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Abstract. Solutions calculated by Evolutionary Algorithms have come
to surpass exact methods for solving various problems. The Rubik’s Cube
multiobjective optimization problem is one such area. In this work we
present an evolutionary approach to solve the Rubik’s Cube with a low
number of moves by building upon the classic Thistlethwaite’s approach.
We provide a group theoretic analysis of the subproblem complexity in-
duced by Thistlethwaite’s group transitions and design an Evolutionary
Algorithm from the ground up including detailed derivation of our cus-
tom fitness functions. The implementation resulting from these observa-
tions is thoroughly tested for integrity and random scrambles, revealing
performance that is competitive with exact methods without the need
for pre-calculated lookup-tables.

1 Introduction

Solving the Rubik’s Cube is a challenging task. Both the size of the solution
space induced by the number of attainable states and multiple desirable side-
objectives next to restoring the Cube (favorably in the smallest possible number
of moves and lowest calculation complexity) make this an interesting optimiza-
tion problem. Although invented in 1974, the number of moves required to solve
any state of Rubik’s Cube (the so-called God’s Number) is yet to be determined
after 30 years.

Various algorithms were devised to decrease the upper bound. However, all
those approaches are strictly exact methods and the most recent ones rely on
terabytes of pre-calculated lookup-tables. This is reflected by the current lowest
upper bound of 22 moves achieved by Rokicki [11]. This number was attained by
applying the same method he had used earlier for pushing the upper bound to
26, 25 and then 23 moves - using the very same algorithm only on more powerful
hardware and a longer calculation time [10], [11].

Evolutionary Algorithms have been successfully applied in a variety of fields,
especially highly complex optimization problems [2], [8], [14]. Oftentimes, supe-
rior solutions - as compared to classical algorithms have been achieved - notably
in multiobjective cases (for example multiconstraint knapsack problems [4]). This
gives rise to the idea of applying Evolutionary Algorithms to the Rubik’s Cube
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problem. All relevant approaches are based on dividing the solution space of the
Rubik’s Cube into mathematical groups, starting with Thistlethwaite using 4
[13], then Reid combining two of Thistlethwaite’s groups resulting in total of 3
[9] and finally Kociemba’s [7] and Rokicki’s approach using 2 subgroups. This
makes the group theoretic approach a reasonable starting point for designing
Evolutionary Algorithms. It is of particular interest to us to determine how such
an EA can solve the Cube without relying on extensive lookup-tables.

2 Notation and Basic Concepts

2.1 Rubik’s Cube

The subject of this paper is the classic 33 Rubik’s Cube. It consists of 26 pieces
called cubies: 8 corner cubies, 12 edge cubies and 6 center cubies, distributed
equally on the six sides of the Cube. Each side of the Cube is called face, each
2-dimensional square on a face is referred to as facelet.

A corner cubie shows 3 facelets, an edge 2 and a center 1. Each side of the
Cube can be rotated clockwise (CW) and counterclockwise (CCW). Each single
move changes the position of 4 edges and 4 corners. The center facelets remain
fixed in position. They determined their face’s color.

For each edge and corner we distinguish between position and orientation: i.e.
an edge can be in its right position (defined by the two adjacent center colors)
but in the wrong orientation (flipped).

There are several known notations for applying single moves on the Rubik’s
Cube. We will use F, R, U, B, L, D to denote a clockwise quarter-turn of the front,
right, up, back, left, down face and Fi, Ri, Ui, Bi, Li, Di for a counterclockwise
quarter-turn. Every such turn is a single move. In Cube related research, half-
turns (F2, R2, U2, B2, L2, D2) are also counted as single moves. This notation
is independent of colors but depends on the viewpoint. A sequence of moves, an
operation, is created by concatenating single moves and is called operation (i.e.
FRBiL2).

2.2 Applied Group Theory

A group G is a set together with multiplication and identity e (eg = g), inverse
(gg−1 = g−1g = e) and an associative law. A subgroup H < G is a subset H
that is closed under group operations. S ⊆ G, written G =< S > is a generator
of G if any element of G can be written as a product of elements of S and their
inverses. The order of the group is the number of elements in it, |G|. Given a
group G and a subgroup H < G, a coset of H is the set Hg = hg : h ∈ H ; thus,
H < G partitions G into cosets. The set of all cosets is written H�G.

