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On Routine Evolution
of Complex Cellular Automata
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Abstract—The paper deals with a special technique, called
conditionally matching rules, for the representation of transi-
tion functions of cellular automata and its application to the
evolutionary design of complex multi-state cellular automata.
The problem of designing replicating loops in two-dimensional
cellular automata and the square calculation in one-dimensional
cellular automata will be treated as case studies. It will be shown
that the evolutionary algorithm in combination with conditionally
matching rules is able to successfully solve these tasks and
provide some innovative results compared to existing solutions.
In particular, a novel replication scheme will be presented that
exhibits a higher replication speed in comparison with the existing
replicating loops. As regards the square calculation, some results
have been obtained that allow a substantial reduction of the
number of steps of the cellular automaton against the currently
known solution. The utilisation of the conditionally matching
rules in the proposed experiments represents the first case of
a successful automatic evolutionary design of complex cellular
automata for solving non-trivial problems in which the existing
conventional approaches have failed.

Index Terms—Cellular automaton, evolutionary algorithm,
square calculation, replicating loop.

I. INTRODUCTION

S INCE the introduction of cellular automata (CA) in [1],
researchers have dealt with the problem of how to effec-

tively design a cellular automaton (and its transition function
in particular) to solve a given task. Although many successful
applications of cellular automata have so far been presented
in various domains (e.g. concerning artificial life [2][3], nano-
computing [4], image processing [5][6], molecular simulations
[7] or even the utilisation of DNA molecules to constructing
nano-scale CA-based computing devices [8] including some
applications of this concept [9]), the process of designing
suitable rules to solve specific problems in CA still represents
a difficult task.

The paper deals with the evolutionary design of cellular
automata using a special representation technique referred to
as Conditionally Matching Rules (CMRs). The basic structure
of a cellular automaton assumes a regular structure of cells,
each of which at a given moment occurs in a state from a finite
set of states. The behaviour (or development) of a CA will be
considered as a synchronous update of the cell states according
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to a transition function in discrete time steps. It will also
been assumed that the states are discrete (integer) values. The
transition function determines the next state of a cell depend-
ing on the combination of states in a cellular neighbourhood
that includes the cell to be updated and its neighbours. There
are two fundamental concepts of CA as regards its transition
function: (1) The basic (uniform) CA work with cells that share
a single transition function. In this case the transition function
of a cell can be considered as the transition function of the
CA. (2) The non-uniform concept allows individual cells to
determine their states according to different (local) transition
functions. In both cases the behaviour of the CA arises
from a cooperative update of all its cells during a sequence
of development steps. The design of a suitable (efficient)
transition function represents a key process aimed at achieving
the desired behaviour of a CA. The cellular neighbourhood
is defined uniformly for each cell, and its form primarily
depends on the dimension of the CA. In the paper, one-
dimensional (1D) and two-dimensional (2D) uniform CA will
be considered whose behaviour is controlled by a deterministic
transition function and the cellular neighbourhood is defined
as follows. In the case of the 1D CA the neighbourhood of
each cell is composed of the given cell and its immediate left
and right neighbour (a 3-cell neighbourhood). Regarded as the
cellular neighbourhood of the 2D CA will be the given cell
and its immediate neighbouring cells in the north, south, east
and west directions (a 5-cell neighbourhood). Cyclic boundary
conditions will be applied due to the limitation of the CA size
to a finite number of cells only for practical implementations.
This means that the left-most and right-most cells in the 1D
CA are considered as neighbours and similarly, in the case of
the 2D CA, the opposite cells at the boundary of the cellular
array in both dimensions are considered as neighbours. The
CA will be assumed to work with more than two cell states
and referred to as multi-state cellular automata.

A. Overview of Cellular Automata Literature

Many CA-based systems were successfully designed us-
ing analytical methods (for example, for the investigation
into computational properties of the CA and construction of
computing systems [10][11][12][13][14][15], development of
replicating structures [16][17][18][19] or solving some specific
mathematical operations and benchmarks in the cellular space
[20][21][22][23][24]). However, the process of determining a
suitable transition function for a given application represents
a difficult task, especially due to an enormous growth of the
solution space in dependence on the number of cell states, and
due to the fact that the process of “programming” the cellular
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automata is not intuitive. In order to overcome this issue, the
aim is to automate the process of designing (or identifying) the
transition rules, using both deterministic algorithms and other
heuristics or unconventional (non-deterministic) techniques,
including evolutionary algorithms (EA).

Adamatzky proposed an algorithm for the identification
of cellular automata rules from a given series of global
transformations during a finite number of CA steps [25].
His approach was later improved, e.g. by combining it with
Learning Classifier Systems [26] or advanced representation
techniques like polynomial representation or decision trees
[27]. Packard et al. were among the first who applied genetic
algorithm (GA) [28] in order to adapt the transition rules
[29][30]. Sapin et al. used an evolutionary approach to study
the problem of discovering gliders in cellular array [31]. Sipper
proposed a special technique, called Cellular Programming,
for a parallel evolution of non-uniform CA, using a modified
GA in each cell [32]. In recent years several works were
published dealing with the design of cellular automata using,
various evolutionary techniques. For example, Breukelaar and
Bäck applied GA in order to evolve multi-dimensional uniform
cellular automata to solve the density task and checker-board
benchmarks [33]. They used ordinary table-based represen-
tation of the transition function and focused on tuning the
GA settings, concluding that their system performed better
than that in an earlier work published by Mitchell et al. [34].
Sapin investigated the evolutionary discovery of glider guns in
cellular automata [35]. Elmenreich et al. proposed an original
technique for calculating the transition function of CA, using
neural networks (NN). The goal was to train the NN by
means of Evolutionary Programming [36] in order to develop
self-organising structures in the CA [37]. In addition, various
advanced concepts and modifications of cellular automata were
investigated. For instance, Medernach studied a heterogeneous
concept of cellular automata whose cells utilise some advanced
items like age, decay or genetic transfer using open-ended
evolution to create an evolving ecosystem of competing cell
colonies [38]. Bandini et al. dealt with effects in cellular
automata that may be observed by introducing asynchronous
update schemes [39].

