical problems [13]–[15]. Despite of its
popularity, GA has weaknesses for solving complicated and
large-scale problems. Particularly, it is slow in fine-tuning.
Therefore, a wide variety of modifications are performed
on GA to improve its performance. Some modifications are
tailored for a specific application [16]–[18]. An alternative
version of the GA is Micro GA that has been proposed for
large-scale optimization problems [19]. A very small popula-
tion (e.g., 5) is utilized in Micro GA to tackle the optimization
problem. Evolving very small populations gives benefits of

less fitness calls during the generations and locating promising
areas of the search space. Because small populations are
unable to maintain diversity for many generations, restarting
the search process prevents the premature convergence.

B. Modeling problem as an optimization problem

In order to calculate the multiplication of two matrices, A
and B of size n× n, assuming n is a power of 2, the matrix
would be divided by order 2 recursively till we get the matrix
of 2 × 2. This is a divide-and-conquer method in which we
can contain four n/2 × n/2 submatrices from A, B, and C
which is the multiplication matrix. The matrices A and B are
written as block matrices,

A =

(
A1 A2

A3 A4

)
, B =

(
B1 B2

B3 B4

)
, C =

(
C1 C2

C3 C4

)
, (1)

where the submatrices of C are as follows.

C1 = A1B1 +A2B2,

C2 = A1B3 +A2B4,

C3 = A3B1 +A4B2,

C4 = A3B3 +A4B4,

(2)

In the mentioned divide-and-conquer method, there are
8 recursive calls of multiplication operation. The running
time for multiplying two matrices A and B is T (n) =
8T (n/2) + O(n2). Analysis of the recursive equation by
Master Theorem [20] shows that this algorithm will run in
O(n3) time. Strassen method has been proposed to reduce the
number of recursive calls to seven for 2× 2 matrices. For this
purpose, the equations of multiplication calculation are consist
of sum of product expressions. As a result, seven product
equations, Pi’s, along with 4 sum equations, Ci’s which are
linear combinations of Pi’s are produced as a Strassen solution
for matrix multiplication.

P1 = A1(B3 −B4)

P2 = (A1 +A2)B4

P3 = (A3 +A4)B1

P4 = A4(−B1 +B2)

P5 = (A1 +A4)(B1 +B4)

P6 = (A2 −A4)(B2 +B4)

P7 = (−A1 +A3)(B1 +B3)

C1 = −P2 + P4 + P5 + P6

C2 = P1 + P2

C3 = P3 + P4

C4 = P1 − P3 + P5 + P7

(3)

By decreasing the number of multiplications, the running
time of Strassen method is T (n) = 7T (n/2) +O(n2) and the
time complexity would be O(n2.81). As it is well-known as
the Strassen method, each multiplication equation, Pi consists
of bi-linear combination of submatrices of Ai’s and Bi’s. The
coefficient of these submatrices in Pi’s can be -1, 0, or 1.
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Accordingly, a general form of each multiplication equation
can be defined as follows.

P =(α1A1 + α2A2 + α3A3 + α4A4).

(β1B1 + β2B2 + β3B3 + β4B4),
(4)

where α, β ∈ {−1, 0, 1} are coefficients which are desirable
to be found in a defined optimization problem. Therefore, in
the search process, finding a solution for matrix multiplication
is equivalent to finding such coefficients (α’s and β’s) so that
by discovering a linear combination of Pi’s, the submatrices of
resultant matrix, Ci’s, can be calculated. Obviously, Strassen’s
algorithm needs seven multiplications and 18 additions. Also,
a set of similar equations with seven multiplications and only
15 additions is presented by Winograd [21].

III. PROPOSED METHOD

The details of proposed genetic algorithm to solve 2 × 2
matrix multiplication along with used representation scheme
of the problem to encode the search space are explained in
this section.