Obviously, all possible states of a Rubik’s Cube are described by the group
generated by its applicable moves GC =< F, R, U, B, L, D >, also called the
Cube Group (|GC | = 4.3 · 1019). Let H =< L, R, F, B, U2, D2 > be a subgroup
of GC , representing a Cube where only the edge positions matter, as no edge
orientations can be altered. Thus, H�GC depicts the left coset space which
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contains all possibly attainable states when only flipping edge cubies (changing
an edges orientation). For extended explanation refer to [5], [12].

3 Related Work

3.1 Non-evolutionary Approaches

There are several computational approaches for solving the Rubik’s Cube, the
three most important being the work of Thistlethwaite, Kociemba and Rokicki.
Their advanced algorithms are based on group theory concepts and apply ad-
vanced concepts such as symmetry cancelation and dedicated traversal methods
(e.g. Iterative Deep Searching, IDA*).

Thistlethwaite’s Algorithm (TWA) works by dividing the problem into 4 sub-
problems - specifically subgroups and subsequently solving those. By using pre-
calculated lookup-tables, sequences are put together that move a Cube from one
group into another until it is solved [13].

Kociemba’s Algorithm takes the idea of dividing the problem into subgroups
from Thistlethwaite, but reduces the number of needed subgroups to only 2.
This method uses an advanced implementation of IDA*, generating small maps,
calculating and removing symmetries from the search tree and tends to solve
the Cube close to the shortest number of moves possible. Kociemba made his
approach available in form of a program called Cube Explorer which can be found
at [7].

Rokicki realised that the initial parts of the pathways computed by Kociemba’s
Algorithm are solutions to a large set of related configurations. He exploits this
property by dividing the problem into 2 billion cosets, each containing around
20 billion related configurations. With this method he was able to push the up-
per bound to 22 moves sufficing to solve the Cube from any initial scrambled
configuration [10], [11].

3.2 Evolutionary Approaches

Only a few evolutionary approaches dedicated to solving the Rubik’s Cube exist.
In 1994 Herdy devised a method which successfully solves the Cube [6] using
pre-defined sequences as mutation operators that only alter few cubies, resulting
in very long solutions. Another approach by Castella could not be verified due to
a lack of documentation. Recently Borschbach and Grelle [1] devised a 3-stage
Genetic Algorithm based on a common human “SpeedCubing” method, first
transforming the Cube into a 2x2x3 solved state, then into a subgroup where it
can be completed using only two adjacent faces (two-generator group).

4 Thistlethwaite’s Algorithm

The basic idea of the TWA is to divide the problem of solving the Cube into
four independent subproblems by using the following four nested groups: G0 =<
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F, R, U, B, L, D >, G1 =< F, U, B, D, R2, L2 >, G2 =< U, D, R2, L2, F2, B2 >
, G3 =< F2, R2, U2, B2, L2, D2 >, G4 = I. Obviously, G0 = GC . The functional
principle of Thistlethwaite’s Algorithm is to put the Cube into a state where it
can be solved by only using moves from Gi which again has to be achieved by
only using moves from Gi−1 for i = 1, . . . 4, thus named nested groups.

Specifically, every stage of the algorithm is simply a lookup table showing a
transition sequence for each element in the current coset space Gi+1�Gi to the
next one (i = i+1). These coset spaces, each describing a reduced form of the 33

Rubik’s Cube puzzle, induce different kinds of constraints. This directly results
in the total number of attainable states being reduced by using only moves from
some subgroup Gi+1. The exact orders for each group are calculated as follows:

G0 |G0| = 4.33 · 1019 represents the order of the Cube Group.

G1 The first coset space G1�G0 contains all Cube states, where the edge ori-
entation does not matter. This is due to the impossibility of flipping edge cubies
when only using moves from G1. As there are 211 possible edge orientations,

|G1�G0| = 211 = 2048 (1)

the order of |G1| is

|G1| ≡ |G0|
|G1�G0| = 2.11 · 1016 . (2)

G2 Using only moves from G2, no corner orientations can be altered (eliminat-
ing 37 states). Additionally, no edge cubies can be transported to or from the
middle layer (eliminating 12!