As regards research into multi-state CA in recent years,
several studies using various bio-inspired techniques have
been proposed. For example, in [40] a swarm intelligence
algorithm, called Stochastic Diffusion Search, was applied as
a tool to identify symmetry axes in patterns generated by
cellular automata. The results provided a deeper insight into
the emergent behaviour of CA and showed some interesting
features (e.g. aesthetic qualities) of the generated patterns
with potential applications in computer graphics. The authors
say: “A two-dimensional multi-state cellular automaton with
periodic boundary provides an endless environment for the
growth of patterns and the observation of emergent complex
behaviour over the time of evolution.” This statement indicates
the importance of (multi-state) CA research since the results
may provide valuable information for the area of complex
systems in general (especially the issue of emergent behaviour,
which allows using simple rules in order to achieve a complex,
cooperative global behaviour). Skaruz et al. published an

approach to pattern and image reconstruction, using multi-
state CA [41]. They applied the 3-state 2D CA with 9-cell
neighborhood and showed that the genetic algorithm was able
to discover satisfactory transition rules to reconstruct an image
with up to 70% of damaged pixels. It is worth noting, however,
that a certain margin of error can be tolerated in the case of
image processing, which may reduce the complexity of search-
ing for the rules. Baetens et al. studied the issue of stability
and defect propagation in the development of 1D 3-state CA
with 3-cell neighbourhood [42]. In particular, it was shown
how the assessment of stability could be performed using non-
directional Lyapunov exponents (based on a previous study
proposed in [43]). The authors focused on a special class,
called totalistic CA, in which the rules depend only on the
total (average) of the cell states in a neighborhood.

The main focus of the paper (in comparison with the afore-
mentioned studies) is on investigating both 1D and 2D CA
working with at least six cell states. The transition function (to
be discovered by evolutionary algorithm) is not limited to any
specific class of CA (i.e. any arbitrary solution is acceptable
that satisfies the conditions, i.e. the behaviour specified for the
CA). The CA behaviour (evaluated in the fitness function of
evolutionary algorithm) will be exactly given (for example as
a minimal number of copies of a specific structure required
to emerge within a given finite number of CA steps, an exact
pattern to be developed from a given initial CA state, the result
of a calculation encoded in a stable final CA state with respect
to the initial state).

B. Motivation and Goals

Cellular systems demonstrated some advantageous features
in solving various problems of both application-specific and
generic nature. Although some automatic design techniques
for cellular automata have been proposed and successfully
validated on selected case studies and benchmarks, some
limitations can be observed if a solution of a different kind
or more general problem is needed. For example, Cellular
Programming cannot effectively handle uniform CA that may
be more interesting from the viewpoint of the physical im-
plementation or control than the non-uniform model. The
identification of the transition rules from a CA development
sequence is not applicable if the behaviour of the CA is not
known exactly. For the increasing number of cell states the
solution space of the CA grows significantly, which makes the
search for a suitable transition function difficult (the problem
of scale). But it is not only for these reasons that the research
into new (unconventional) design methods and representations
is still important.

Considering the recent progress in physical theory and
information technology, advanced models have been studied
involving principles from quantum theory [44][45], nanoscale
design [46][47], implementation on the molecular level [48] or
combination of some of these principles for the FPGA design
[49]. Another example could be the evolution of transport
networks using CA models inspired by slime mould of a
large cell called Physarum polycephalum [50]. This shows
that cellular automata have become a model applicable in
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current interdisciplinary areas for which new findings will be
important even from the research on the elementary level.

The following scenarios can be identified regarding the
design of transition rules for CA:

1) Identification of the transition rules from a CA analysis.
This method assumes that a sequence of CA states is
known (i.e. the CA development for a finite number
of steps). The task is to identify the transition rules
according to which the cells update their states.

2) Design of the transition rules for given conditions in
CA. The exact CA behaviour is not known, the task is
to design a transition function together with (a part of)
the CA development that fulfils the given requirements
(e.g. to achieve a specific state from a known initial
state, to achieve a periodic or stable behaviour, etc.).
This scenario will be considered in this paper.

The goal of this paper is to investigate the automatic
evolutionary design of complex multi-state cellular automata,
using an evolutionary algorithm combined with a special
technique to encode the transition functions referred to as
Conditionally Matching Rules. In order to demonstrate the
abilities of this method, several different conditions required
and evaluated in the CA will be considered. In particular, the
problem of generic square calculation in 1D cellular automata
will be presented as the first case study, whose results show
that it is possible to substantially reduce the number of steps
needed to calculate the square in comparison with the existing
solution. The second (more complex) study will investigate the
evolution of non-trivial replication processes in 2D CA taking
into consideration three different loop-like structures. It will
be shown that more efficient results can be generated using the
Conditionally Matching Rules in comparison with the existing
solutions. A novel replication scheme will be presented that
exhibits a higher replication speed in comparison with the
existing replicating loops. The utilisation of the Conditionally
Matching Rules in this paper represents the first case of
a successful evolutionary search for solutions to problems
in multi-state cellular automata for which the conventional
approaches have failed.

II. CA EVOLUTION USING CONDITIONAL RULES

For a successful CA design the representation (encoding)
of the transition function represents a key issue. This sec-
tion summarises the most important representations known
from the literature and describes the principles and setup of
Conditionally Matching Rules — an advanced representation
proposed for the evolutionary design of multi-state CA — that
will be considered for the experiments in this paper.

A. Overview of representations for cellular automata

A common (basic) approach to representing the transition
rules is a table-based method where a rule specifies a new
state for a given (single) combination of states in the cellular
neighbourhood. For example, Packard [29][30], Sipper [32]
or Breukelaar et al. [33] used this kind of encoding for the
evolutionary design of CA. However, the table-based method
is not suitable for multi-state CA because the complexity

of designing such CA increases significantly with increasing
number of states. Therefore, advanced representations have
been investigated. Andre et al. utilised Genetic Programming
(GP) [51], in which the transition function is encoded in
a tree representing a program that calculates the updated
cell states [52][53]. Other specific representations have been
used for the identification of CA rules from a sequence of
global states, e.g. polynomial representations [54] or decision
trees [55]. The advanced representation techniques can provide
some improvements over the basic approach, e.g. a reduction
of the size of representation and computational complexity
or increasing the modification (manipulation) efficiency. In
particular, Bidlo et al. used a representation based on Linear
Genetic Programming [56] to evolve CA and demonstrated
an increased success rate and reduced computational effort
over the table-based method for the replication and pattern
development problem [57]. However, advanced experiments
showed that this method was not suitable for more complex
problems in which specific transition rules need to be applied.
Therefore, the concept of conditionally matching rules was
introduced as described in the following section.

