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Abstract: The European Union is planning to introduce a new tool for evaluating smart
solutions in buildings—the Smart Readiness Indicator (SRI). As 54 energy efficiency cate-
gories must be evaluated, the triage process can be long and time-intensive. Altogether,
228 data points (or inputs) about the smartness of the buildings are required to complete
the evaluation. The present paper proposes an alternative calculation method based on
genetic programming (GP) for the calculation of Domains and linear regression (LR) for
the calculation of Impact Factors and the total SRI score of the building. This novel calcula-
tion requires 20% (Domain ventilation and dynamic building envelope) to 75% (Domain
cooling) fewer inputs than the original methodology. The present study evaluated 223 case
study buildings, and 7 genetic programming models and 8 linear regression models were
generated based on the results. The generated results are precise; the relative deviation
from the experimental data for Domain scores (modelled with GP) ranged from 0.9% to
2.9%. The R2 for the LR models was 0.75 for most models (with two exceptions, with one
with a value of 0.57 and the other with a value of 0.98). The developed method is scalable
and could be used for preliminary and portfolio-level screening at early-stage assessments.

Keywords: SRI; modelling; genetic programming; linear regression; energy efficient buildings;
smart buildings; optimisation

1. Introduction
The Green Deal defined the transformation of the European energy market in

December 2019. Due to the policies related to it, the European energy market needs to be
founded on the principles of energy security, energy efficiency, decarbonisation, research,
innovation, and competitiveness [1]. Energy-efficient buildings are integral to the energy
frameworks established in Europe. Worldwide, buildings account for 30% of the total final
energy consumption [2]. In Europe, the consumption of buildings represents 40% of the
final energy [3]. Furthermore, 75% of the buildings in the EU are still energy inefficient [4].
Therefore, EU Member States should strive for a cost-effective balance between decarbonis-
ing the energy supply and reducing the final energy consumption [5]. Swift advancement
is essential to attain superior construction and extensive energy refurbishments in edifices
that diminish the industry’s total energy requirement and carbon density [2]. An increase
is needed in renewable energy sources [6]. One of the essentials for the clean energy
revolution is energy-efficient buildings.
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In the European Energy Performance of Buildings Directive (EPBD), from 30 May 2018,
the idea of a new tool for promoting energy efficiency was presented for the first time. This
tool is called the Smart Readiness Indicator (SRI). The SRI was developed as a mechanism
to evaluate the ability of buildings to incorporate information and communication technolo-
gies (ICT) [5]. Therefore, building automation has been receiving greater attention lately.
A more thorough integration of building automation systems and additional advanced tech-
nologies within the building sector is essential [7]. Building automation systems possess
the capability to decrease energy usage and enhance building functionality, oversight and
upkeep, while simultaneously elevating the satisfaction levels of occupants [8]. Different
stakeholders (building users, owners, investors, etc.) need to be informed about the added
value provided by ICT in buildings [9].

The SRI aims to assess the following aspects of the technological readiness of buildings:

• The ability to respond adaptively to the demands of the occupants.
• The ability to facilitate maintenance and ensure optimal performance.
• The ability to adapt in response to the energy grid circumstances [10].

A “market pull” and a “market push” are needed for the transformation of the energy
market [6]. The intention of the SRI is to encourage comprehension of the positive aspects
of smart buildings with respect to energy efficiency. It ought to encourage cooperation
between the energy, construction, and ICT sectors in the building industry [11]. All parts of
the real-estate market must cooperate in a coordinated approach [12]. The Smart Readiness
Indicator endeavours to accomplish this objective by integrating the requirements of the
occupants, facilities and energy grids in accordance with the vision for a sustainable energy
transition [13]. The result should be an optimised mix of various energy sources, user
occupancy, and grid flexibility [14]. It is expected that the SRI will be particularly beneficial
for large buildings with a large energy demand [15]. The implementation of modern energy
systems consisting of battery storage systems, photovoltaic production, and flexible loads
through cooperative and individual optimisation scenarios would be accelerated with the
help of the SRI [16]. Furthermore, the SRI could accelerate the implementation of the smart
cities’ vision [17].

The SRI was previously evaluated in different ways. Various authors [18–23] believe
that the SRI will function as a supplement to the energy performance certificates (EPCs).
Others [9,19,24,25] pointed out that the triage process (the process in which the data of
the building is collected and later evaluated so that the SRI score can be calculated) is too
subjective and can hardly be replicated. Some researchers claim that the buildings must
have identical properties for consistent and comparable results [26]. A study pointed out
that the SRI is not suitable for buildings under monument protection conditions [27]. Other
researchers pointed out that the results of the SRI evaluation should be used alongside
other performance measures to fully understand the energy and functional performance
of smart buildings [28]. A study conducted on 59 high-performance buildings in South
Tyrol, Italy, came to the conclusion that the readiness levels varied across categories and
that there was no direct correlation between the SRI and the energy performance [29].

Some studies propose the combination of quantitative and qualitative measures that
would make the triage process more objective. By defining clear indicators and standards
for different impact areas, the creation of standardised SRI scores across various building
types and climates would be possible [30]. The idea of combining SRI with custom KPIs
and minimum thresholds also appears in another study [31]. Also, a study conducted on
Italian case studies proposed a tailored approach by adjusting the service inclusion and
weighting factors. Also, the final SRI score would improve significantly [32]. Some authors
have proposed a hybrid methodology that would integrate SRI assessments into traditional
EN 16247 [33] energy audits. This would enable a more comprehensive evaluation of both
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energy efficiency and a building’s readiness for smart technologies [34]. The authors of a
comparable study also came to similar conclusions [35].

There are papers suggesting the usage of digital twins and BIM. This solution would
help in reducing subjectivity and provide more reliable and comparable scores across
different building types, systems and climate zones [36]. When comparing the SRI with the
EN ISO 52120 [37], authors also advocate for the use of BIM and digital twin technologies to
improve the accuracy of SRI evaluations. The study also underlines that regional differences
in technical systems can influence the SRI outcomes [38].

The European Union is in the middle of the Renovation Wave, which aims to renovate
35 million buildings by 2030 [39]. The EU Renovation Wave Strategy aims to (at least)
double the building renovation rate by 2030, with a focus on improving energy perfor-
mance and digital readiness, including SRI implementation [39]. The required funding is
supported by the dedicated EU Green Deal Investment Plan [40].

The original SRI evaluation method is time-consuming, as it often requires multiple
site visits, coordination with building staff (such as maintenance personnel or energy man-
agers), the collection of technical documentation and blueprints, and finally, manual data
entry into the official SRI calculation Excel tool. Therefore, this method is hard to apply
on a large scale. Considering this, there is a clear need for a new, alternative method of
calculating the SRI that reduces the needed inputs and keeps the desired accuracy. The
present paper uses genetic programming (GP) and linear regression (LR) for the calcu-
lation of SRI scores. Genetic programming is an evolutionary computation technique
that solves problems automatically without requiring the user to know or specify the
form or structure of the solution in advance. At the most fundamental theoretical level,
GP constitutes a systematic, Domain-independent framework for facilitating autonomous
problem-solving by computers [41]. It initiates from a generalised declaration of what
must be accomplished and generates a computer program to address the problem au-
tonomously [42]. GP is simulating natural selection and the principles of genetics, often
reducing the complexity of finding solutions [43].

GP has found its place in many applications related to buildings. Studies report the
usage of GP in finding the optimal window–wall ratio [44], optimising the building design
to reduce HVAC (Heating, Ventilation, and Air Conditioning) demands [45] and energy
costs [46], optimising space allocation problems [47], and finding alternative building
designs [48]. Also, its role in solving other engineering problems was reported, such as in
finding the optimal cross-sectional areas of structural members [49].

Linear regression (LR) is a robust statistical technique designed to ascertain the correla-
tion between the independent input variables (i.e., the explanatory variables) of the system
and the dependent output variable (i.e., the response of a system) [47] and to identify
models with the “optimal fit” for the data [48]. In LR, the dependent variable is represented
as a linear function of a set of regression coefficients and a stochastic error.

To the maximum extent of the authors’ knowledge, only a few papers have tackled
the development of alternative calculation methods for the SRI. One paper is from 2019, by
Markoska et al. [20], and emphasises performance testing (PTing). They claim that PTing
frameworks are a solution that utilises metering and sensors for real-time performance
monitoring. To work properly, a metamodel of the building is needed, with a layer of
hardware abstraction that incorporates operational information, and a minimum SRI score
of 23% [20]. This is also the most significant limitation that the authors highlighted. The
paper, however, does not state the accuracy of the developed method.

The second paper that deals with an alternative SRI method is from 2023, by the
authors Yu Ye et al. [50], and describes the development of the tool SmartWatcher©. The
instrument provides a solution to assess the intelligence of buildings through the utilisation
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of automated natural language processing. The developers formulated a mechanism
that transforms verbal data into quantitative information to evaluate smart readiness in
buildings. It was examined on eight trial buildings. The outcomes indicated that the
approach had potential for enhancement. The paper reported a success rate of 73.61% and
a hit rate of 66.57%.

The third paper that discussed a new SRI calculation method is from 2024, by the
authors Carnero et al. [51]. A novel approach (semi-automated) was presented, which
evaluates SRI scores. For this it used the building information modelling (BIM) and industry
foundation classes (IFC) schema. The IFC schema is a standardised, open data format
that enables detailed digital descriptions of building components and systems. The study
describes the following four-step process: interpretation, model preparation, execution,
and reporting. The study identified and assessed 60–80% of smart-ready services, especially
in HVAC and electrical systems. The authors reported time saving, improved accuracy, and
a support of the wider use of digital tools in the assessment of smart solutions in buildings.

Table 1 compares this study with the three relevant papers described earlier. Unlike
prior works that relied either on metadata models (Markoska et al.) [20], NLP-based
interpretations (Ye et al.) [50] or BIM-based rule interpretation (Carnero et al.) [51], our
approach pioneers a hybrid data-driven (GP + LR) method to assess the SRI. The method
is suited for real-world and digital model SRI evaluations. Automation of the method is
also planned.