(8!·4!) states). The coset space G2�G1 thus depicts a
reduced puzzle of the order

|G2�G1| = 37 · 12!
(8! · 4!)

= 1082565 (3)

and

|G2| ≡ |G1|
|G2�G1| = 1.95 · 1010 . (4)

G3 Once in the coset space G3�G2, the Cube can be solved by only using
moves from G3, here the edge cubies in the L, R layers can not transfer to
another layer (eliminating 8!

(4!·4!) · 2 states) and corners are put into their correct
orbits, eliminating 8!

(4!·4!) · 3 states). Thus,

|G3�G2| = (
8!

(4! · 4!)
)2 · 2 · 3 = 29400 (5)

and

|G3| ≡ |G2|
|G3�G2| = 6.63 · 105 . (6)
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G4 As G4 represents the solved state - obviously |G4| = 1 which means there
exist a mere |G3| possible states for which a solution needs to be calculated to
transfer from G4�G3 to solved state.

Most essential to TWA are the groups G1, G2, G3 as G0 simply describing
the Cube Group GC and G4 the solved state. To further exemplify how the
coset spaces simplify the Rubik’s Cube puzzle the following may prove helpful.
When looking at the constraints induced by G2�G1�G0 carefully (combining
the constraints induced by G2�G1 and G1�G2) it is essentially a Rubik’s Cube
with only 3 colors - counting two opposing colors as one. This representation can
be reached for each distinct coset space by examining and applying its effect to
the complete Rubik’s Cube puzzle.

While solving the Rubik’s Cube in a divide and conquer manner, breaking it
down into smaller problems (by generating groups and coset spaces) is effective,
there exists one major flaw. Final results obtained by concatenating shortest
subgroup solution do not necessarily lead to the shortest solution, globally.

5 The Thistlethwaite ES - An Evolution Strategy Based
on the Thistlethwaite’s Algorithm

As seen above, in the classic TWA the order of each subproblem is significantly
smaller than |GC | and is reduced from stage to stage. The four resulting problem
spaces are much more suitable to be solved via ES, as calculation complexity and
the probability of ending up in local minima is decreased. Further, this enables
the use of truly random mutation operators (otherwise highly ineffective in all
of |GC | [1]) opposed to the hard-coded sequence approach used by Herdy [6].

Thus, we present a 4-phase ES with each phase calculating one group tran-
sition (will be referred to as Thistlethwaite Evolution Strategy, TWES). These
phases share the same basic selection method but differ in mutation operators
and fitness functions. Effectively, the presented ES can best be described as four
consecutive ES, each using the solution of the previous one as starting individual
to be duplicated (the first using the scrambled input Cube).

5.1 Basic Workflow

A scrambled Cube is duplicated λ times and the main loop is started using a
fitness function phase0 and only mutation sequences from G0. As soon as μ
Cubes which solve phase0 have been evolved, the phase transition begins.

During phase transition, from those μ phase0-solving Cubes, a random Cube is
chosen and duplicated. This is repeated λ times and yields in the first population
after the phase transition. Now the phase-counter is increased by one, and the
main ES loop is entered again. This process is repeated until phase4 is solved (i.e.
phase5 is reached), presenting a solution sequence to the originally scrambled
Cube. This workflow is demonstrated in Fig. 1 (for in-depth implementation
details see [3]).

In order to avoid the TWES getting stuck in local optima an upper bound
for calculated generations is introduced. As soon as this upper bound is reached,
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population

mutation
phase i

fitness 
calculation

phase i

selection

duplication

selection pool

phase 4 fitness = 0

i = 0

phase 
transition

i = i+1

phase i = 0
and
x ≥ μ

phase i > 0
or
x < μ

x = number of phase-solving cubes

Fig. 1. Basic workflow of Thistlethwaite ES, i = 0, . . . , 5

the TWES resets itself and starts over again. Based on testing several scrambles,
the default upper bound is set to 150 generations.

5.2 Rubik’s Cube as an Individual

The Rubik’s Cube is represented using 6 2D matrices containing values from 1
to 6, each representing one color. Every quarter- and half-turn can be applied to
this representation, yielding a total of 18 different single moves while still leaving
the Cube’s integrity intact.