B. Conditionally matching rules

Conditionally matching rules were introduced in [58] and
their abilities demonstrated when solving a specific kind
of the replication problem and a non-trivial pattern trans-
formation problem in binary 2D CA, where the GP-based
representation failed. Moreover, the potential of this method
was demonstrated by further successful experiments regarding
the evolution of multiplication in the uniform 2D cellular
array [59]. The following paragraphs describe the setup of
the conditionally matching rules that will be applied to the
evolutionary design of multi-state celular automata.

A Conditionally Matching Rule (CMR) represents a gener-
alised rule of a transition function for determining a new cell
state (in view of the table rules). Whilst the basic transition
rule specifies a new state for a specific combination of states
in the cellular neighbourhood, a single CMR may cover more
than one combination. A CMR is composed of two parts: a
conditional part and a new state. The number of items (size)
of the conditional part corresponds to the number of cells
in the cellular neighbourhood. Let us define the condition
item as an ordered pair of a condition and a state value.
The condition is typically expressed as a function whose
result can be interpreted either as true or false. The condition
function evaluates the state value in the condition item with
respect to the state of the appropriate cell in the cellular
neighbourhood. In particular, each item of the conditional part
is associated with a cell in the neighbourhood with respect to
which the condition is evaluated. If the result of the evaluation
is true, then the condition item is said to match with the
cell state in the neighbourhood. In order to determine a new
cell state according to a given CMR, all its condition items
must match (in such a case the CMR is said to match).
Figure 1 shows an example of a CMR defined for a 2D CA
with 5-cell neighbourhood where ordinary relational operators
==, 6=,≤,≥ are considered as the condition functions. Note
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that these operators will be considered for all the experiments
presented in the paper.

Fig. 1. Example of a conditionally matching rule working with 4 cell states
and 5-cell neighbourhood. The right-most value of the CMR represents the
new state (shown in bold).

A CMR-based transition function is considered as a finite
sequence of conditionally matching rules. The algorithm of
determining a new state is the following. The CMRs are evalu-
ated sequentially, starting with the first CMR in the sequence.
If a CMR compares the given cellular neighbourhood, then
this CMR is used to determine the new state of the cell to be
updated. Note that, because of the sequential evaluation of the
CMRs, it is always the first mathing CMR in the sequence.
If none of the CMRs matches, then the cell keeps its current
state. This approach ensures that the process of calculating the
new state is deterministic (on the assumption that the condition
functions are deterministic too). The aspect of determinism
is important in order to preserve the traditional concept of
CA, and with respect to the applications investigated in the
paper. In the case of the deterministic CA, the process of
development ensures that for a given configuration the CA
produces a specific behaviour (result of the development).
Specifically, the result of the square calculation has to be
the same for a given value, and for the replication of a
loop it is expected the the copy is the same as the original
structure. Moreover, a deterministic (CMR-based) transition
function can be transformed into a corresponding table-based
representation, which allows us to use a conventional form
of the transition rules implemented in many existing CA
simulators. Another advantageous feature of the CMRs is the
ability to specify conventional (table-based) rules if needed.
In order to do that, the relation == with given state values
specified in each item of the conditional part of a CMR allows
specifying a transition rule for a given (single) combination of
states in the cellular neighbourhood.

An example of a 1D CA step according to a sample CMR-
based transition function is shown in Figure 2a,b. Note that
the cell states are updated synchronously, i.e. the cells evaluate
the transition function in parallel with respect to the actual CA
state (2 1 2 3). Cell c1 will not change its state because no
CMR matches the cellular neighbourhood 021. For cell c2
only CMR r2 matches the neighbourhood 212, therefore, the
new state of this cell will be 2. Cell c3 will get its new state
according to CMR r3, which matches the neighbourhood 123.
Finally, rules r2 and r4 match the neighbourhood 230 of cell
c4, therefore CMR r2 will change the state of c4 to 2.

Considering the aforementioned example with a 4-state CA
and 3-cell neighbourhood, the complete table of the transition
function consists of 43 = 64 rules (each rule for a single

Fig. 2. (a) Example of a multi-state 1D CA working with 4 cell states, 3-
cell neighbourhood and zero boundary conditions. A single step performed
according to a CMR-based transition function from part (b) is illustrated. The
corresponding chromosome of this transition function is shown in part (c)
together with encoding the condition functions as integer values.

specific combination of states in the cellular neighbourhood).
This means there are in total 464 possible transition func-
tions (possibilities of what next state can be specified for
each combination). However, the CA often involves only a
subset of rules — combinations of neighbourhood states —
for which a different state is specified with respect to the
current state of the cell to be updated (these rules need to be
explicitly specified in the transition function). For the purposes
of the evolutionary design it would be possible to shorten
the chromosomes of the evolutionary algorithm (and thus to
reduce the search space) if the subset of explicit rules were
known. Unfortunately, it is difficult to effectively predict these
rules for a given application if the CA development is not
known exactly. In order to reduce the size of the chromosomes
needed to encode the transition function, the CMR approach
was introduced. If the example from Figure 2 is considered (4
cell states, 3-cell neighbourhood and 4 condition functions),
each CMR can be encoded as a 7-tuple of integers. For a
transition function consisting of 4 CMRs, a candidate solution
can be represented by 4×7 = 28 integers, each of which may
acquire 4 different values. Therefore, the search space can be
reduced substantially to 428 possible solutions. Our hypothesis
is that the CMRs allow exploring more effectively the search
space and discovering solutions to some problems that were
not achieved using the conventional representation.