A. Encoding
For solving optimization problems using metaheuristic algo-

rithms, it is required to specify the representation of individual
in the population. Based on the formulation of the matrix
multiplication indicated in Eq. 4, we need to find 8 coefficients
for each Pi. Therefore, for constructing seven Pi, 7× 8 = 56
coefficients are needed to be obtained by using an optimization
algorithm [4]. Accordingly, a 7 × 8 matrix would be the
representation of each individual in the population which ith
row indicates the coefficients (αi,j , βi,j ∈ {−1, 0, 1}) for
Pi. Consequently, as an initialization step, a uniform random
population of 7× 8 matrix chromosomes is generated.

B. Fitness function
As previously mentioned, the optimization algorithm is

responsible to find the coefficients in Pi’s. By finding the
coefficients, we would be able to combine them to form a
solution for matrix multiplication. In fact, in order to evaluate
the quality of an individual, it is required to investigate that
using the coefficients vector whether there is any bi-linear
combination of Pi’s to be a solution. For this purpose, an
expansion format is utilized to define a fitness function to eval-
uate each individual based on solving a simple equation [9].
Based on the previously mentioned problem definition, the
coefficients in each Pi can be expanded into a vector with 16
members as follows.

[α1 α2 α3 α4]× [β1 β2 , β3 , β4 ] = [λ1 λ2 ... λ16], (5)

where each λ indicates the presence of one of the term
Aj × Bk (j, k = 1, 2, 3, 4) in the Pi. So by considering
new representation of coefficients (λ), Pi can be calculated
as follows.

Pi =

16∑
j=1

λi,jAdj/4eB((j−1) (mod 4))+1, (6)

where λi,j indicates the presence or absence of
Adj/4eB((j−1) (mod 4))+1 in Pi. For instance Pi =[0 1
0 1 0 0 0 0 0 0 1 0 0 0 0 0] is a vector representation for
Pi = A1B2 +A1B4 +A3B3.

By considering the above template of representation, matrix
multiplication can be defined as a linear equation as follows.

C = Λ∆, (7)

where Λ is a 16× 7 matrix of λi’s and ∆ is a 7× 4 matrix
of δi’s which are the coefficients for bi-linear combinations
of Pi’s. Consequently, C is a 16 × 4 matrix representing the
Ci’s submatrices. As an example, three matrices of Strassen
solution for C1 is presented as follows.

0 0 0 0 1 0 −1
1 0 0 0 0 0 −1
0 0 0 0 0 0 0
−1 1 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 1 0 0 0 1 0
0 0 1 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 −1 1 0 0
0 0 0 0 0 0 0
0 0 0 1 0 −1 0
0 0 0 0 1 −1 0


×


0
−1
0
1
1
1
0

 =



1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0


Optimization algorithm attempts to find solutions to solve
the Eq. 7. In order to investigate that an individual is a valid
solution for mentioned equation, we expand the chromosome
to λ matrix, then the algorithm check whether there is any ∆
matrix to define a bi-linear combination of Pi’s to obtain Ci

or not.
As a result, for a candidate solution, the difference between

the actual C and C ′ which is obtained by candidate solution
can be defined as the following error:

Err(X) = min ||C ′ − C|| = min ||X∆− C||, (8)

where X is expanded matrix of a candidate solution in the
population. The value of the Err would be 0 if X be a valid
solution. In order to calculate the error function, we need the
value of ∆. By taking the gradient of the error function which
is XTX∆−XTC, ∆ would be obtained in zero point of the
gradient as follows.

∆ = (XTX)
−1
XTC (9)

By substituting obtained ∆ in error function, the final equation
is calculated as:

Err(X) = ||X(XTX)
−1
XTC − C|| (10)

Finally, the fitness function is designated as follows which
maximizing this function leads to minimizing the error of
found solution.

F (X) =
1

1 + Err(X)
(11)
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Thus, F (X∗) is equal to 1 where X∗ is the optimal solu-
tion [9].