Table 1. Comparison of this study to the related studies.

Feature/Study Markoska et al. [20]
(2019)—PTing
Framework +

SRI Automation

Ye et al. [50] (2023)—
SmartWatcher NLP

Carnero et al. [51]
(2023)

(INNOVA)

This Study (2025)—
GP + LR Modelling

Assessment
method

Rule-based scoring
using metadata

NLP-based tool for
interpreting system

descriptions

IFC rule-checking for
semi-automated
SRI evaluation

Data-driven modelling
using genetic

programming (GP) + linear
regression (LR)

Tool/
platform

Prototype software Web-based platform
with

SmartWatcher engine

IFC-compatible BIM
checking engine

Models work in Visual
Basic, MS Excel, etc.

Data
requirements

Structured metadata Text descriptions of
technical systems

Detailed and
well-structured

IFC models

Low to medium; works
with basic SRI

questionnaire input

Scope of SRI
Domains

Broad but
incomplete (based on

the available
metadata)

Covers most
Domains where

textual data exists

Mainly HVAC and
electrical systems

(~60–80% SRI
coverage)

Two Domains not
possible to model, namely

EV charging and
monitoring and control

Innovation
highlighted

Metadata-based
automation concept

First use of NLP for
smartness evaluation

First IFC-based rule
automation for

SRI scoring

First GP + LR (reduces
inputs) models trained on
real-world, SRI evaluation

of case studies
(buildings)

Contribution Early demonstration
of automated logic
for SRI assessment

Helped to automate
SRI input

interpretation
using NLP

Showed how BIM
files can

partially automate
an SRI

evaluation

GP + LR models with
reduced inputs that are

transparent and trainable
on different/expanded

datasets, scalable
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In general, our research is divided into two parts. The first part focuses on developing
a model to predict the SRI scores. In future research, this model will be used to read live
data from real case study buildings and calculate the SRI scores which will represent a step
towards automated SRI evaluation of buildings.

The paper is organised in the following manner: Section 2 describes the Methods
used in our study. The experimental setup and data collection are described in Section 2.1.
This is followed by research data preparation for modelling in Section 2.2. Section 3 is
dedicated to modelling. Section 3.1 specifies the approach to modelling Domains, followed
by a discussion on the modelling of impact factors in Section 3.2, and the comprehensive
evaluation of the total SRI building score in Section 3.3. Section 4 describes the outcomes
of the modelling process. The findings of Domain modelling are presented in Section 4.1,
the results pertaining to the Impact Factors’ modelling are detailed in Section 4.2, and the
overall SRI score of the building is presented in Section 4.3. Section 5 offers a discussion on
the results of the paper and their significance. The concluding observations are articulated
in Section 6. The closing remarks are also presented in Section 6.

2. Methods
GP and LR modelling are used to create prediction models that can predict the Domain

scores, Impact Factors, and total building SRI score. The descriptive method is used to
describe the facts and to examine and describe the results. All the terms and definitions
employed in this study adhere to the official Smart Readiness Indicator (SRI) methodology
as established by the European Commission, in collaboration with the SRI Support Team
comprising VITO (Belgium), Waide Strategic Efficiency (Ireland), R2M Solution (France),
and the Luxembourg Institute of Science and Technology (LIST) [52].

2.1. Experimental Setup and Data Collection

The study began with experimental work spanning over two years, namely 2021
and 2023, whereby 223 case study buildings were evaluated in Slovenia. The case study
buildings were then classified by purpose of use according to the SRI methodology. This
distribution is represented in Figure 1.
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According to the SRI methodology, the case study buildings are in the southeastern
region. The SRI evaluation or the triage process began with one or multiple visits to
the facility, data collection about the smart systems installed in the building, document
reading (plans of mechanical and electrical installations, etc.), and interviews with the
facility manager(s).

The data on the buildings’ built-in systems and how systems are controlled and
monitored were collected carefully. After the data collection phase, the evaluation of the
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SRI score was performed with the official Excel calculation tool version 4.5 provided by the
SRI support team (also known as the “Clipboard method” [50]). The default Method B was
used for the SRI calculation, as it suits most building types [52].

2.2. Research Design and Data Preparation for Modelling

The original SRI methodology evaluates the smartness of buildings in three different
categories, namely the Domains, Impact Factors, and total SRI score of the building [51].
The subcategories of these scores are presented in Table 2.

Table 2. The results of the SRI building evaluation—three categories.

Category Subcategories Notes

1. Domains [%] 1. Heating
2. Domestic hot water
3. Cooling
4. Ventilation
5. Lighting
6. The dynamic building envelope
7. Electricity
8. Electric vehicle charging
9. Monitoring and control

2. Impact Factors [%] 1. Energy efficiency
2. Energy flexibility and storage
3. Comfort
4. Convenience
5. Health, well-being, and accessibility
6. Maintenance and fault prediction
7. Information to occupants

3. Total SRI score of
the building [%]

This score has no subcategories Considered as a
single functional
category

Every category of the results analyses “the smartest” in buildings in different ways.
Domains and Impact Factors have subcategories against the total SRI score, an independent
score with no subcategories. The subcategories or “services”—in the terminology of
the SRI methodology—have different service levels. The purpose of service levels is
to find the one that describes how energy systems are managed and controlled in the
building. Every service level is described in 3–5 levels (depending on the service). The
categories follow one another from the simplest to the most complex. The total number of
all service levels is 231, e.g., the first smart service is heating (Code H-1a). The methodology
proposes 5 possible levels [52], namely “0-No automatic control”, “1-Central automatic
control (e.g., a central thermostat)”, “2-Individual room control (e.g., thermostatic valves
or an electronic controller)”, “3-Individual room control with communication between
controllers and to BACS” (Building Automation and Control System), and “4-Individual
room control with communication and occupancy detection”. For example, “level 0”—“no
automatic control was labelled” H1A1, “level 1”—“Central automatic control (e.g., a central
thermostat)” received the name H1A2, etc. (the complete conversion table is provided in
the Appendix A).

The first step of data preparation was assigning every service level with an index.
A conversion table was prepared (see Tables A1–A9 in Appendix A) that translates the
individual service levels into a shorter form that can be used in the prediction models.
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The second step was to gather all the data from the experimental work in a large
spreadsheet, as presented in Table 1. All 223 different case study buildings were listed in
the leftmost column. The top row lists all 231 service levels (with the assigned indexes). The
experimental evaluation was performed as follows: when a level described the situation in
the building perfectly, it scored 1. If the level did not describe the situation, it was assigned
a 0. If the building did not have a particular system installed, the Domain received a score
of 2 (e.g., if a building did not have the option of charging electric vehicles, then all the
levels received the score 2). The principle of how all the buildings’ evaluation data were
prepared is presented in Table 3.

Table 3. The raw data Table containing the case study buildings and service levels [52] (parameters).

Case study buildings/
service level

“Heat emission
control

–
no emission control”

“Heat emission control—
Central automatic control

(e.g., a central thermostat)”

“Monitoring and
control

–
A single platform that allows

automated control &
coordination between TBS +
optimisation of energy flow

based on occupancy, weather,
and grid signals”

LABEL H1A1—first input H1A2 MC304—last input

Case study building 1 0 1 0
Case study building 2 0 0 0
Case study building 3 0 1 1

Case study building 223 1 0 1

The next step was to develop models for individual Domains with GP.

3. Modelling
This section presents the modelling of the Domains in Section 3.1, followed by the

modelling Impact Factors in Section 3.2 and the total SRI building score in Section 3.3.

3.1. Modelling Domains Using GP

The decision to select GP as the Domain modelling method was based on our positive
prior experience in various engineering fields. These included solving general engineering
problems [53,54] and energy optimisation problems [55–57], where it has provided accurate
and transparent results consistently. The generated mathematical models can be inspected,
analysed, and interpreted directly. The discrete input data needed for Domain modelling
(0, 1, 2) were especially well-suited for GP, which excels at handling symbolic, rule-based
relationships. After the Domain scores were determined, linear regression (LR) was selected
for modelling the Impact Factors and total SRI because of its efficiency, straightforwardness,
and clarity. Our chosen approach strikes a balanced compromise between accuracy, effi-
ciency, and practical usability. Although more sophisticated approaches, such as random
forests or SVMs, might provide marginally improved predictive precision, they generally
compromise on interpretability and demand more computational power. Our chosen
approach strikes a balanced compromise between accuracy on a larger scale, efficiency, and
practical usability.

GP mimics the processes of natural selection. If the organism is successful in its
quest for survival, its descendants will inherit its properties. The end goal of GP is to find
the perfect model that describes our observed phenomenon. The fundamental working
principle of GP is presented in the following Equation (1) [54]:
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“t = 0
create staring population P(t)

evaluate starting population P(t)
continue

change P(t) -> P(t + 1)
evaluate P(t + 1)

t = t + 1”
These steps are repeated until the stopping criterion is met.

(1)

By crossing organisms, we are creating populations that become better and better
at fitting in by solving a technical problem, i.e., developing an individual equation that
represents a model that forecasts results—in our case the Domain scores.

The following basic mathematical operations were used to initiate different combina-
tions in genes [53]:

• “addition (+)”;
• “subtraction (–)”;
• “multiplication (*)”;
• “and division (/)”.

The computer program for generating mathematical models was written in the pro-
gramming language AutoLisp inside the AutoCAD CAD/CAM systems (AutoCAD Release
14, Autodesk, San Rafael, CA, USA) [53]. The generated results were saved in multiple.txt
files, with a set for each Domain. The batch was selected from the dataset with the lowest
relative deviation from the experimental data between the best model of the individual
generation and the experimental raw data results. The following evolutionary settings
were used for the GP system:

• “tournament size for selection operation 6.0”.
• “maximal permissible depth in the creation of the population: 30”.
• “maximal permissible depth after the operation of crossover: 20”.
• “reproduction probability [%]: 0.7”.
• “crossover probability [%]: 0.2”.
• “number of organisms: 500”.
• “tournament selection method with tournament size: 7”.
• “number of independent runs: 50” [54].