C. Design of CMR-based CA using evolutionary algorithm

In the paper the search for a suitable sequence of CMRs sat-
isfying a given CA behaviour is performed using a population-
based EA. The EA has been chosen after a long-term ex-
perience with the CA design, and its setup is based on
that proposed in [58]. Our preliminary experiments with
this EA showed that its simple concept and computationally
efficient mutation operator represent the bigest advantages
(potentially suitable for accelerated hardware implementations
in the future). The small population size allows performing
a satisfactory amount of iterations (hundreds of thousands
to several millions, depending on the specific experiment) in
order to evolve the candidate solutions whose evaluation takes
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a long time with respect to the computational effor of the EA
(this holds for the evaluation of CA performing several tens
of development steps). Note that a detailed investigation and
optimisation of the EA operation are not the subject of this
paper.

A population of 8 chromosomes is considered, each of
which represents a candidate transition function encoded as
a finite sequence of conditionally matching rules. Each CMR
is encoded as a finite sequence of integers representing the
conditional parts (i.e. the condition functions and state values)
and the next state as illustrated in Figure 2c. Note that the
chromosome is represented as a linear array of integers directly
coding the condition functions and state values for each CMR.
The chromosomes for the initial population are generated
randomly at the beginning of the evolution. The evaluation
of each chromosome is performed using a CA whose de-
velopment (controlled by the transition function encoded in
the chromosome) from a given initial state is observed with
respect to the required behaviour for a finite number of steps.
The objective function that calculates the fitness values of the
chromosomes is specific for different case studies and will be
described for each experiment in Sections III and IV.

In each generation of the EA a new population is created
according to the following algorithm: Four chromosomes are
selected randomly, the best one of which is considered as
a parent (i.e. fitter chromosomes are preferred to generate
offspring) – it is a case of the tournament selection with base
4. An offspring is created by mutating 0–2 randomly selected
integers in the parent, which is performed via replacing the
selected integers by new valid randomly generated values. The
number of integers to be mutated is also selected randomly;
if 0 integers are chosen, then the offspring is identical to the
parent. The chromosome selection and mutation continue until
the new population of the same size is filled by the offspring.
If a solution is found (after evaluating the chromosomes in the
new population) that satisfies the given CA behaviour, then the
evolution is considered as successful. If no solution is found
within a maximal number of generations (which is specific to
various experiments), then the evolution is terminated.

III. EXPERIMENTS WITH SQUARE CALCULATIONS

The first case study considers the evolutionary design of
1D cellular automata whose development can be interpreted
as calculating the square of a number. The basic idea to
perform this operation in the CA (together with choosing
the appropriate number of cell states, representation of input
values and way of evaluating candidate solutions) has been
inspired by Wolfram’s work [23], section Computations in
Cellular Automata, page 638. The computation of x2 is
interpreted as a CA development that comes (after a finite
number of steps) into a stable state in which the result for the
given x is encoded.

In the proposed experiments a 1D CA consisting of 100 cells
and working with 8 cell states will be considered. The value
of x will be encoded in the initial CA state as a continuous
sequence of cells in state 1, whose length corresponds to x, the
other cells possess state 0. For example, a 10-cell CA encoding

x = 3 can appear as 0001110000. The result is assumed to
be a stable CA state in which a continuous sequence of cells
of a single state different from state 0 can be detected whose
number equals x2, the other cells are required to be in state
0. The goal is to discover cellular automata that are able to
calculate the square of an arbitrary number x > 1.

Two scenarios of the fitness evaluation are investigated:
in the first case the values of x from 2 to 5 are evaluated
during the evolution whilst the second setup considers x from
2 to 6. This approach is motivated by the assumption that
if the CA is required to work for more values of x during
the evolution, then it will be harder for the EA to design
such a CA (i.e. the success rate will be lower) but, on the
other hand, more general solutions could be obtained (i.e.
such CA that, using the evolved transition function, are able
to correctly calculate the square for any higher number not
considered in the fitness evaluation). The result of the x2

calculation in the CA is evaluated after the 99th and 100th
steps in order to determine whether the resulting state is
stable. Considering the aforementioned setup the fitness of
a fully working solution for x from 2 to 5 is given by
Fmax2−5 = 4 ∗ 2 ∗ 100 = 800 (4 different values of x are
considered, the result of each is evaluated for the last 2 steps
in a CA consisting of 100 cells), the second scenario considers
the maximal fitness Fmax2−6 = 5 ∗ 2 ∗ 100 = 1000. The
maximal limit of generations for these experiments was set to
200,000. For each scenario 100 independent evolutionary runs
were executed. The success rate and the average number of
generations needed to find a working solution were measured.
In order to identify general solutions for the square calculation,
the resulting CA were validated for the values of x up to 100,
using the transition functions obtained from the successful
evolutionary runs. For the purposes of the paper the solution
that passed this test is considered as general.

Table I summarizes the statistics of the evolution for this set
of experiments. As evident, the success rate is substantially
lower if more values of x (i.e. from 2 to 6) are evaluated.
In this case approximately half the evolutionary runs finished
successfully in comparison with the scenario with x from 2 to
5. However, more general solutions were obtained as shown
in the last row of Table I, which confirms the assumption
stated in the previous paragraph. Although the general square
calculation definitely cannot be regarded as a trivial task for
uniform CA, the success rate and the resulting number of
generations indicate that the proposed CMR encoding of the
transition functions represents an efficient technique of solving
this problem for reasonable values of x considered during the
fitness evaluation.

Table II shows the number of steps of the best evolved
solutions needed to obtain the result of x2 in the CA. The
results obtained are compared to Wolfram’s solution published
in [23]. The number of CA steps determines the efficiency
of the square calculation (i.e. the fewer steps, the faster the
calculation). From this point of view the best result obtained
in this paper (denoted as Solution #3 in Table II, whose
CA is controlled by 432 rules) is more than twice faster in
comparison with Wolfram’s CA (see the last row of Table
II). For example, Solution #3 calculates 52 in 32 steps whilst
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TABLE I
STATISTICS OF THE EVOLUTIONARY EXPERIMENTS DEALING WITH THE

CALCULATION OF x2 IN 1D CELLULAR AUTOMATA. THIS SET OF
EXPERIMENTS CONSIDERED CA WORKING WITH 8 CELL STATES.

x eval. → from 2 to 5 from 2 to 6
Succ. Avg. Std. Suc. Avg. Std.