C. Micro Genetic Algorithm to find Strassen’s equivalent
equations

In order to find the Strassen-like solutions of matrix multi-
plication, Micro GA has been utilized with tailored modifica-
tion and operators. Micro GA is a version of GA with a small
population size. A small number of individuals aims to limited
fitness calls in one iteration of running the algorithm. As men-
tioned in Section II, for large-scale optimization problems, this
version of GA is more beneficial if the premature convergence
of the algorithm is prevented by using a restarting strategy.
The details of such strategy is provided in the following
subsection. The algorithm starts the optimization process using
a smart initialization. Because the solutions are sparse vectors
which their variables have mostly zero values, the initial
values will be selected from {−1, 0, 1} by allocating different
probabilities. So that a higher value of probability will be
considered for assigning 0 value to the variables and same
probabilities for 1,−1. Each initial chromosome should be
evaluated based on defined fitness function.

Similar to other EAs, new members should be added to
population to move toward the optimal solutions. Accordingly,
for each member of the population, single-point crossover is
applied on corresponding member as the first parent and a
random selected candidate solution as the second parent to
generate two offspring vectors. In this type of crossover, a
point is picked randomly, and variables to the right of that
point are swapped between the two parent chromosomes. As
previously mentioned, the number of variables are 56, so a
random number in (0, 56) is selected as the breaking point.

In order to apply mutation operator on two offspring vectors,
according to the mutation rate, some variables are selected.
The value of each selected variables would be changed to a
feasible randomly selected value. As previously mentioned, a
value in {−1, 0, 1} should be assigned to each variable. There-
fore, by considering same probability, the arbitrary variables
are changed to something among other two options which
are different from the current value of the variable. The two
mutated vectors are compared with parent to select the best
one among three vectors. If one of the offsprings outperforms
the parent, the current individual would be replaced with better
offspring, otherwise the parent will remain in the population.

D. Local Search

One of the strategies to aim EAs to find candidate solu-
tions with better fitness values is the utilizing of the local
search. Local search is based on the concept of neighborhood
search. This strategy searches around a candidate solution to
generate better points in the search space. A neighborhood
of a candidate solution is a set of solutions that are in some
sense close to corresponding one. To generate the neighbors,
a variety of functions can be defined based on the structure
of the problem. In matrix multiplication problem, because the
the algorithm needs to tackle a very large-scale search space,

input : ItMax: Maximum number of iterations, NP :
Population size, PurgeRate: Rate of purge

output: Solutions

while true do
// Initialization
Generate NP random individuals as POP ;
It = 1;
ImprovementPOP = 0;
Improvementi = 0; // For all

individuals
Calculate fitness function for each individual;
// Main algorithm
while It < ItMax do

for i← 1 to NP do // For each
individual, xi, in the
population
// Crossover and Mutation

operators
Select a randomly individual, xr, from
population;
ui = Crossover(xi, xr);
vi = Mutate(ui);
// Local Search
if F (xi) < F (vi) then

Improvementi = 1; POP (i) = vi;
else

if !(Improvementi) then
Lxi = localsearch(xi);
if F (xi) < F (Lxi) then

Improvementi = 1;
POP (i) = Lxi

end
end

end
if F (xi) < F (best) then

best = xi
end

end
if F (Pr best) < F (best) then

NImprovementPOP = 0
else

NImprovementPOP =
NImprovementPOP + 1

end
Pr best = best;
// Purge strategy
if NImprovementPOP == 2 then

Reinitialize PurgeRate% of population;
NImprovementPOP = 0;

end
end
if F (best) = 0 then

Return best as a solution;
Break;

end
end

Algorithm 1: Pseudo-code for proposed method.
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local search can lead to find more promising points around
each candidate solution. In order to generate neighbors for a
candidate solution, two other options for each variable would
be evaluated. For instance if the value of a gene is 0, two
vectors will be created by changing this value to 1 and -1 while
all other genes are untouched. The current candidate solution
is replaced with one of the generated vectors if the new vectors
have better fitness value. Otherwise, the process continues
by changing other variables of this candidate solution until
an improvement is obtained. Thus, the maximum number of
fitness evaluations for a candidate solution in local search step
is 2×7×8 that would be happened in the case that all neighbors
of solution should be checked.