A total of 50 generations of models were developed for every Domain. For the winning
one, we selected the last generation, since it was the most accurate. The winning models by
individual Domains are presented in Equations (2)–(8). The models predicted the Domain
scores with a relative deviation that is stated below. Variables (M33, H2D5, H2B3, etc.)
represent the smart service level of an evaluated building. The conversion Table of indexes
and services is presented in Appendix A, Tables A1–A9.

Each index used in the model (2, 3, 4, 5, 6, 7, and 8) represents a specific smart service
within the building. A corresponding conversion Table, listing all the smart services and
their assigned indexes, is provided in the Appendix A. The inputs in variables are discrete
values (0, 1, or 2), as described in the previous section. If the smart level is presented, the
parameter receives a value of 1; if it is not, it receives a value of 0. If the smart service can-not
be evaluated in the building (if the building does not have a specific system, for example),
the parameter receives a value of 2. The Domain scores are calculated directly by inserting
discrete values, as described earlier. The equation form of the genetic programming models
is presented in Appendix B.
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3.1.1. Score Prediction Model for the Heating Domain

Generation: 50 (from 50)
Equation (2) presents the model that predicted the scores for the heating Domain. The

relative deviation from the experimental scores was 2.26%.

Domain Heating =
(+ (+ (+ (− (* (− H33 H2D5) H2B3) (− (+ H1C2 H31) (* (− 7.16973 (+ 5.81691 H2D1)) (* (− (− (+ (− H33 H2D2)
H2B3) (− (+ H1C2 (+ (* H2D5 H1A5) H31)) (* (− 7.16973 (+ 5.81691 H2D1)) 7.16973))) (− (+ (* (− (+ (−
H33 H2D2) H2B3) (− (+ H1C2 H31) (* (− 7.16973 (+ 5.81691 H2D1)) H2D2))) (− H33 H1B2)) H44) (−

(* H2D5 H2B3) (− (+ H1C2 H31) (− (+ H33 (+ H1C2 H2B3)) (− (+ (+ (* H2D5 H33) (+ H1A5 (+ (*
H2B1 H1A4) H33))) (+ H1A5 (+ (+ (% H2B1 H1A5) H1A4) H31))) (* (% (+ (− H33 9.66955) (− (* H2D5 H2B3)
(− (+ H1C2 (− (+ H1C2 (− (* (% H2D2 (+ (* H2B1 H2D2) H2D1)) (+ H1C2 (+ (* H2D5 H1A5) H31))) H31))
(* (+ (* H2B1 H1A4) H2D1) H31))) H2D2))) (+ (− (+ H1C2 (− H31 H31)) (* (% H2D2 H2D1) H2D2)) H2D1))
H2D1))))))) H35)))) (+ (− (* H2D5 H2B3) (− (+ H1C2 (− (+ H1C2 H31) (* (− 7.16973 (+ (+ 9.66955 H2B1) (+
(% H2B1 H1A4) H2D1))) H31))) (* (− (− (+ (− H33 H2D2) H2B3) (− (+ H1C2 H31) (* (− 7.16973 (+
5.81691 H2D1)) 7.16973))) (− (+ (* (% H1F1 H2D2) (− H33 H1B2)) H44) (− (* H2D5 H2B3) (− (+ H1C2 H31)
(− (+ (* (% H2D2 (+ (* H2B1 H2D2) H2D1)) H33) (+ (% H2B1 H1A5) H2B3)) (− (+ (+ H33 (+ H1A5 (+
(* H2B1 H1A4) H33))) (+ H1A5 (+ (* H2B1 H1A4) H31))) (* (% (+ 9.66955 (− (* H2D5 H2B3) (− (% H2D2 (+
(* H44 H2D2) H31)) H2D2))) (+ H1C2 H2D1)) H2D1))))))) H1A4))) (+ 9.66955 (− (* H2D5 H2B3) (−
(+ H1C2 H31) (* (% H2D2 (+ (* H2B1 H2D2) H2D1)) 5.46992)))))) H2B2) (+ 5.81691 9.83727)))

(2)

3.1.2. Score Prediction Model for the Domestic Hot Water Domain

Generation: 50 (from 50)
Equation (3) presents the model that predicted the domestic hot water Domain scores.

The relative deviation from the experimental scores was 2.53%.

Domain Domestic hot water =
(* (− (+ (% (+ (% (% DHW1D1 DHW2B5) DHW1A4) (+ DHW1B1 DHW2B5)) DHW1A4) (+

(% −3.14511 DHW1B1) DHW1D3)) (− (% −3.14511 (* (% DHW1D1 DHW1A2) DHW1B3)) (− (+
DHW2B1 9.18609) DHW32))) (* (% (* (− DHW1D3 (− (% −3.14511 DHW1B3) (− (+ DHW2B1 9.18609)
DHW32))) (* (% (% (% (− (* (% DHW1D1 DHW1A2) DHW1D1) DHW1A4) (% (+ DHW31 DHW2B2) DHW34))
(+ DHW2B1 DHW1D3)) (* (* DHW1A4 DHW1B1) (+ DHW31 (* (% (% DHW34 (% −3.14511 DHW1D3))
(* (* DHW1A4 DHW1B1) (+ DHW31 (+ DHW2B1 DHW2B5)))) DHW2B5)))) DHW1D3))
(* (* DHW1A4 DHW1B1) (+ DHW31 (− (+ DHW2B1 9.18609) DHW2B5)))) 3.21647)))

(3)

3.1.3. Score Prediction Model for the Cooling Domain

Generation: 50 (from 50)
Equation (4) presents the model that predicted the scores for the cooling Domain. The

relative deviation from the experimental scores was 2.97%.

Domain Cooling =
(* (− (+ (− (+ C1B2 C2A1) 7.66353) (+ (* (* C1A4 (% (* (* C1A4 C1F1) C34) (+ (− C1F1 C43) (* C1A4

(+ 7.66353 C1F1))))) C43) C1F3)) (− C1D3 C1D1)) (− (+ (− (− (+ (− (+ (− C2A1 7.66353) (+ C43 (−
C1F1 C1F3))) (− (* (+ C43 (− C2A1 C1F1)) C1D3) (+ C1D5 (% (* (+ (− (+ (− (% (* (* C1A4 C1F1) C34)
(+ (− C1F1 C43) (* C1A4 (+ 7.66353 C2A1)))) 7.66353) (+ (+ C43 (+ C43 (− C1F1 C43))) (− C1F1 C1F3))) (−
C1D3 (+ C1D5 (% (* (* C1A4 (+ (− C2A1 7.66353) (+ C43 C1F1))) C34) 7.66353)))) (+ C43 (− C2A1 C1F1))) (+
C43 C34)) 7.66353)))) (+ (− C1F1 C43) (− C1F1 C1F3))) (− C1D3 (+ C1D5 (% (+ (− C1F1 7.66353) (+ C43 (% (+
(− C1F1 7.66353) (+ C43 C34)) (+ (− C1F1 C43) (* C1A4 (+ 7.66353 (+ C43 (+ C43 C34)))))))) (+ (− C1F1 C43)
(* C1A4 (+ 7.66353 (+ C43 (+ C43 C1F3))))))))) (− C1D3 (+ C1D5 (% (* (+ C1D5 C1F1) C34) 7.66353))))
(+ C43 (− C1F1 C1F3))) (− C1F1 C31))))

(4)
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3.1.4. Score Prediction Model for the Ventilation Domain

Generation: 50 (from 50)
Equation (5) presents the model that predicted the scores for the ventilation Domain.

The relative deviation from the experimental scores was 1.50%.

Domain Ventilation =
(+ (+ (+ (+ (* (* (% (− 8.4716 (% (− V31 −5.25128) (% (* (% V2C2 V1C5) V2D2) (+ V1C3 V1A3)))) V62) V33)

V64) (− 8.4716 (% (+ (* (− (* (% V64 V33) (− V31 (% (* (% V2C2 V1C5) V2D2) (* (* (% (− 8.4716 (% (* (− V2C3
(− V1C2 V1C2)) (% (* (% V2C2 V1C5) V2D2) (+ V1C3 −5.25128))) (% (* (% V2C2 V1C5) V2D2) (+
V1C3 V1A3)))) V62) V33) V1C1)))) (% V1A2 (+ (* (− (* (− (* V61 (+ V1C3 (% (* (% V2C2 V1C5) V2D2) (+
V1C3 V2C3)))) (− V1C2 V61)) (− 8.4716 (% (− V31 (% (* (− 8.4716 (% (* (− (* V61 (+ V1C3 V2C3)) (−
V1C2 V1C2)) (% (* (% V2C2 V1C5) V2D2) −5.25128)) V1C5)) V2D2) (+ V1C3 −5.25128))) (% (* (% V2C2 V1C5)
V2D2) (+ V1C3 V2C3))))) V1C2) V1A5) V1A5))) V2D3) (* (% (− 8.4716 (− 8.4716 (% (− V31 −5.25128) (% (* (%
V2C2 V1C5) V2D2) (+ V1C3 V1A3))))) V62) −5.25128)) (% (% (− (% V64 V1C1) (% V1A2 (% V1A2 (+ (* (* (%
(− 8.4716 (% (* (− V2C3 (− V1C2 V1C2)) (% (* (% V2C2 V1C5) V2D2) (+ V1C3 −5.25128))) (% (* (% V2C2 (+
V1C3 V1C5)) V2D2) (+ V1C3 V1A3)))) V62) V33) V1A5) V2C1)))) (% (% V2D1 (+ V1A2 (− 6.96117 V2D1)))
V2D2)) V1C4)))) (− (+ V64 (− 8.4716 (% (− V31 (% (* (% V2C2 V1C5) V2D2) (+ V1C3 −5.25128))) (% (*
(% V2C2 V1C5) V2D2) (− 8.4716 (% (+ (* V1A5 V2D3) −5.25128) (% (% (* (+ V34 V1A3) (% V64 V2D2))
(% V2C2 (+ V64 (* (+ (* V1A5 V2D3) 1.53678) V2D2)))) 6.96117))))))) V61)) (− 6.96117 V33)) V1C2))