#CMRs rate #gen. dev. rate #gen. dev.
20 57 60709 54704 26 72648 48215
30 64 60293 50602 28 79299 65138
40 59 67539 55114 26 85865 57281
50 57 61342 52561 32 80526 51720

#general 4 6

Wolfram’s CA needs 78 steps. An example calculating 52

using our best solution is illustrated in Figure 3.

TABLE II
ANALYSIS OF SELECTED RESULTS FOR THE SQUARE CALCULATION. THE

TABLE SHOWS THE NUMBER OF STEPS OF THE CA NEEDED TO OBTAIN
THE RESULT OF x2 FOR x FROM 2 TO 9 USING THE BEST OBTAINED

RESULTS AND WOLFRAM’S SOLUTION [23].

x 2 3 4 5 6 7 8 9
Solution #1, 400 transition rules

#steps 6 12 24 40 60 84 112 144
Solution #2, 408 transition rules

#steps 5 12 20 34 48 68 88 114
Solution #3, 432 transition rules

#steps 4 10 20 32 48 66 88 112
Wolfram’s solution

#steps 12 28 50 78 – not available –

An analysis of the results has shown that all the general
solutions exhibit a regular pattern generated by the CA during
its development (which is actually inevitable in order to
correctly calculate the result for various x using the same
transition function of the CA). However, it can be observed
that various approaches can be discovered that differ in both
the efficiency and the complexity of the CA. Moreover, one
of the key features is the way of encoding the input value
and the result. Whilst Wolfram used a method of representing
these values by two different (non-zero) states in the CA,
the encoding proposed in this paper considers only a single
state and allows the result to be represented by a different
state than the input value is encoded by (which probably
enabled a more efficient square calculation in comparison with
Wolfram’s solution). These observations indicate that research
into advanced techniques of input and output representation
could provide further interesting solutions to this problem.

IV. EXPERIMENTS WITH REPLICATING LOOPS

The second case study considers a class of 2D cellular au-
tomata that are able to replicate a given structure. Replicating
loops represent one of the typical benchmarks that have been
studied in relation with cellular automata. There are various
variants of loops that differ in shape, size, complexity or
replication speed. In most cases cellular automata that perform
replication of the currently known loops were designed using

Fig. 3. Calculation of x2 in one of the best CA discovered by evolution
(x = 5 in this example). This CA works with 432 transition rules, 32 steps
are needed to obtain the result (note that Wolfram’s solution [23] needs 78
steps).

analytical approaches (i.e. the transition rules were specified
manually after an in-depth understanding of the loop structure
and the transformation process leading to the creation of its
copy). In this section we demonstrate that it is possible to au-
tomatically design transition functions for various replicating
loops. In particular, it will be shown that the EA can discover
a completely new replication scenario whose replication speed
is several times higher in comparison with some currently
known loops. Note that for the purposes of this paper the
replication speed will be considered as the number of copies
of the loop that can be created depending on the number of
CA steps executed. The reason for the utilisation of this metric
is that it allows quantifying an amount of objects (e.g. loop
structures) the CA is able to create in a given number of steps
and comparing its behaviour with other known replicating
structures. In general, the speed of the CA development could,
for example, express the area of the cellular array the CA is
able to cover (or to process), taking into consideration some
constraints and conditions of a specific application.

Experiments with the replicating loops were conducted
using the EA described in Section II-C, for which the maximal
number of generations was set to 3 million. The evolution
time of a single run is approximately 12 hours when using
the Anselm cluster, which is a part of the Czech National
Supercomputing Center1.

Several sets of experiments were conducted with various
replicating loops. Figure 4a,b,c shows the loops that were
considered in our experiments. For the purposes of this paper

1http://www.it4i.cz/?lang=en
https://docs.it4i.cz/anselm-cluster-documentation/hardware-overview
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the loops will be denominated by symbolic names as (a) round
loop, (b) rectangular loop and (c) envelope loop. Note that the
loop shapes as well as the numbers of cell states proposed for
specific expreriments were chosen on the basis of the existing
replicating loops. In addition, the objective is to determine
the ability of the EA and CMRs to tackle various ways of the
fitness evaluation and specification of the target CA behaviour.

The round loop and rectangular loop share a common
principle of the fitness evaluation based on the known shape
and size of the loop. Figure 4d illustrates the concept of the
fitness evaluation containing a rectangular loop as an example
(note that the CA size was chosen with respect to a reasonable
space for creating the replicas in various directions). As shown
by the textured cells, the replicas are expected to be in a regular
grid with respect to the initial loop. This scenario was applied
on the basis of some existing replicating loops that work in
a similar way. The replicas are required to be separated from
each other by a boundary consisting of cells in state 0. Thus
in the case of the rectangular loop in Figure 4d the complete
rectangle of a replica to be evaluated consists of 6x6 cells as
marked by a thick rectangle. In order to evaluate a candidate
solution, the CA development is analysed for 30 steps. After
each step of the CA the following calculation is performed.
The partial fitness is calculated separately for each replica in
the grid as the number of cells in correct state with respect
to the loop rectangle. Then the step fitness is defined as a
sum of all partial fitness values for a given step of the CA as
follows. If the partial fitness equals the number of cells in a
given rectangle (i.e. a perfect replica is detected), then the step
fitness is increased by the double of this number (as a bonus
for finding a replica), otherwise the step fitness is increased by
the original partial fitness value. The final fitness is determined
as the maximal step fitness out of all the CA steps considered
for the evaluation. If at least 4 perfect replicas are detected in a
state within the 30-step development, the evolution is finished
successfully.

In order to validate the results, a software simulator de-
veloped by the author of this paper is applied. A larger
CA is executed for more than 30 steps using the evolved
transition functions, and a visual inspection is performed in
order to identify general replicators. For the purposes of this
paper, each solution with the ability to persistently produce
replicas according to the specification in the fitness function
is classified as a general replicator.