Despite of the benefits of local search, using this strategy
for all individuals of the population at each iteration needs
numerous fitness evaluations which increase the computational
complexity of the algorithm. Thus, as an alternative scheme,
the proposed method searches only around the individuals
with no improvement during a generation. Based on this
condition, at the end of each iteration, the algorithm checks the
improvement of each candidate solution. For those candidate
solutions which came from previous generation without any
improvement, local search strategy is utilized to find better
candidate solution in its neighborhood.

E. Restart strategy

As mentioned previously, the matrix multiplication is a
large-scale and highly multi-modal optimization problem. The
optimization algorithm can find many of the Strassen’s equiva-
lent solutions but finding as many as possible is the goal of the
proposed method in this study. One of the strategies that aims
to reach more promising regions is restarting strategy of the
algorithm. On the other hand, restarting prevents the algorithm
to get stuck in non-global optimum because of premature con-
vergence. In the proposed method, two schemes of restarting
occurs: partial restarting and complete restarting. At the first
case, if the population doesn’t have more improvement in two
consecutive generations, a certain portion of the population
are randomly selected to be re-initialized. The number of
chromosomes which should be selected to be replaced with
new vectors is a parameter (PurgeRate) that is set based on
the other settings of the algorithm. The improvement of the
population is defined according to updating the best candidate
solution in the population. If in two consecutive iterations,
the best candidate solution has not been changed, the new
individuals will be injected to the population to move toward
more promising regions. It should be noticed that removing a
number of individuals will be done by not-preserving the best
individual in the population.

The investigation of search progress discloses that the pop-
ulation may fail to improve after a few iterations. Therefore,
as the second scheme of restarting, the search process will
be restarted if the algorithm reach to a predefined number of
iterations. In this case, the entire population are discarded and
the search will restarted with a randomly-generated population
as explained in population initialization phase.

The overall structure of the proposed method has been
presented in the Algorithm 1. The algorithm starts with a
randomly-generated individuals. New generation is created
using crossover and mutation operators. The better solution
in competition between parent and new related individuals
remains in the population. Then local search is applied on
candidate solutions with no improvement. To terminate the
premature convergence of the search process, in the case of
no more improvement of the population, a portion of the
individuals will be replaced by newly generated chromosomes.
After a predefined iterations, the search process is restarted to
continue with the new population.

F. Experimental Results

Based on the proposed method, we found more than 160K
Strassen’s equivalent solutions for 2×2 matrix multiplication.
The parameters for experiments are set as follows. The pop-
ulation size is set to 5 (because the GA algorithm is its Miro
version), however we investigate the effect of this parameter
on the speed of finding a solution. We run the algorithm with
different number of individuals to see how the population
size affect solving a large-scale optimization problem. The
number of maximum iterations would be 240. The value for
mutation rate and purge rate are 0.14 and 0.25, respectively. As
mentioned previously, purge rate is the portion of population
(randomly selected) which reinitialized if no improvement is
made. Additionally, to initialize the population, the probability
value for 0 is set to 0.5 while for other two options {1,−1}, it
would be 0.25. Implementation is conducted in Python 3.7 on
an Intel Core i5 @2.20 GHz computer with 12 GB RAM. By
setting the parameters, the algorithm starts to run so that the
total number of solutions that the algorithm could find during
two weeks is 161,096. Because the number of nonzero entries
in Pi’s determines the number of operations in multiplication
equations, the solutions are divided to 10 different types of
solutions based on this characteristic. Table I displays a repre-
sentative solution for each group along with the characteristic
of each group. For instance, the characteristic of Pi’s in Group
4 is 3333444 which ith digit indicates the number of nonzero
elements for Pi; this group is related to Strassen solutions.
The number of solutions found are represented in Table II.
In this table, the characteristic of nonzero coefficients for
∆ matrix are also presented. By adding the total nonzero
elements for all equations in a solution, the total required
number of summations and subtractions is indicated in the
forth column of the table as number of nonzero elements.