(5)

3.1.5. Score Prediction Model for the Lighting Domain

Generation: 50 (from 50)
Equation (6) presents the model that predicted the scores for the lighting Domain. The

relative deviation from the experimental scores was 1.36%.
Domain Lighting =
(* (* (% (− L25 L1A3) (* (− (− (+ L21 (* (* (% (+ (+ L23 L23) L1A3) L1A1) 3.27069) (− L25 L1A4))) L24) L22)
L1A1)) (− (− L25 L22) (+ (− (* (+ (− (− L25 L25) L23) (+ (+ L23 L23) L22)) −0.160899) (* (* (% (− L25 L1A3)
L1A1) (+ L23 3.27069)) (% L24 (+ L1A4 L21)))) (− (* (+ (+ L23 L23) L22) −0.160899) (* (% (% (+ L23 L1A3)
(− L25 L1A3)) L1A1) (− (+ (+ (% L24 (+ L1A4 L1A4)) L1A2) (% L22 L22)) (+ (+ L21 (− (* (+ (− L25 L23) L22)
(− L22 (+ (− L25 L21) (− (* (+ (+ L23 L23) L22) −0.160899) −0.160899)))) (* (* (% (+ (+ L23 L23) L1A3) L1A1)
3.27069) (% L24 (+ L1A4 L21))))) (− L25 3.27069)))))))) (+ (% (* 3.27069 (+ (* (% L24 (+ L1A4 L1A3)) (* L1A3 (−
(+ L1A1 (% (+ L23 L1A3) L22)) (* (− (− (+ L21 (− (* (+ (+ (* L1A3 (− L1A2 L1A2)) (% (% L1A2 L22) L23)) L22)
(− L22 (+ (% (% L1A2 L22) L21) (− (* (+ (+ L23 L23) L22) −0.160899) −0.160899)))) (* (* (% (+ (+ L23 L23) L1A3)
L1A1) 3.27069) (% L24 (+ L1A4 L1A4))))) L24) L22) L1A2)))) (% (% L1A2 L22) L24))) (+ (% L24 (+ L1A4 L1A4))
L1A2)) (% (+ L23 L22) L1A3))))

(6)

3.1.6. Score Prediction Model for the Dynamic Building Envelope (DBE) Domain

Generation: 50 (from 50)
Equation (7) presents the model that predicted the dynamic building envelope Domain

scores. The relative deviation from the experimental scores was 0.92%.

Domain Dynamic building envelope =
(setq ideal ‘(+ (* (− DE41 (− 5.87984 (* DE11 DE22))) (− (+ DE44 (+ DE44 (− DE15 (+ (+ (+ (− DE42 DE44)

(* (% DE22 DE11) (% DE24 DE44))) DE13) DE23)))) (+ (+ (− DE42 DE44) (* (% DE22 DE11) (% (− (+ (−
DE42 DE13) (+ (− DE22 DE13) (* (% (+ (− DE42 DE13) (+ (− (* (% DE22 DE11) (% (− DE22 DE24) 5.87984))
(* DE11 DE13)) (* (% (* (− DE43 DE12) (% DE13 (* (− DE41 (− 5.87984 (* DE11 DE22))) (− (+ DE44 (+ DE44
(− DE15 (+ (+ (− DE42 DE44) DE13) DE23)))) (+ (+ DE44 DE14) (+ (+ (* DE11 (− DE22 DE13)) (+ (−
DE22 DE13) DE22)) DE22)))))) (* DE11 DE11)) (− DE42 DE22)))) DE11) (+ (− DE42 DE44) DE22)))) DE24)
DE14))) (+ (+ DE13 (+ (− DE22 DE13) (* (% (* (− DE43 DE12) DE22) DE11) (+ (− DE22 (+ (− DE22 DE13)
DE44)) DE22)))) DE14)))) (+ (+ (− (+ (− DE42 DE13) (+ (− DE22 DE13) (* (% (+ (− DE42 DE13) (+ (−
DE22 DE13) (* (+ (− DE42 DE44) (* (% DE22 DE11) (% DE24 DE11))) (− DE42 DE22)))) DE11) (+ (−
DE42 DE44) DE22)))) DE13) DE22) (− DE42 DE42))))

(7)
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3.1.7. Score Prediction Model for the Electricity Domain

Generation: 50 (from 50)
Equation (8) presents the model that predicted the scores for the electricity Domain.

The relative deviation from the experimental scores was 2.62%.

Domain Electricity =
(− (% EL35 (% (% (% (− EL124 EL125) (* EL122 −7.29756))
(− EL82 (% EL31 EL124))) (% (− EL124 −7.29756)
(− EL82 (% EL31 EL114))))) (− (− (% (% (% (− (− EL124 (% (* EL124 EL51) (% (% (− EL124 EL125) −7.29756)
(− EL82 (% EL31 EL124))))) EL125) (* EL122 (* EL122 −7.29756))) (− EL82 (% EL31 − 7.29756))) (− EL82
(% EL31 EL125))) 8.69097) (− EL81 (− (+ (* EL122 EL34) (* EL122 EL41)) (* EL82 (− (− EL35 EL33) (%
(* EL124 EL51) (% (% (− EL124 EL125) −7.29756) (− EL82 (% EL31 EL112))))))))))

(8)

3.2. Modelling Impact Factors Using LR

LR was used for the prediction models of the Impact Factors instead of GP. Linear
regression (LR) was chosen for modelling the Impact Factors and total SRI due to its speed,
simplicity, and transparency, making it well aligned with the goal of developing a practical
evaluation tool. Based on initial tests with LR, the developed models proved reliable, with
little deviation from experimental data (the regression statistic is described in the Results
section). The process of modelling the Impact Factors was performed in Microsoft Excel,
ensuring clarity and reproducibility.

The standard equation that describes the LR is as follows [57]:

a = β0 + β1 X1 + β2 X2 + . . . + βn Xn + ε (9)

where:

• a is a dependent variable (the Impact Factor);
• X1, X2, are the independent variables;
• β0, β1, . . ., βn are the coefficients (in our case, Domain scores, modelled with GP, as

described in Section 3.1.1 to Section 3.1.7);
• ε represents the error term or the intercept.
• In our case, the standard equation for our models is as follows:
a = β1(Domain heating) X1 + β2(Domain domestic hot water) X2 + β3(Domain cooling)X3

+ β4(Domain ventilation) X4 + β5(Domain lighting) X5

+ β6(Domain dynamic building envelope) X6 + β7(Domain electricity) X7

+ β 8(Domain EV charging) X8 + β9(Domain monitoring and control) X9 + ε

(10)

Based on the general Equation (10), the following prediction models for different
Impact Factors are as follows.

Equation (11) represents the model for the prediction of the energy efficiency Impact
Factor, as follows:

a1(Impact Factor Energy efficiency) = β1 0.50807 + β2 0.04754 + β3 0.0753 − β 4 0.0473
+ β5 0.0652 + β6 0.0483 + β7 0.0061 + β8 0.0057 + β9 0.0452 + 22.2267

(11)

Equation (12) represents the model for the prediction of the energy and storage impact
factor, as follows:

a2(Impact Factor Energy and storage) = β1 0.0326 + β2 0.95 − β3 0.0041 − β4 0.025
+ β5 0.0006 − β60.032 − β7 0.0004 + β8 0.0061 + β9 0.1558−0.3229

(12)
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Equation (13) represents the model for the prediction of the comfort Impact Factor, as
follows:

a3(Impact Factor Comfort) = β1 0.1863 − β2 0.0062 + β3 0.1353 + β4 0.2641 + β5 0.1673
+ β6 0.0856−β7 0.0366 + β8 0.00123 + β9 0.0946 + 20.2056

(13)

Equation (14) represents the model for the prediction of the convenience Impact Factor,
as follows:
a4(Impact Factor Convenience) = β1 0.1650 + β2 0.0010+ β3 0.089 + β4 0.1379
+ β5 0.07863 + β6 0.1065 + β7 0.0049 + β8 0.0222 + β9 0.1882 + 13.3274

(14)

Equation (15) represents the model for the prediction of the health, well-being, and
accessibility Impact Factor, as follows:

a5(Impact Factor Health, well-being, accessibility) = β1 0.2561 − β2 0.0224 + β3 0.0976
+ β4 0.1930 + β5 0.0957+ β6 0.10625 − β7 0.0163 − β8 0.0411 + β9 0.0976 + 9.0174

(15)

Equation (16) represents the model for prediction of maintenance and fault prediction
Impact Factor, as follows:

a6(Impact Factor Maintenance and fault prediction) = β1 0.64340 + β2 0.0349 + β3 0.0276
+ β4 0.0739 + β5 − 0.0305 + β6 0.0648 + β7 0.0095 − β8 0.0103 + β9 0.3043 − 2.6152

(16)

Equation (17) represents the model for the prediction of the information for the occu-
pants Impact Factor, as follows:

a7(Impact Factor Information for the occupants) = β1 0.1858 + β2 0.0598 + β3 0.0926
− β4 0.0500 − β5 0.0106 + β6 0.08007 + β7 0.19854 − β8 0.0089 + β9 0.2087 + 10.9335

(17)

3.3. Modelling the Total SRI Score of the Building Using LR

All the Domains and all the Impact Factors impact the total SRI score of the building.
Therefore, the standard equation for our model is as follows:

γ = a1(Impact Factor Energy efficiency) X1 +a2(Impact Factor Energy and storage) X2

+ a3(Impact Factor Comfort) X3 + a4(Impact Factor Convenience) X4

+ a5(Impact Factor Health, well-being, accessibility) X5

+ a6(Impact Factor Maintenance and fault prediction) X6

+ a7(Impact Factor Information for the occupants) X7 + β 1(domain heating) X8

+ β 2(domain domestic hot water) X9 + β 3(Domain cooling) X10 + β 4(Domain ventilation) X11