Statistical results of the replication experiments are sum-
marised in Table III. For each type of the replicating loop the
success rate and computational effort (expressed as the average
number of generations needed to find a working solution) were
evaluated depending on various selected CMR counts. The
number of general solutions is determined out of all successful
experiments performed for a given loop. Setups with 6 and 8
cell states were considered for the rectangular and the round
loop. The results show that 30 or 40 CMRs are in most
cases adequate to find a working solution. For 20 CMRs the
success rate is usually very low, probably due to a lack of
resources (rules available for the CA) that can be expressed
by the CMRs. On the other hand, 50 CMRs induced a huge
search space that is very time consuming for the EA to explore

Fig. 4. Loop structures considered for the replication experiments (the
corresponding state values of cells are also shown): (a) round loop, (b)
rectangular loop, (c) envelope loop, (d) illustration of a fitness calculation
scheme used for the round and the rectangular loop. The textured cells are
evaluated with respect to the required replica structure. A boundary of white
cells in state 0 separates the replicas. The initial loop is marked by a thick
rectangle.

(i.e. the success rate is low with a given generation limit).
Although the success rate achieved in general is under 20%,
these experiments showed for the first time the possibility
of automatically designing complex multi-state CA using the
CMR encoding. Note that we were not able to successfully
design any of the CA that use conventional representations of
the transition functions.

The results in Table III also show that most of the exper-
iments require on average more than a million generations
in order to find a working solution. This means that the
replication does not represent a trivial task for the EA so that
a significant part of the search space needs to be explored.
Although the population works with 8 individuals only (this
may justify the need for a higher number of generations), the
time needed to evaluate the candidate solutions is considerable,
which is not feasible for larger populations. The advantage of
such a small population is also supported by the fact that in the
proposed EA a single parent is chosen from 4 individuals (i.e.
from half the population) and this parent produces offspring
for the next generation. Experiments showed that a larger
population did not improve the success rate because most
of the time was spent on the fitness calculation, with no
significant increase in the exploration of promising parts of
the solution space. Several parameters can be tuned in the
proposed EA: population size, tournament selection base, and
the number of genes to be mutated. The optimal setting is
usually problem dependent, which requires tuning the EA
separately for different case studies. However, the tuning of the
EA was not a goal of this study – the objective was to evaluate
the proposed EA with CMRs using several different tasks in
CA. In the case of successful experiments the tuning of the
EA and examination of its features for various problems can
be performed, which represents a topic for the future research.

Most of the general results obtained in this paper replicate
the given loop in a single direction only. However, in some
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TABLE III
STATISTICS OF EXPERIMENTS DEALING WITH EVOLUTION OF THE REPLICATING STRUCTURES FROM FIGURE 4. THE RESULTS ARE CALCULATED OUT OF

100 INDEPENDENT EVOLUTIONARY RUNS.

Loop → Rectangular 6 states Rectangular 8 states Round 6 states Round 8 states Envelope 8 states
Succ. Avg. Std. Suc. Avg. Std. Suc. Avg. Std. Suc. Avg. Std. Suc. Avg. Std.

#CMRs rate #gen. dev. rate #gen. dev. rate #gen. dev. rate #gen. dev. rate #gen. dev.
20 6 1320293 485774 7 1750754 714081 1 546936 - 3 1113809 983806 2 2655646 208081
30 5 1719899 871523 13 1404925 728908 12 1152757 674883 12 993487 631610 5 1626788 595484
40 12 1022548 815782 14 1056619 783897 12 804928 544980 19 867039 579131 11 1603042 706082
50 6 686951 410334 12 1195469 1110617 2 1402899 865896 10 841832 698793 9 976695 672486

#general 5 3 11 20 20

cases the EA discovered a novel approach that can be used to
effectively replicate the given structure from many (previously
created) instances simultaneously. The best results obtained for
each loop are described in the following subsections.

A. Results for the round loop

Although the round loop itself consists of only 4 different
states (including the “empty” state 0 – see Figure 4a), the
target CA works with 8 cell states. This setup was chosen
in order to increase the probability of discovering various
replication scenarios, which was the main goal of these
experiments. For this experiment, a minimum of 4 replicas
were required to emerge (potentially including the initial loop)
within a maximal number of 30 development steps. Note that
during the evolution the initial loop was initialised in an inner
part of the CA (as shown in Figure 4d) in order to allow
the EA to discover replication in any direction. This setup is
motivated by some of the existing replicating loops that work
in a similar way (i.e. the replicas can “grow” in more directions
simultaneously).

The transition function of one of the best evolved solutions
for the round loop is shown in Figure 5, and the CA develop-
ment performing the replication process is illustrated in Figure
6. This CA represents the best result of this paper and will be
referred to as Bidlo’s loop. As evident from Figure 6, the first
replica is created after the 12th step on the right (east) from
the initial loop. However, some cells are emerging both in the
east and south before the first replica is finished. These cells
actually represent a basis for the next replicas being created
concurrently during the subsequent development. From this
process it can be seen that the evolution discovered a new
replication scheme – let us call it a diagonal replication as
it creates successive copies of the loop diagonally between
the east and south directions. The following stages can be
identified with respect to the overall CA development: (1) The
first replica emerges after the 12th step on the east side. (2)
This replica produces the first diagonal level after the next 8
steps. (3) Every next diagonal level is finished after 6 steps.
Note that the development pattern of the CA is regular since
stage 3, i.e. the number of replicas can be predicted and an
analysis of the global CA behaviour can be performed.