Thus, mutation is easily realized by not modifying a single facelet’s color
but applying a sequence of moves to the Cube. This guarantees that the Cube’s
integrity stays intact at all times and makes a separate integrity test superfluous.

Every individual remembers the mutations it has undergone, i.e. a list of moves
that have been applied. To keep this list as small as possible, redundant moves are
automatically removed. For example an individual that has been mutated with F
and is then mutated with FRRiB will only remember the optimized sequence F ·
FRRiB = F2B, preventing redundancy. Essentially, this is realized via a while-
loop, eliminating redundant moves in each pass until no further optimizations
can be made: e.g. F2BBiR2R2F is optimized to Fi by first removing BBi, then
removing R2R2 and finally transforming F2F into Fi.

5.3 Fitness Function

Translating the TWA into an appropriate Fitness Function for an Evolutionary
Algorithm essentially forces the design of four distinct subfunctions. As each
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subgroup of G0 has different constraints, custom methods to satisfy these con-
straints are proposed.

G0 → G1 To reach G1 from any scrambled Cube, we have to orient all edge
pieces right while ignoring their position. The fitness function for this phase sim-
ply increases the variable phase0 by 2 for each wrong oriented edge. Furthermore,
we add the number of moves that have already been applied to the particular
individual in order to promote shorter solutions. Finally, we adjust the weight
between w (number of wrong oriented edges) and c (number of moves applied
to current Cube individual). This will be done similarly in all subsequent phases.

phase0 = 5 · (2w) + c (7)

With a total of 12 edges which can all have the wrong orientation this gives
max{2w} = 24. The Cube has been successfully put into G1 when phase0 = c.
Reaching G1 is fairly easy to accomplish, thus making the weight-factor 5 a good
choice.

G1 → G2 In order to fulfill G2 the 8 corners have to be oriented correctly. Edges
that belong in the middle layer get transferred there. Tests with the Thistleth-
waite ES showed it somewhat problematic to do this in one step. Oftentimes,
the algorithm would get stuck in local optima. To solve this, the process of
transferring a Cube from G1 to G2 has been divided into two parts. First, edges
that belong into the middle layer are transferred there. Second, the corners are
oriented the right way. The first part is fairly easy and the fitness function is
similar to that from phase0 except for w (number of wrong positioned edges),
i.e. edges that should be in the middle layer but are not.

phase1 = 5 · (2w) + c (8)

In the second part, for each wrong positioned corner, 4 penalty points are as-
signed as they are more complex to correct than edges. Obviously, in order to
put the Cube from G1 to G2 both phases described here have to be fulfilled,
which yields:

phase2 = 10 · (4v) + phase1 (9)

where v represents the number of wrong oriented corners. The weighing factor
is increased from 5 to 10 to promote a successful transformation into G2 over a
short sequence of moves.

G2 → G3 We now have to put the remaining 8 edges in their correct orbit. The
same is done for the 8 corners which also need to be aligned the right way. Thus,
the colors of two adjacent corners in one circuit have to match on two faces. In
G3 the Cube will only have opposite colors on each face. Let x (number of wrong
colored facelets) and y (number of wrong aligned corners), then

phase3 = 5 · (x + 2 · y) + c . (10)
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G3 → G4(solved) The Cube can now be solved by only using half-turns. For
the fitness function we simply count wrong colored facelets. Let z be the number
of wrong colored facelets, then

phase4 = 5 · z + c . (11)

To summarize, 5 different fitness functions are needed for the Thistlethwaite ES.
phasei is solved if phasei = c, i = 0, ..., 4 and with the properties of nested
groups we can conclude, given the above, a solved Cube implies:

4∑

0

phasei = c . (12)

Fulfilling the above equation satisfies the constraints induced by the groups
G0, . . . , G4, with the final fitness value c describing the final solution sequence
length. The weight factors chosen are based on consecutive testing throughout
development. The ratio is dictated by the size of the nested groups. Finding
optimal weights presents a seperate optimization problem and may be subject
to future work.