+ β 5(Domain lighting) X12 + β 6(Domain dynamic building envelope) X13

+ β7(Domain electricity) X14 + β 8(Domain EV charging) X15

+ β 9(Domain monitoring and control) X16 + ε

(18)

where:

• γ is a dependent variable (the total SRI score of the building);
• X1, X2, are the independent variables;
• a1, a2 are the Impact Factors (using the calculation described in the previous Section 3.2

with LR);
• β0, β1, . . ., βn are the domains (using the calculation described in Section 3.1.1 to 3.1.7

with GP);
• ε represents the error term or the intercept.
• Equation (19) represents the model for the prediction of the total SRI score of the

building, as follows:
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γ = a1(Impact factor Energy efficiency) 0.16614 + a2(Impact factor Energy and storage) 0.32764
+a3(Impact factor Comfort) 0.07882 + a4(Impact factor Convenience) 0.08521
+ a5(Impact factor Health, well-being, accessibility) 0.08178
+ a6(Impact factor Maintenance and fault prediction) 0.16470
+ a7(Impact factor Information for the occupants) 0.08431 − β 1(Domain heating) 0.00110
+ β2(Domain domestic hot water) 0.00229 + β3(Domain cooling) 0.00075
+ β4(Domain ventilation) 0.003169 − β5(Domain lighting) 0.00025
− β6(Domain dynamic building envelope) 0.00254 − β7(Domain electricity) 0.001393
− β8(Domain EV charging) 0.000905 + β9(Domain monitoring and control) 0.00669 + 0.125126

(19)

4. Results
This Section presents the results in three sections. The results for the Domain modelling

are given in Section 4.1. The results for the Impact Factors are given in Section 4.2, and the
results for the total SRI score of the building are presented in Section 4.3.

4.1. Results for Domain Modelling

In total, 50 generations of models were generated with GP for each Domain. The last
generation (50th) was the most accurate, as the relative deviation from the experimental
data was the lowest. Therefore, the 50th generation was selected as the winning one for
each Domain. Figure 2 represents the relative deviations in percentages. The relative
deviations ranged from 0.92% for the lowest Domain (the dynamic building envelope
Domain) to 2.97% for the highest (the cooling Domain).
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4.2. Results for Impact Factor Modelling

Using the developed models in Section 3.2, the Impact Factors for all 223 case studies
were calculated and are represented graphically in the multi-panel Figure 3. The regression
statistic for the Impact Factors and the total SRI score is stated in Table 4.

Table 4. Summary Table for key linear regression metrics.

Metric Multiple R R Square Adjusted R
Square

Standard Error Observations

Energy efficiency 0.874770679472713 0.765223741665151 0.755303618073538 4.01329710741988 223

Energy flexibility
and storage

0.760022415639552 0.577634072274581 0.559787624624211 2.39055830607999 223

Comfort 0.867590952493899 0.752714060849271 0.742265359195015 5.33730508930646 223

Convenience 0.897960874717157 0.806333732522801 0.798150650798412 3.55794238372057 223
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Table 4. Cont.

Metric Multiple R R Square Adjusted R
Square

Standard Error Observations

Health, well-being,
and accessibility

0.809056679035984 0.654572709892735 0.639977190592428 5.571706763798932 223

Maintenance and
fault prediction

0.850221379215518 0.722876393675137 0.711166945520566 5.94043101238427 223

Information to
the occupants

0.786961162359672 0.619307871062485 0.603222288149632 6.09398014758909 223

Total SRI score of
the building

0.994508935908173 0.989048023601207 0.988213587304157 0.685375906363476 223
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4.3. Validation of the GP + LR Models

A supplementary validation experiment was carried out utilising a fresh, independent
dataset consisting of 20 new buildings. The aim of this experiment was to evaluate the
generalisability and applicability of the models in real-world conditions. The distribution
of the case studies by purpose of use was comparable to that used in the model training
phase (presented in Figure 1), ensuring consistency in the sample characteristics. None of
these buildings were part of the training or model development process and were assessed
using both the official SRI Excel-based calculation tool (as the reference method) and the
GP + LR models (as the predictive method). For each building, predictions were generated
for Domain-level scores, Impact Factors, and the total SRI score.

The performance of the models was tested with the following five most commonly
used statistical metrics [58,59]:

1. Mean absolute error (MAE);
2. Root mean squared error (RMSE);
3. Mean bias error (MBE);
4. Coefficient of determination (R2);
5. Pearson’s correlation coefficient (r).

The results of the experiment are presented in Table 5, and they demonstrate the model’s
ability to generalise across unseen data, building typologies, and system configurations.

Table 5. Statistical analysis of the modelling performance for an external validation set of 20 buildings.

1. Mean
Absolute

Error (MAE)

2. Root Mean
Squared

Error (RMSE)

3. Mean Bias
Error (MBE)

4. R2

(Coefficient of
Determination)

5. Pearson
Correlation (r)

DOMAINS

1. Heating 1.30 1.41 0.09 0.98 0.99
2. Domestic hot water 3.00 3.24 −2.86 0.97 0.99

3. Cooling 0.97 1.23 0.45 0.98 0.99
4. Ventilation 1.24 1.69 −0.99 0.83 0.91

5. Lighting 0.20 0.89 −0.20 1.00 1.00
6. Dynamic building

envelope
0.40 0.71 −0.11 1.00 1.00

7. Electricity 1.27 2.39 −0.18 0.99 1.00

IMPACT FACTORS
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Table 5. Cont.

1. Mean
Absolute

Error (MAE)

2. Root Mean
Squared

Error (RMSE)

3. Mean Bias
Error (MBE)

4. R2

(Coefficient of
Determination)

5. Pearson
Correlation (r)

1. Energy efficiency 3.60 4.52 0.87 0.59 0.77
2. Energy flexibility and

storage
1,94 2.25 0.16 0.84 0.92

3. Comfort 3.56 4.89 −2.28 0.42 0.65
4. Convenience 6.98 8.80 −6.06 0.54 0.73

5. Health, well-being, and
accessibility

3.69 4.68 0.03 0.42 0.65

6. Maintenance and fault
prediction

8.98 10.69 −8.16 0.42 0.65

7. Information to
occupants

6.86 8.21 −0.41 0.39 0.63

TOTAL SRI SCORE 4.45 5.5 −3.0 0.48 0.69

The graphical results of this validation experiment illustrating the modelled versus
experimental values for each Domain, Impact Factor, and the total SRI score are presented
in the multi-panel Figures 4 and 5 on the following two pages. The figures provide a
visual interpretation of the model’s performance across the 20 tested external buildings.
A detailed discussion is provided in Section 5.3. Validation of the Developed Models.
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5. Discussion
The presented paper describes the creation of alternative, simplified, and sufficiently

precise SRI calculation models based on GP and LR. The methods used in the individual
steps are summarised in Table 6.

Table 6. Explanation of prediction models and used methods.

1. Domains 2. Impact Factors 3. Total SRI Score of
the Building

Calculation method GP LR LR

The necessary
inputs for models

Smart services of the building
(0,1,2, as described in

Section 3.1)

Results of
the Domains

Results of
the Domains and

Impact Factors

GP was suitable for Domain modelling, as the inputs were discrete numbers that
describe the state of whether a smart service exists in the examined building (0—the ob-
served smart service is absent, 1—the observed service is present, 2—the service cannot be
evaluated because the building does not have such a system). By obtaining Domain scores,
we were able to use LR to predict the building’s Impact Factors and overall SRI scores.

5.1. Modelling Domains

As is evident from Figure 2, the relative deviation from the experimental Domain
scores is relatively low, ranging between 0.92% (the dynamic building envelope Domain)
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to 2.97% (the cooling Domain), indicating high model accuracy. The small difference shows
that the developed models captured the main patterns in the data well and can reproduce
the results reliably. The strong agreement between the modelled Domain scores and experi-
mental Domain scores confirms the robustness of the proposed approach, demonstrating
its suitability for predictive applications. Nevertheless, the relative deviation from the
experimental data for EV charging and monitoring and control Domains is not stated in
Figure 2, since the models for these two Domains could not be developed. The details are
explained in the paragraphs addressing the limitations and challenges of this study.

5.2. Modelling Impact Factors

The linear regression statistics for modelling the Impact Factors presented in Table 4
demonstrate the generally strong model performance across most Impact Factors, with
R2 values ranging from 0.58 to 0.99. The highest explanatory power was observed in
the total SRI score (R2 = 0.99), indicating excellent alignment between predicted and
reference values at the aggregated level. Most Impact Factors, like energy efficiency
(R2 = 0.76), convenience (R2 = 0.81), and comfort (R2 = 0.75) demonstrated high levels of
predictive accuracy.

Impact Factors with lower R2 values were observed in health, well-being, and ac-
cessibility (R2 = 0.65), maintenance and fault prediction (R2 = 0.72), and information to
the occupants (R2 = 0.62). This reduced predictive performance can be attributed to the
qualitative and often subjective nature of these categories. Unlike Domains that evaluate
clearly defined technical features (e.g., heating or lighting systems), these Impact Factors
depend more heavily on user experience, communication features, accessibility standards,
and the presence of advanced automation systems, such as BMS or user interaction plat-
forms. In many cases, such features are not implemented or documented across buildings
consistently, particularly in the South-East European region, where system standardisa-
tion and data availability may be limited. As a result, the training data lack the diversity
and clarity needed to build stronger predictive models for these factors. The variability
in interpretation or recording of these services during the SRI experimental evaluations
may have lowered the power of the model’s ability to capture consistent patterns. These
limitations suggest that improved documentation and richer datasets with standardised
descriptions of non-technical smart services are essential to enhance model reliability in
these more subjective categories.