For comparison purposes, Byl’s loop was chosen [17]
because of its closest similarity to the round loop with respect
to the shape, size and complexity (see the illustration of

Fig. 5. Transition function for the replication of the round loop from Figure
6: (a) the CMR representation discovered by the EA, (b) the corresponding
table-based representation.

the loops in Figure 7). Both these loops were analysed in
detail, using our cellular automata simulator, with the fol-
lowing results. The transition function of Byl’s loop consists
of 238 rules, our solution for the round loop works with
84 rules. The CA simulator can provide integer sequences
containing the numbers of replicas at the respective time (i.e.
after executing the CA for the appropriate number of steps).
For example, the CA with Bidlo’s loop (discovered in this
paper) can produce 3, 6, 10, 15, 21, 28, 36, 45, . . . replicas in
20, 26, 32, 38, 44, 50, 56, 62, . . . steps, respectively. In order to
mathematically express the number of Bidlo’s loop depending
on the number of CA steps N , a manual analysis of these
sequences was performed; the result is described by equation
(1):

CBidlo =
N2 − 10N + 16

72
;N ≥ 20∧(N−20) % 6 = 0 (1)

A similar analysis was performed to express the number of
Byl’s loop as described by equation (2):

CByl =
2N2

625
− 8N

25
+ 15;N ≥ 100 ∧N % 25 = 0 (2)

Note that the sign % in the formulas denotes the modulo
division. Additional conditions for N are specified in order
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Fig. 6. Replication of the round loop in a CA developing according to the transition function from Figure 5. The sequence of CA states reads from left to
right, top to bottom.

to express only the numbers of steps after which a group of
replicas has just been completed (for other values of N the
result is not a whole number). The correctness of the equations
was confirmed using our CA simulator. Alternatively, suitable
mathematical software can be involved. For example, Wolfra-
mAlpha2 represents a straightforward tool for such an analysis.
By entering a part of the sequence containing the number
of replicas for Byl’s loop (15, 25, 39, 57, 79, 105, 135, 169),
WolframAlpha provides a mathematical expression for this
sequence as shown by equation (3):

CByl−WA = 2x2 + 4x+ 9;x = 1, 2, 3, 4, 5, 6 . . . (3)

Note that in this case x represents an independent variable, not
the number of the CA steps. Similarly, the number of replicas
of Bidlo’s loop can be expressed independently of N as shown
by equation (4), which was derived by WolframAlpha:

CBidlo−WA =
1

2
(x+ 1)(x+ 2);x = 1, 2, 3, 4, 5, 6 . . . (4)

Again, our software simulator was applied that confirmed the
correctness of the equations provided by WolframAlpha with
respect to the output from the corresponding CA.

In the case of Byl’s loop a group of replicas is completed
after every 25 steps, for the round loop a whole diagonal

2http://www.wolframalpha.com/

Fig. 7. Comparison of the number of replicas based on the number of CA
steps for Byl’s loop [17] and Bidlo’s (round) loop.

of replicas is finished after every 6 steps. Although Byl’s
loop replicates into four directions, its replication speed is
significantly lower in comparison with the round loop, which
replicates in two dimensions only (see Figure 7). This feature
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Fig. 8. Example of development of the rectangular loop discovered by the evolution. The CA works with 8 states, the sequence of steps reads from left to
right, top to bottom. The initial state is marked by a thick rectangle in the top-left part of this figure.

follows from the significantly lower factor of the element
N2 in Equation (2) compared to Equation (1) for the round
loop. This means that the solution obtained in this paper is
significantly more efficient (from the point of view of both the
replication speed and the complexity of the transition function)
compared to Byl’s loop. Considering the replication period
(i.e. the number of steps after which a new group of replicas
is completed), which determines the replication speed, our
solution even overcomes (with its replication period of 6 steps)
all the best known replicating loops. For example, in addition
to Byl’s loop [17] with a replication period of 25 steps, Chou-
Reggia’s loop [18] has a 15-step replication period, Langton’s
loop [2] replicates in every 151 steps or Perrier’s loop [60]
exhibits a replication period of 235 steps. Therefore, Bidlo’s
(round) loop can be considered as the fastest replicating loop
known so far and represents the main result of this paper.

B. Results for the rectangular loop

In order to show that the CMR encoding of the transition
function is not limited to a specific loop only, other structures
were also considered. The rectangular loop from Figure 4b
uses the same principle of the fitness evaluation as the round
loop does. Several perfect solutions were obtained in which
the aforementioned concept of diagonal replication can also
be observed. One of those solutions is depicted in Figure 8.

In this case the development starts by a stage (1) that takes
16 steps during which two different replication processes are
performed in both the east and south direction (the result of
this stage is shown in the top-left part of Fig. 8). The next
groups of replicas are developed during stage (2) after every
13 steps. However, it can be observed that the replication into
the two directions is not symmetric – see Figure 8, step 35
(the first row of replicas contains 3 complete loops whilst

Fig. 9. A sample state of a 200x200-cell CA performing a replication of
the rectangular loop. The state represents a continuation of the development
from Figure 8 after 871 steps and shows a chaotic arrangement of dead areas
caused by an asymmetric diagonal replication.

the south direction contains 4 loops in the first column). This
irregularity causes that some loops are not able to finish their
replication, which leads to some “dead areas”, which emerge
during the CA development. Since step 35 it is evident that
the loop marked by the black arrow starts its east replication
in step 36 but the “arm” constructed in step 38 (consisting of
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two cells in state 3) no longer develops during the next steps,
producing a dead area that can be clearly visible after step
66. In order to identify the consequences of this anomaly a
200x200-cell CA was considered with the initial loop in its
top-left corner. The development takes 871 steps until the CA
reaches its stable state with the whole cellular space filled by
replicas and dead areas (see Figure 9), whose arrangement
seems rather chaotic. Moreover, the development of this loop
was observed using 400x400- and 800x800-cell CA with no
systematic arrangement of the loops and dead areas that would
allow predicting reliably the global behaviour of such a CA.

Although the chaotic behaviour is quite common for CA
in class 3 of Wolfram’s classification [23], it has been rarely
observed in the case of replicating structures. However, the
issue of prediction and potential applications of such behaviour
still represent open problems for the future research. Note that
some other solutions were obtained that are able to replicate
the rectangular loop without malformations, using the diagonal
replication scheme.