By analyzing the power of search algorithm, that is worthy
to mention that during the search process, the algorithm
excludes solutions presented with different permutations of
Pi’s. However, from the optimization point of view, those
solutions are distinct, because they have different values in
variables. Therefore, each of them is a valid optimal solution
and distinct point in the search landscape. The optimization
algorithm finds the solutions based on the defined objective
function, consequently, the number of found solutions indi-
cates the the power of the algorithm. Although, by considering
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TABLE I: Different groups of discovered solutions.

Group 1: 3333445 Group 2: 2245667 Group 3: 3344556

P1 = A1(−B1 −B3)

P2 = (A3 −A4)(−B3)

P3 = A4(−B3 −B4)

P4 = −A2(−B2 −B4)

P5 = (A1 −A3)(B1 +B2)

P6 = (A1 −A2 −A3 +A4)B2

P7 = (A1 +A3 −A4)(B2 −B3)

C1 = −P1 − P2 − P3 + P5

C2 = P2 + P3 − P5 + P7

C3 = −P1 − P3 + P5 − P6

C4 = −P4 − P5

P1 = (A1)(−B1)

P2 = (A2)(−B2)

P3 = (A3 −A4)(−B3 +B4)

P4 = A3(B1 +B2−B3 −B4)

P5 = (−A1 +A2 −A3 +A4)(B1 +B3)

P6 = (A2 +A4)(−B1 −B2 −B3 −B4)

P7 = (A2 −A3 +A4)(−B1 +B2 −B3 −B4)

C1 = −P5 − P6

C2 = −P1 − P4 + P5 − P6 + P7

C3 = −0.5P2 + 0.5P3 + 0.5P4 + P6

C4 = −0.5P2 − 0.5P3 + 0.5P4 + P6− P7

P1 = −A4(−B2 −B4)

P2 = (−A3)(−B1 −B3)

P3 = (−A2 +A4)(−B1 +B2)

P4 = (A1 +A3)(−B3 +B4)

P5 = (−A1 −A2 +A3 +A4)B1

P6 = (−A1 −A2 −A3 −A4)(−B4)

P7 = (A1 +A2 +A3 −A4)(B1 +B4)

C1 = P1 − P2 − 0.5P3 − 0.5P5 + 0.5P7

C2 = 0.5P3 − P4 + 0.5P5 − P6 + 0.5P7

C3 = P1 + 0.5P3 − 0.5P5 + P7

C4 = −0.5P3 + 0.5P5 − 0.5P7

Group 4: 3333444 (Strassen’s Solution) Group 5: 2266668 Group 6: 2244556 (Winograd’s Solution)

P1 = (A3 −A4)B3

P2 = A1(B1 +B2)

P3 = (A1 −A2)B2

P4 = −A4(−B3 −B4)

P5 = (−A1 +A3)(−B1 +B3)

P6 = (−A2 +A4)(B2 −B4)

P7 = (A1 −A4)(−B2 −B3)

C1 = P4 − P6

C2 = P3 − P5 − P6 + P7

C3 = P1 − P2 + P4 + P5

C4 = P1 + P7

P1 = (A3)(−B3)

P2 = (−A4)(B4)

P3 = (−A2 −A4)(−B1 +B2 −B3 +B4)

P4 = (A1 −A3)(B1 −B2 −B3 +B4)

P5 = (A1 +A2 +A3 +A4)(−B1 −B3)

P6 = (−A1 −A2 +A3 +A4)(−B2 +B4)

P7 = (−A1 −A2 +A3 −A4)(B1 −B2 +B3 +B4)

C1 = −0.5P1 + 0.5P2 − 0.5P − 3 + 0.5P4 + P5 + P6

C2 = −0.5P1 − 0.5P2 − P5 + P6 − 0.5P7

C3 = −0.5P3 − 0.5P4 + P5 − P6 + 0.5P7

C4 = −P5 − P6

P1 = (−A1)(B1)

P2 = (−A2)(−B2)