The lowest R2 value (0.577) was found in the energy flexibility and storage Impact
Factor. This Domain primarily evaluates smart hardware and system integrations that
support thermal and electrical energy storage, including advanced technologies, such
as fourth-generation district heating networks. These solutions are promoted by the
SRI methodology actively to support future-ready and low-carbon energy infrastructure.
However, these technologies are largely absent in the case study buildings from the South-
East European region, which provided the basis for the training dataset. As a result,
the model had limited exposure to relevant examples, reducing its ability to explain the
variance in this Domain accurately. The relatively low R2 value should, therefore, be
interpreted not as a sign of model weakness or overfitting, but rather as a reflection of the
sparse data related to this advanced system type in the regional context.

The fluctuations in Impact Factor scores can likewise be attributed to the reality that
each Impact Factor is calculated from Domain scores, thereby adding extra intricacy and
the likelihood of discrepancies.
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5.3. Validation of the Developed Models

As mentioned in Section 4.3, to assess the generalisability of the developed models,
the models were tested with a new dataset of 20 case study buildings previously unseen in
the training. As evident from Table 5, the statistical performance of the model was strong
on the Domain level. The values for R2 were above 0.97 for almost all Domains, except for
ventilation (R2 = 0.83). Also, the Pearson correlation coefficients were above 0.90 for nearly
all the Domains. These results indicate that the GP and LR models are capable of estimating
Domain scores accurately, even when applied to buildings outside of the original training
set. Particularly high accuracy was observed in several Domains, such as lighting and the
dynamic building envelope, where the correlation reached 1.00, and the error values (MAE
and RMSE) were minimal.

At the Impact Factor level, the performance varied more significantly. The R2 values
for energy efficiency (R2 = 0.59) and energy flexibility and storage (R2 = 0.84) indicate that
the predictive accuracy of these Impact Factors is notably influenced by the specific configu-
rations of heating, cooling, and domestic hot water systems in the evaluated buildings. The
variability in system setups and the presence or absence of advanced energy management
features likely contributed to the observed differences in R2 values, suggesting that the
model’s performance in these categories is closely tied to the particular combinations of
these systems.

The lower R2 and Pearson correlation (r) values observed for several Impact Factors,
including comfort (R2 = 0.42, r = 0.65), convenience (R2 = 0.54, r = 0.73), health, well-being,
and accessibility (R2 = 0.42, r = 0.65), maintenance and fault prediction (R2 = 0.42, r = 0.65),
and information to occupants (R2 = 0.39, r = 0.63) are closely tied to the presence of advanced
building management systems (BMSs) and automated control functions. The external
dataset of 20 buildings included a limited number of buildings equipped with highly
advanced BMS functions, such as predictive maintenance and advanced energy monitoring.
This likely contributed to the weaker statistical performance for these Impact Factors.

The total SRI score prediction across all buildings yielded an R2 of 0.48 and a Pearson
correlation of 0.69, indicating moderate alignment between the predicted and reference
values. The mean absolute error of 4.45 and mean bias error of −3.0 suggest that while
the model may underpredict slightly on average, the estimates are reasonably close to
the official results generated using the SRI Excel tool. These findings confirm that the
model has practical applicability in real-world conditions, particularly for Domain-level
estimations, while also highlighting areas where further training data and refinement may
improve robustness at the Impact Factor and total score level.

5.4. Limitations and Challenges

However, two out of the nine investigated Domains could not be modelled effectively
using the method of GP. These two Domains are EV charging and monitoring and control.
The primary reason for this limitation was the inconsistent experimental data used to
develop the model. Despite utilising a large database of 223 case study buildings, the
data exhibited a high degree of randomness, preventing the identification of meaningful
patterns. The variability within these datasets was significantly higher than in the other
Domains, leading to unstable model predictions. Therefore, no reliable correlation could be
established between the input parameters and the expected outcomes. The unpredictability
in the data suggests the presence of uncontrolled influences or measurement inconsistencies.
In contrast, the remaining seven Domains exhibited structured and consistent data, allowing
for high-quality modelling. This limitation could likely be resolved with a larger and more
comprehensive dataset.
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The absence of the electric vehicle charging and monitoring and control Domains did
not impact the modeling of other Domains, as each Domain was treated independently in
the model. Inputs for these two Domains were included in the model structure of LR for
the Impact Factor calculations (LR model No. 18), suggesting that with a more consistent
dataset, they could potentially be modelled effectively in future iterations.

5.5. Scalability and Transferability of the Developed Models Across Europe

A dataset of 223 buildings from the South-East European region was leveraged to
generate the GP models for Domains. In the original SRI methodology, there are several
regions that the evaluator can choose from (“North Europe”, “West Europe”, “South
Europe”, “South-West Europe”, “North-East Europe”, and “South-East Europe”). A similar
case study building dataset would have to be prepared if the proposed methods were to be
used in another region. Considering this, it must be ensured that the cases are selected in a
balanced manner, as this affects the accuracy of the final model. Based on our study, it is
clear that the current model reflects the building system configurations common to that
region, including typical HVAC control setups. Regional differences in technical systems
can influence the SRI outcomes. However, once the model structure and methodology
have been defined (as in our case) it becomes relatively easy to train new models for other
regions using localised datasets.

The limited applicability of SRI models, for example, in colder regions, was highlighted
in one of the first studies [20], as the current SRI framework does not fully reflect some
cold-climate-specific technologies, such as advanced district heating systems. The study
also pointed out challenges related to the triage process and the comparability of SRI scores
across regions. Also, the study [37] noted that regional differences in technical systems can
influence the SRI outcomes. These insights further reinforce the need to adapt SRI tools (and
models based on them) to local building practices when aiming for EU-wide applicability.

5.6. Reduction in the Needed Inputs for the Calculation

It must be highlighted that, by utilising GP modelling, we were able to reduce the
total number of inputs (or organisms in GP models) while still maintaining the adequate
accuracy of the models needed to achieve comparable results. The inputs/genes that the
GP used in the models are underlined in Appendix A.

Table 7 compares “smart-ready” service levels in the original methodology with the
necessary inputs in the GP models for Domain calculation with the % of reduction. The
results are presented also graphically in Figure 6.

Noticeably, some inputs appear much more frequently in the Domain calculation
models (generated with GP) than others. These inputs have a higher dominance than the
rest, which is the by-product of natural selection on which the GP is based. The inputs that
appear very often (more than 15 times) in the models for modelling Domains are presented
in Table 8. From a practical perspective, these have a high impact on reaching a higher
SRI score.

Table 7. Comparison between the original methodology and the proposed GP methodology while
maintaining adequate accuracy.

Number of “Smart-Ready”
Service Levels in the

Original
Methodology

Number of Inputs
(Organisms)

in the Proposed
GP Models

% Reduction
of Inputs

“Heating” 43 15 −65.12%
“Domestic hot water” 22 12 −45.45%
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Table 7. Cont.

Number of “Smart-Ready”
Service Levels in the

Original
Methodology

Number of Inputs
(Organisms)

in the Proposed
GP Models

% Reduction
of Inputs

“Cooling” 43 11 −74.42%
“Ventilation” 25 20 −20.00%

“Lighting” 9 9 0%
“Dynamic building envelope” 14 12 −20.00%

“Electricity” 31 13 −58.06%
“EV charging” 11 Not available Not available

“Monitoring and control” 30 Not available Not available

TOTAL: 228
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Table 8. Inputs with the most frequent appearance in the Domain score prediction models.

Most Prominent Inputs (Appear in Models More than 15 Times)

Heating “H31 None (No option for Central or remote reporting of current performance KPIs
(e.g., temperatures, sub-metering energy usage)”
“H2D2 Control according to a fixed priority list, e.g., based on rated energy efficiency”

Domestic hot water “DHW1A4 Automatic charging control based on local availability of renewables or Information
from the electricity grid (DR, DSM)”

Cooling “C1F1 No interlock (between cooling and heating)”
“C43 Self-learning optimal control of the cooling system”

Ventilation “V2D2 “Constant setpoint: A control loop enables to
control the supply air temperature, the setpoint is constant and can only be modified by
a manual”

Lighting “L23 Automatic switching”

Dynamic building
envelope

“DE22 Open/closed detection to shut down heating or cooling systems”

Electricity “EL124 Real-time feedback or benchmarking on appliance level”
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6. Conclusions
The EU must accelerate the execution of the initiatives outlined in the Green Deal.

As a result, substantial endeavours are necessary for the decarbonisation of the building
inventory. An innovative tool, the Smart Readiness Indicator (SRI), aims to facilitate the
implementation of intelligent solutions across various building types.

Our research shows that alternative, simplified, and sufficiently precise SRI calculation
models based on GP and LR are possible. The developed models proved to be sufficiently
accurate. The relative deviation from the experimental data for Domain scores (modelled
with GP) ranged from 0.9% to 2.9%. The coefficient of determination or R2 was 0.75 for
most LR models, except for the Impact Factor of “Energy flexibility and storage” (where
it was 0.57). The lower R2 value for this Impact Factor is due to the absence of advanced
systems, like fourth-generation district heating, in the evaluated case study buildings.
These technologies are not common in the South-East European region, resulting in limited
training data in our dataset. For the total SRI core the R2 it was 0.98.

To test how well the models work on new data, we carried out an external validation
using 20 previously unseen case study buildings. In this way, we checked the performance
of the GP + LR approach on buildings that were not part of the model development. On the
Domain-level, the predictions performed well, with R2 values between 0.83 and 1.00. For the
Impact Factors, the performance was more variable, with R2 values between 0.39 and 0.84.
The total SRI score prediction reached R2 = 0.48, with MAE = 4.45 and Pearson’s r = 0.69,
which shows that the model can also work in real world conditions.

Our findings suggest that the existing model represents the building system con-
figurations typically present in that area accurately, including conventional HVAC and
control arrangements. Variations in technical systems across regions impact SRI results.
After establishing the model structure and methodology (as demonstrated in our instance),
it becomes fairly straightforward to develop new models for different regions utilising
localised datasets. Larger datasets based on consistently audited buildings would improve
the reliability and accuracy of SRI predictions by providing the models with more diverse
and representative examples across different systems and building types.