C. Results for the envelope loop

The last experiment from the area of replicating structures
demonstrates another approach to the fitness evaluation and
considers a more complex replicating loop denominated as
envelope loop – see Figure 4c. In this case the CA works
with 8 different cell states, the initial state consists of a single
instance of the loop to be replicated (see the top-left state of
Figure 10 denoted as “initial state”). Contrary to the previous
experiments, this replication task is evaluated using a fixed
(reference) pattern as a complete CA state containing a copy
of the original loop in a specific position (see the bottom-right
state of Figure 10 denoted as “step 20”). The reason for this
experiment is to determine the ability of the EA to evolve
CMRs for the transformation into an exact copy arrangement
and to identify whether general replicators are possible in
this case (i.e. the ability of the CA evolved to repeatedly
generate replicas according to the original specification if
the development continues). Since the fitness evaluation is
different, compared to the previous loops, the success of this
experiment also indicates that the CMR approach is robust.

The step fitness function is calculated after each step of the
CA as the number of cells in correct states with respect to the
reference pattern. The final fitness is defined as the maximum
out of all the step fitness values. From a more general point
of view the evaluation of the candidate solutions may be
considered as a pattern transformation problem transforming
the initial state into another target state containing the replica.
The results are finally verified in order to determine whether
the transition function is able to generate more replicas if the
CA development continues. Figure 10 shows an example of a
successful solution performing a complete development of a
single copy of the envelope loop. This solution is able to gen-
erate further replicas from the most recent one whereas each
new replica is “shifted” by two cells down from its predecessor
(as originally specified by the reference pattern during the
evolution). The new replica is finished after 20 development
steps and this solution represents the fastest replicator out

of the results obtained for the envelope loop. The transition
function consists of 102 table-based rules (transformed from
the evolved CMR encoding). Note that various perfect results
were obtained, for example a CA working with 88 rules (the
most compact transition function so far obtained for this loop)
generating replicas in 25 steps, another solution uses 96 rules
and the replication takes 30 steps.

Fig. 10. A CA development performing the replication of the envelope loop.
The sequence of CA states reads from left to right, top to bottom.

D. Discussion

The EA provided working solutions that satisfy the given
requirements in all the experiments, which indicates that the
CMR approach is robust. Since the fitness function represents
one of the key aspects of a successful evolutionary system
(together with the representation of candidate solutions), it
may enable the CMR concept to be successfully applied
in advanced CA models in various areas (e.g. non-uniform,
asynchronous or probabilistic CA).

An observation of the evolved CA development showed
that different replication techniques could be obtained even
for a specific loop. For example, in addition to the results
proposed in Section IV-A, a CA working with 6 cell states
was discovered that needed the same number of steps (12) to
replicate the initial loop but its transition function contained
99 rules (the solution from Section Section IV-A works with 8
cell states and 84 rules, Byl’s loop replicates according to 238
rules). In the case of both the round loop and the rectangular
loop the replication process designed by the EA exhibits a
pipelining principle (i.e. the replication of the next group
of loops is in progress before the previous group has been
finished). Although the replication process works for a specific
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direction only (e.g. it does not allow an easy modification or
adaptation of the transition rules by “rotating” the cellular
neighbourhood known from Byl’s loop [17]), it has been
shown that the proposed loops replicate with a higher speed
against the existing loops. Another important aspect discovered
by the EA, which probably contributes to the replication
speed, is the diagonal replication. Moreover, it seems that
the diagonal replication represents a technique that enabled
reducing the number of transition rules needed to perform the
replication. In particular, the proposed Bidlo’s loop can create
528 instances in 200 CA steps compared to 79 instances of
Byl’s loop in the same time (i.e. in this case the proposed loop
produced more than 6 times more copies than Byl’s loop).

Although the form or arrangement of the proposed loops
was inspired by the existing (self-replicating) loops, the results
obtained do not exhibit the concept of self-replication in which
the information needed to create the replica is encoded in
the loop body. In fact, no exact solution to any existing self-
replicating loop has yet been rediscovered using the proposed
approach. The information encoded in the loop, which speci-
fies the self-replication features, determines the CA develop-
ment, which is specific to the given loop (e.g. Langton’s loop
encodes a sequence of states that determine how to create the
replication “arm”, when to turn the arm in order to create
the corners of the loop or how to “close” the final replica).
The transition function must interpret this information in order
to control the CA development accordingly. The problem is
that if such a transition function is specific to a given loop
(i.e. there are no or only very few transition functions in the
solution space that would perform self-replication of the given
loop), then the EA may not be able to find the solution in a
reasonable time.

However, the proposed approach allowed discovering trans-
formations for creating replicas that are completely new or
even exhibit some phenomena that would probably not be
intended or acceptable during a manual CA design. In order
to enable the EA to design innovations, it is important for
the evaluation of the candidate solutions not to be very
strict. In particular, the diagonal replication scheme, pipelining
principle or malformation of the loops during the replication
process represent phenomena designed by the EA that were
not explicitly specified (required) by the designer.

V. CONCLUSIONS

In this paper some selected applications of conditionally
matching rules were presented for a routine evolutionary
design of complex multi-state uniform cellular automata. The
proposed EA in combination with the CMR encoding was
able to find working solutions to problems for which the
conventional representation techniques failed. In particular, a
novel replication scheme in 2D CA was discovered in this
paper that allows a faster development of the copies of the
given structure in comparison with the known approaches.
Some techniques were evolved to calculate the square of
integer numbers in 1D CA that require a considerably lower
number of steps compared to the existing solution. The results
obtained represent the first case of a successful automatic
design of multi-state CA for this kind of problems.

In general, the proposed approach showed the ability to
find working solutions to various kinds of problems (the
square calculation in 1D CA and replication in 2D CA,
where the result can be specified either as a minimal number
of replicas or by a fixed pattern). This indicates that other
classes of problems could be successfully solved in the future.
For example, the CMRs might allow optimising the pattern
generation in the area of computer graphics. Other potential
applications may include the design of CA for random number
generation or the optimisation of test pattern generators for
digital circuits.

As regards the proposed case studies, the results bring some
open questions whose investigation could be beneficial to both
elementary and advanced CA-based models. For instance, how
to effectively encode the information on self-replication for
the purposes of the evolutionary design? Could the CMRs be
adapted in order to provide the capability to optimise the num-
ber of states during evolution? Are there any new operators for
the EA that would allow optimising the evolutionary process
itself? These issues represent ideas for our future research.
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