5.4 Mutation Operators

The mutation operators are dictated by the subgroups used. Conveniently, the
maximum sequence length (s) needed to transform the Cube from one subgroup
to another is given by Thistlethwaite [13]. Those lengths are 7,13,15,17 (the sum
of which is 52, hence ”52 Move Strategy”) for each group transition respectively.
An individual in phase i is mutated by:

1. generating a random length (l) with 0 ≤ l ≤ s, according to i (i = 0 → s =
7, i = 1 → s = 13, i = 2, 3 → s = 15, i = 4 → s = 17)

2. concatinating l random single moves from the according group Gi

3. applying this sequence to the current Cube individual

For example: Let i = 2 (transitioning from G2 → G3). The maximum sequence
length for this step is s = 15. Let random l = 4, (0 ≤ 4 ≤ 15). Next, we chose
a random single move from G2, repeat this a total of 4 times and concatinate
these to form a sequence. Let those 4 single moves be D, F2, R2, U . This results
in the sequence DF2R2U representing the present mutation which is applied to
the current Cube individual.

In case of l = 0 the mutation is an empty sequence, leaving the current
individual untouched. Given an appropriate fitness, this allows distinct Cubes
to survive multiple generations.

5.5 Selection Method

The selection method used is a modified truncation selection. The selection pool
is generated by chosing the μ best individuals from the current population. There-
from, each individual is duplicated with the same probability 1

µ , repeated λ times
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to form the new population. This approach implicates a low selection pressure
and hence favors a higher diversity, as it is a key importance to enable the
survival of alleged suboptimal individuals. The combination of random muta-
tion operators, phase transitions and redundant move removal can result in an
abrupt fitness improvement of such individuals.

Furthermore, similar to Kociemba’s key idea of continuing calculation after
some solution to one phase has been found [7], our ES continues until μ different
such individuals have been evolved. These are then duplicated as described above
to form the inital population for the subsequent phase. Put simply, phasei+1

starts with a population pool of λ phasei-solving Cubes of high diversity. This
can have a positive effect on overall solution length and calculation time, as
remarked by Kociemba [7] and counters the major flaw of the classic TWA
mentioned in section 4.

6 Benchmarks

To provide a brief performance overview 100 random scrambles of minimum
length 10 and maximum length 50 were generated and and solved in 5 repetitions.
Solution lengths and calculation time are of particular interest to us. The test
was conducted with the TWES using (μ, λ) = (1000, 50000), weighing factors
(5, 5, 5, 5, 5), mutation lengths (5, 5, 13, 15, 17) and maximum generations before
reset (250).

Table 1. Solutions of 100 random scrambles, 5 repetitions, Thistlethwaite ES

Run 1 Run 2 Run 3 Run 4 Run 5

avg. Generations 95.72 100.63 92.71 99.66 92.22

avg. Moves 50.67 50.32 50.87 50.23 49.46

avg. Time(s) 321.78 381.68 393.99 312.98 287.93

As seen in Table 1, the solution sequences hit an average of about 50 single
moves, further demonstrating a consistent performance throughout the repeti-
tions. Most scrambles are solved in 35-45 moves, outliers are responsible for the
higher average count. Extensive additional benchmarks can be found in [3].

7 Conclusion

The benchmarks are promising, yielding comparable results to the classic TWA.
Outliers calculated by TWES provide both significantly shorter and longer solu-
tions. This is most probably due to inter-group dependencies and future focus lies
on increasing our TWES’ tendency to such shorter results. Instead of obtaining
static solutions dictated by the lookup-table used in the classic TWA, the dy-
namic evolution process enables those shorter solution sequences not previously
possible.
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Regarding the Rubik’s Cube optimization problem, our evolutionary approach
is evidently competitive with the exact method it adepts. As this was the first
such attempt - based on the first group theoretic exact approach using lookup-
tables (Thistlethwaite) - future work promises further improvement. This algo-
rithm only solves the classic 33 Rubik’s Cube, just as the exact method it is based
on does. However, our modular EA can also be used to solve higher dimensional
Rubik’s Cubes by appropriately substituting the current fitness functions.

The next developmental step will adept approaches that reduce the number of
subgroups to 3 and then 2, potentially yielding further improvement in solution
sequence length. Conveniently, our implementation already provides such possi-
bilities for extensions, enabling quick testing of different subgroup combinations.
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