To improve consistency and reduce variability, especially in Domains with less struc-
tured data, we plan to establish data quality assurance procedures and policies that would
guide building evaluations. Cooperation is planned with energy agencies across Europe.
With this, we hope to obtain quality data that will be used for further model training.
We also aim to integrate the model with digital building twin platforms [36,37], which
could support standardised data collection and enable easier data sharing. In Domains
where uncertainty remains high, manual review processes (like audits) could be included
to avoid misleading outputs. The GP + LR model could be especially useful for portfolio-
level screening, early-stage assessments, and decision tools, such as those used by public
authorities or real-estate managers.

The GP approach with the additional positive feature has proven that comparable
results can be achieved with a significantly smaller number of input variables than in the
original SRI methodology. In six out of nine Domains, the reduction was between 20% and
74.42%, while the number of inputs in one Domain (that of lighting) stayed the same.

• In our case, two out of the nine Domains (electric vehicle charging and monitoring and
control) could not be modelled because of inconsistencies in the experimental data.
The data exhibited a high degree of randomness, preventing modelling. A different
dataset may behave differently. Furthermore, for the initial calculation in a selected
EU region, a reference dataset of experimental case study examinations is needed (see
Section 2, i.e., the description of the experimental data).
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The inputs into the GP, highlighted in Table 8, dominate, and are at the core of the
Domains’ score calculation. Therefore, this GP model could also be used as a simulation tool
for architects and planners of electrical and mechanical systems, including the smart-ready
functions that impact the SRI scores the most.

Our future research will focus on the automation of the evaluation process.
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Appendix A

Table A1. Conversion table of variables for the heating Domain.

Label Input Data or Organisms for the Genetic Model/Service for Smart-Ready
Services and Their Functionality Levels from the Original SRI
Methodology [12]

HA1
H1A2
H1A3
H1A4
H1A5

No automatic control
Central automatic control (e.g., central thermostat)
Individual room control (e.g., thermostatic valves, or electronic controller)
Individual room control with communication between controllers and BACS
Individual room control with communication and occupancy detection

H1B1 No automatic control
H1B2 Central automatic control
H1B3 Advanced central automatic control
H1B4 Advanced central automatic control with intermittent operation and/or room

temperature feedback control
H1C1 No automatic control
H1C2 Outside temperature compensated control
H1C3 Demand-based control
H1D1 No automatic control
H1D2 On/off control
H1D3 Multi-stage control
H1D4 Variable speed pump control (pump unit (internal) estimations)
H1D5 Variable speed pump control (external demand signal)
H1F1 Continuous storage operation
H1F2 Time-scheduled storage operation
H1F3 Load prediction-based storage operation
H1F4 Heat storage capable of flexible control through grid signals (e.g., DSM)
H2A1 Constant temperature control
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Table A1. Cont.

Label Input Data or Organisms for the Genetic Model/Service for Smart-Ready
Services and Their Functionality Levels from the Original SRI
Methodology [12]

H2A2 Variable temperature control depending on outdoor temperature
H2A3 Variable temperature control depending on the load (e.g., depending on

supply water temperature set point)
H2B1 On/off control of heat generator
H2B2 Multi-stage control of heat generator capacity depending on the load or

demand (e.g., on/off for several compressors)
H2B3 Variable control of heat generator capacity depending on the load or demand

(e.g., hot gas bypass, inverter frequency control)
H2B4 Variable control of heat generator capacity depending on the load AND

external signals from grid
H2D1 Priorities only based on running time
H2D2 Control according to fixed priority list: e.g., based on rated energy efficiency
H2D3 Control according to dynamic priority list (based on current energy efficiency,

carbon emissions and capacity of generators, e.g., solar, geothermal heat,
cogeneration plant, fossil fuels)

H2D4 Control according to dynamic priority list (based on current AND predicted
load, energy efficiency, carbon emissions and capacity of generators)

H2D5 Control according to dynamic priority list (based on current AND predicted
load, energy efficiency, carbon emissions, capacity of generators AND
external signals from grid)

H31 None
H32 Central or remote reporting of current performance KPIs (e.g., temperatures,

submetering energy usage)
H33 Central or remote reporting of current performance KPIs and historical data
H34 Central or remote reporting of performance evaluation including forecasting

and/or benchmarking
H35 Central or remote reporting of performance evaluation including forecasting

and/or benchmarking; also including predictive management and
fault detection

H41 No automatic control
H42 Scheduled operation of heating system
H43 Self-learning optimal control of heating system
H44 Heating system capable of flexible control through grid signals (e.g., DSM)
H45 Optimised control of heating system based on local predictions and grid

signals (e.g., through model predictive control)

Table A2. Conversion table of variables for the domestic hot water Domain.

Label
Input Data or Organisms for the Genetic Model/Service for
Smart-Ready Services and Their Functionality Levels from the Original
SRI Methodology [12]

DHW1A1 Automatic control on/off
DHW1A2 Automatic control on/off and scheduled charging enable
DHW1A3 Automatic control on/off and scheduled charging enable and

multi-sensor storage management
DHW1A4 Automatic charging control based on the local availability of renewables

or information from electricity grid (DR, DSM)
DHW1B1 Automatic control on/off
DHW1B2 Automatic control on/off and scheduled charging enabled
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Table A2. Cont.

Label
Input Data or Organisms for the Genetic Model/Service for
Smart-Ready Services and Their Functionality Levels from the Original
SRI Methodology [12]

DHW1B3 Automatic on/off control, scheduled charging enabled, and demand-based
supply temperature control or multi-sensor storage management

DHW1B4 DHW production system capable of automatic charging control based on
external signals (e.g., from the district heating grid)

DHW1D1 Manually selected control of solar energy or heat generation
DHW1D2 Automatic control of solar storage charge (Prio. 1) and supplementary

storage charge
DHW1D3 Automatic control of solar storage charge (Prio. 1) and supplementary

storage charge and demand-oriented supply or multi-sensor
storage management

DHW1D4 Automatic control of solar storage charge (Prio. 1) and supplementary
storage charge, demand-oriented supply, and return temperature control
and multi-sensor storage management

DHW2B1 Priorities only based on running time
DHW2B2 Control according to fixed priority list: e.g., based on rated energy efficiency
DHW2B3 Control according to dynamic priority list (based on current energy

efficiency, carbon emissions, and capacity of generators, e.g., solar,
geothermal heat, cogeneration plant, and fossil fuels)

DHW2B4 Control according to dynamic priority list (based on current AND
predicted load, energy efficiency, carbon emissions, and capacity of
generators)

DHW2B5 Control according to dynamic priority list (based on current AND
predicted load, energy efficiency, carbon emissions, capacity of generators,
AND external signals from grid)

DHW31 None
DHW32 Indication of actual values (e.g., temperatures, submetering energy usage)
DHW33 Actual values and historical data
DHW34 Performance evaluation, including forecasting and/or benchmarking
DHW35 Performance evaluation, including forecasting and/or benchmarking; also

including predictive management and fault detection

Table A3. Conversion Table of variables for the cooling Domain.

Label Input Data or Organisms for the Genetic Model/Service for Smart-Ready
Services and Their Functionality Levels from the Original SRI Methodology [12]

C1A1 No automatic control
C1A2 Central automatic control
C1A3 Individual room control
C1A4 Individual room control with communication between controllers and to BACS
C1A5 Individual room control with communication and occupancy detection
C1B1 No automatic control
C1B2 Central automatic control
C1B3 Advanced central automatic control
C1B4 Advanced central automatic control with intermittent operation and/or room

temperature feedback control
C1C1 Constant temperature control
C1C2 Outside temperature compensated control
C1C3 Demand based control
C1D1 No automatic control
C1D2 On off control
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Table A3. Cont.

Label Input Data or Organisms for the Genetic Model/Service for Smart-Ready
Services and Their Functionality Levels from the Original SRI Methodology [12]

C1D3 Multi-stage control
C1D4 Variable speed pump control (pump unit (internal) estimations)
C1D5 Variable speed pump control (external demand signal)
C1F1 No interlock
C1F2 Partial interlock (minimising risk of simultaneous heating and cooling e.g.,

by sliding setpoints)
C1F3 Total interlock (control system ensures no simultaneous heating and cooling

can take place)
C1G1 Continuous storage operation
C1G2 Time-scheduled storage operation
C1G3 Load prediction-based storage operation
C1G4 Cold storage capable of flexible control through grid signals (e.g., DSM)
C2A1 On/off control of cooling production
C2A2 Multi-stage control of cooling production capacity depending on the load or

demand (e.g., on/off for several compressors)
C2A3 Variable control of cooling production capacity depending on the load or

demand (e.g., hot gas bypass, inverter frequency control)
C2A4 Variable control of cooling production capacity depending on the load AND

external signals from grid
C2B1 Priorities only based on running times
C2B2 Fixed sequencing based on loads only, e.g., depending on the generator’s

characteristics, such as absorption chiller vs. centrifugal chiller
C2B3 Dynamic priorities based on generator efficiency and characteristics (e.g.,

availability of free cooling)
C2B4 Load prediction-based sequencing: the sequence is based on e.g., COP and the

available power of a device and
the predicted required power

C2B5 Sequencing based on a dynamic priority list, including external signals
from grid

C31 None
C32 Central or remote reporting of current performance KPIs (e.g., temperatures,

submetering energy usage)
C33 Central or remote reporting of current performance KPIs and historical data
C34 Central or remote reporting of performance evaluation, including forecasting

and/or benchmarking
C35 Central or remote reporting of performance evaluation, including forecasting

and/or benchmarking; also including predictive management and fault
detection

C41 No automatic control
C42 Scheduled operation of cooling system
C43 Self-learning optimal control of cooling system
C44 Cooling system capable of flexible control through grid signals (e.g., DSM)
C45 Optimised control of cooling system based on local predictions and grid signals

(e.g., through model predictive control)

Table A4. Conversion Table of variables for variables for the ventilation Domain.