P3 = (A3 +A4)(−B1 −B3)

P4 = (−A1 +A3)(−B3 +B4)

P5 = −A4(−B1 +B2 −B3 +B4)

P6 = (−A1 −A2 +A3 +A4)(−B4)

P7 = (A1 −A3 −A4)(−B1 −B3 +B4)

C1 = −P3 + P6

C2 = P2 + P3 − P4 − P5

C3 = −P1 − P3 + P5 + P7

C4 = P3 − P4 − P5 − P7

Group 7: 4455666 Group 8: 3333888 Group 9: 2233666

P1 = (A3 −A4)(B1 −B3)

P2 = (A1 +A2)(B1 +B3)

P3 = −A4(−B1 −B2 +B3 +B4)

P4 = A2(B1 −B2 +B3 −B4)

P5 = (A1 −A2 +A3 −A4)(−B1 +B4)

P6 = (A1 +A2 −A3 −A4)(−B3 −B4)

P7 = (−A1 +A2 +A3 −A4)(−B3 +B4)

C1 = 0.5P1 − P3 + 0.5P4 + 0.5P6 − 0.5P7

C2 = −0.5P1 − 0.5P4 + 0.5P6 + 0.5P7

C3 = 0.5P1 + P2 − 0.5P4 + P5 + P6

C4 = −0.5P1 − 0.5P3 + 0.5P5 + 0.5P6

P1 = (−A4)(B1 +B2)

P2 = (−A2)(B3 −B4)

P3 = (−A3 +A4)(B1)

P4 = (A1 +A2)(−B3)

P5 = (A1 +A2 −A3 −A4)(−B1 −B2 −B3 −B4)

P6 = (−A1 −A2 +A3 −A4)(AB1 −B2 +B3 −B4)

P7 = (−A1 +A2 +A3 −A4)(−B1 +B2 −B3 +B4)

C1 = 0.5P2 − P4 + 0.5P5 − P6

C2 = P4 − P7

C3 = −P3 − P6

C4 = 0.5P1 + 0.5P2 + P3 − P7

P1 = (A4)(−B4)

P2 = (−A3)(B3)

P3 = (A1 +A2)(B2)

P4 = (−A1)(−B1 +B2)

P5 = (−A2 −A4)(−B1 +B2 +B3 −B4)

P6 = (A1 +A2 +A4)(−B1 +B2 +B3)

P7 = (A1 +A2 +A3 +A4)(−B1 +B3)

C1 = P3 + P5

C2 = P1 + P2 + P4 + P5

C3 = −P3 + P4 − P6 − P7

C4 = −P2 − P6

Group 10: 4446666

P1 = (A1 +A2)(B1 −B4)

P2 = (−A1 +A2)(B1 −B2)

P3 = (−A1 −A2)(−B1 −B2)

P4 = (A1 −A3)(−B1 −B2 +B3 +B4)

P5 = (−A1 +A2 +A3 −A4)(−B2 +B4)

P6 = (−A1 −A2 −A3 −A4)(−B2 −B4)

P7 = (−A1 −A3)(B1 −B2 −B3 −B4)

C1 = −0.5P5 + 0.5P6

C2 = −P1 + 0.5P2 + 0.5P5 + 0.5P6 − 0.5P7

C3 = P1 + 0.5P3 + 0.5P4 − 0.5P5 − 0.5P6

C4 = −0.5P2 − 0.5P3 + 0.5P4 + 0.5P5 − 0.5P6 − P7
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TABLE II: The characteristics and number of solutions found
by proposed method

Group
Index

Characteristic
of Pi’s

Characteristic
of Ci’s

# of nonzero
elements

# of
solutions

# of
distincts

Group 1 3333455 2444 40 52095 129
Group 2 2245667 2455 48 21537 136
Group 3 3344556 4455 48 21135 81
Group 4 3333444 2244 36 13192 39
Group 5 2266668 2556 54 4109 40
Group 6 2244556 2444 42 16869 71
Group 7 4455666 4455 54 12205 68
Group 8 3333888 2244 48 2638 34
Group 9 2233666 2244 40 8718 66

Group 10 4446666 2556 54 8598 37
Total solutions 161,096 701

matrix multiplication problem, duplicate solutions based on
the permutation and changing the sign of coefficients don’t
provide new solutions. Hence, we report both type of results:
all found solutions and distinct ones. Table II represents the
number of distinct solutions in each group. The total number of
distinct solutions are 701 which to the best of our knowledge,
none of related studies could find this number of solutions.
The maximum and minimum number of distinct solutions in
defined groups are 34 and 136, respectively.

In order to investigate the probable size of the search space
and the power of optimization algorithm, we calculate all
possible solutions that can be constructed using found 701
distinct solutions. Since there are 7! permutations for different
orders of Pi’s, the total number of solutions by considering
all possible combinations would be 701× 7! = 3, 533, 040. In
addition, if we change the sign of any parentheses in a Pi, we
get a new solution while changing the sign of corresponding
Pi in Ci’s doesn’t affect the validity of the solution. Each Pi

consists of two parentheses, therefore by considering seven Pi

there are 2(7×2) = 16, 384 different combinations of assigning
signs to parentheses. However, this modification doesn’t affect
the validity of the solution, it finds an optimal solution in the
search space. The total number of solutions by considering all
such combinations is 701× 16, 384 = 11, 485, 184 which the
proposed method could find 161, 096 of them. By considering
the symmetricity property to change the signs and the order
of Pi’s, totally 701×7!×2(7×2) = 57, 885, 327, 360 solutions
can be generated by 701 distinct solutions. This number
indicates the possible minimum existing solutions for 2 × 2
matrix multiplication. However, this is an indicative that a
highly multimodal optimization problem is tackled, comparing
to the size of the search space, the discovered solutions
set is a very small portion of the search space equal to
57, 885, 327, 360/(356) = 1.106e−16. This indicates how the
defined problem is a complex optimization problem which is
large-scale and highly multimodal one.

Population size is one of the important parameters that
should be set in evolutionary algorithms. Because the matrix
multiplication is a large-scale optimization problem, we expect
to increase the speed of finding a solution with a small
population size, specially when the algorithm apply a restart

TABLE III: Average time to find a solution using different
population size. Times are in seconds.

Population size 5 10 30 40 150
Average time 57.2 62.4 97.2 107.1 161.9

strategy. Table III shows the average time of finding a solution
with different size of population. As seen in the table, the time
decreases when the size of population reduces. On the other
hand, since matrix multiplication is a multimodal optimization
problem with numerous solutions, decreasing the population
size with restart strategy decreases the processing time of one
iteration while the algorithm most likely finds a solution during
each iteration. As a result, small population size leads more
efficient search process.

IV. CONCLUSION REMARKS

In this paper, a Micro multimodal Genetic Algorithm is
proposed to discover solutions equivalent to Strassen equations
for matrix multiplication. A large-scale highly multimodal
optimization problem is modeled to be solved using GA.
The algorithm is tailored for this problem by proposing a
local search method and two strategies for restarting the
search to prevent premature convergence. Also, the population
initialization was not uniform random; it was biased toward
the sparsity of candidate solutions. In fact, despite of the
simplicity of the algorithm, comparing to previous studies, it
is able to find more solutions for this problem. Therefore, by
proposing some simple but effective strategies, a multimodal
optimization problem can solve efficiently. The algorithm
could find 701 distinct solutions (as the first time) among
160k discovered valid solutions for matrix multiplication of
size 2× 2. We realized that using 701 unique solutions, more
than 57 billion solutions can be generated which are a small
portion of very large-scale exhaustive search possibilities. .
Two studies can be conducted as the future work in this
regard. Discovering the solutions for 3 × 3 matrices is a
more challenging task that is the target of our next study; the
goal would be discovering equations with 21 multiplications.
In addition, parallelization of the proposed method provides
more benefits to utilize computational power to discover more
solutions in a very shorter time.
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