Label Input Data or Organisms for the Genetic Model/Service for Smart-Ready
Services and Their Functionality Levels from the Original SRI Methodology [12]

V1A1 No ventilation system or manual control
V1A2 Clock control
V1A3 Occupancy detection control
V1A4 Central demand control based on air quality sensors (CO2, VOC, humidity, etc.)
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Table A4. Cont.

Label Input Data or Organisms for the Genetic Model/Service for Smart-Ready
Services and Their Functionality Levels from the Original SRI Methodology [12]

V1A5 Local demand control based on air quality sensors (CO2, VOC, etc.) with local
flow to/from the zone regulated by dampers

V1C1 No automatic control: continuously supplies air flow for a maximum load of
all rooms

V1C2 On/off time control: continuously supplies air flow for a maximum load of
all rooms during nominal occupancy time

V1C3 Multi-stage control: to reduce the auxiliary energy demand of the fan
V1C4 Automatic flow or pressure control without pressure reset: load-dependent

supply of air flow to meet the demands of all connected rooms
V1C5 Automatic flow or pressure control with pressure reset: load-dependent supply

of air flow for the demand of all connected rooms (for variable air volume
systems with VFD)

V2C1 Without overheating control
V2C2 Modulate or bypass heat recovery based on sensors in air exhaust
V2C3 Modulate or bypass heat recovery based on multiple room temperature sensors

or predictive control
V2D1 No automatic control
V2D2 “Constant setpoint: A control loop enables to control the supply air temperature,

the setpoint is constant and can only be modified by a manual action”
V2D3 Variable set point with outdoor temperature compensation
V2D4 Variable set point with load-dependent compensation. A control loop enables

the system to control the supply air temperature. The setpoint is defined as a
function of the loads in the room

V31 No automatic control
V32 Night cooling
V33 “Free cooling: air flows modulated during all periods of time to minimize the

amount of mechanical cooling”
V34 “H,x- directed control: The amount of outside air and recirculation air are

modulated during all periods of time to minimize the amount of mechanical
cooling. Calculation is performed on the basis of temperatures and
humidity (enthalpy).”

V61 None
V62 Air quality sensors (e.g., CO2) and real-time autonomous monitoring
V63 Real time monitoring and historical information of IAQ available to occupants
V64 Real time monitoring and historical information of IAQ available to occupants

+ warnings about maintenance needs or occupant actions (e.g., window opening)

Table A5. Conversion Table of variables for the lighting Domain.

Label Input Data or Organisms for the Genetic Model/Service for Smart-Ready
Services and Their Functionality Levels from the Original SRI Methodology [12]

L1A1 Manual on/off switch
L1A2 Manual on/off switch + additional sweeping extinction signal
L1A3 Automatic detection (auto on/dimmed or auto off)
L1A4 Automatic detection (manual on/dimmed or auto off)
L21 Manual (central)
L22 Manual (per room/zone)
L23 Automatic switching
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Table A5. Cont.

Label Input Data or Organisms for the Genetic Model/Service for Smart-Ready
Services and Their Functionality Levels from the Original SRI Methodology [12]

L24 Automatic dimming
L25 “Automatic dimming including scene-based light control (during time intervals,

dynamic and adapted lighting scenes are set, for example, in terms of
illuminance level, different correlated colour temperature (CCT) and the
possibility to change the light distribution within the space according to
e.g. design, human needs, visual tasks)”

Table A6. Conversion Table of variables for the dynamic building envelope Domain.

Label
Input Data or Organisms for the Genetic Model/Service for Smart-Ready
Services and Their Functionality Levels from the Original SRI
Methodology [12]

DE11 No sun shading or only manual operation
DE12 Motorised operation with manual control
DE13 Motorised operation with automatic control based on sensor data
DE14 Combined light/blind/HVAC control
DE15 Predictive blind control (e.g., based on weather forecasts)
DE21 Manual operation or only fixed windows
DE22 Open/closed detection to shut down heating or cooling systems
DE23 Level 1 + automated mechanical window opening based on room sensor data
DE24 Level 2 + centralised coordination of operable windows, e.g., to control free

natural night cooling
DE41 No reporting
DE42 Position of each product and fault detection
DE43 Position of each product, fault detection, and predictive maintenance
DE44 Position of each product, fault detection, predictive maintenance, and real-time

sensor data (wind, lux, temperature, etc.)
DE45 Position of each product, fault detection, predictive maintenance, and

real-time and historical sensor data (wind, lux, temperature, etc.)

Table A7. Conversion Table of variables for the electricity Domain.

Label Input data or organisms for the genetic model/service for smart-ready services
and their functionality levels from the original SRI methodology [12]

EL21 None
EL22 Current generation data available
EL23 Actual values and historical data
EL24 Performance evaluation including forecasting and/or benchmarking
EL25 Performance evaluation including forecasting and/or benchmarking; also

including predictive management and fault detection
EL31 None
EL32 On-site storage of electricity (e.g., electric battery)
EL33 On-site storage of energy (e.g., electric battery or thermal storage) with a

controller based on grid signals
EL34 On-site storage of energy (e.g., electric battery or thermal storage) with a

controller optimising the use of locally generated electricity
EL35 On-site storage of energy (e.g., electric battery or thermal storage) with a

controller optimising the use of locally generated electricity and the possibility
to feed back into the grid
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Table A7. Cont.

Label Input data or organisms for the genetic model/service for smart-ready services
and their functionality levels from the original SRI methodology [12]

EL41 None
EL42 Scheduling electricity consumption (plug loads, white goods, etc.)
EL43 Automated management of local electricity consumption based on current

renewable energy availability
EL44 Automated management of local electricity consumption based on current

and predicted energy needs and renewable energy availability
EL51 CHP control based on scheduled runtime management and/or current heat

energy demand
EL52 CHP runtime control influenced by the fluctuating availability of RES;

overproduction will be fed into the grid
EL53 CHP runtime control influenced by the fluctuating availability of RES and

grid signals; dynamic charging and runtime control to optimise the
self-consumption of renewables

EL81 None
EL82 Automated management of (building-level) electricity consumption based

on grid signals
EL83 Automated management of (building-level) electricity consumption and

electricity supply to neighbouring buildings (microgrid) or grid
EL84 Automated management of (building-level) electricity consumption and

supply, with potential to continue limited off-grid operation (island mode)
EL111 None
EL112 Current state of charge (SOC) data available
EL113 Actual values and historical data
EL114 Performance evaluation, including forecasting and/or benchmarking
EL115 Performance evaluation, including forecasting and/or benchmarking; also

including predictive management and fault detection
EL121 None
EL122 Reporting on current electricity consumption at the building level
EL123 Real-time feedback or benchmarking at the building level
EL124 Real-time feedback or benchmarking at the appliance level
EL125 Real-time feedback or benchmarking at the appliance level with automated

personalised recommendations

Table A8. Conversion Table of variables for the EV charging Domain.

Label Input Data or Organisms for the Genetic Model/Service for Smart-Ready
Services and their Functionality Levels from the Original SRI Methodology [12]

EV151
EV152
EV153
EV154
EV155
EV161
EV162

EV163

EV171
EV172
EV173

Not present
Ducting (or simple power plug) available
0–9% of parking spaces has recharging points
10–50% or parking spaces has recharging point
>50% of parking spaces has recharging point
Not present (uncontrolled charging)
1-way controlled charging (e.g., including desired departure time and grid
signals for optimisation)
2-way controlled charging (e.g., including desired departure time and grid
signals for optimisation)
No information available
Reporting information on EV charging status to occupants
Reporting information on EV charging status to occupants AND automatic
identification and authorisation of the driver to the charging station (ISO 15118
compliant)
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Table A9. Conversion Table of variables for the monitoring and control Domain.

Label
Input Data or Organisms for the Genetic Model/Service for Smart-Ready
Services and Their Functionality Levels from the Original SRI
Methodology [12]

MC31
MC32

MC33
MC34

MC41
MC42
MC43
MC44

MC91
MC92

MC93

MC131
MC132

MC133

MC134

MC251

MC252

MC253
MC281
MC282
MC283

MC291
MC292

MC293
MC294
MC295
MC301
MC302
MC303
MC304

Manual setting
Runtime setting of heating and cooling plants following a predefined time
schedule
Heating and cooling plant on/off control based on building loads
Heating and cooling plant on/off control based on predictive control or grid
signals
No central indication of detected faults and alarms
With central indication of detected faults and alarms for at least two relevant
TBS
With central indication of detected faults and alarms for all relevant TBS
With central indication of detected faults and alarms for all relevant TBS,
including diagnosing functions
None
Occupancy detection for individual functions, e.g., lighting
Centralised occupant detection which feeds into several TBS, such as lighting
and heating
None
Central or remote reporting of real-time energy use per energy carrier
Central or remote reporting of real-time energy use per energy carrier,
combining TBS of at least two Domains in one interface
Central or remote reporting of real-time energy use per energy carrier,
combining TBS of all main Domains in one interface
None—No harmonisation between grid and TBS; building is operated
independently from the grid load
Demand-side management possible for (some) individual TBS, but not
coordinated over various Domains
Coordinated demand side management of multiple TBS
None
Reporting information on current DSM status, including managed energy
flows
Reporting information on current historical and predicted DSM status,
including managed energy flows
No DSM control
DSM control without the possibility to override this control by the building
user (occupant or facility manager)
Manual override and reactivation of DSM control by the building user
Scheduled override of DSM control (and reactivation) by the building user
Scheduled override of DSM control and reactivation with optimised control
None
Single platform that allows manual control of multiple TBS
Single platform that allows automated control and coordination between TBS
Single platform that allows automated control and coordination between TBS
+ optimisation of energy flow based on occupancy, weather, and grid signals
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Appendix B
The equation form of the genetic programming model for heating is as follows:

Domain Heating =

((((
− ((H33 − H2D5)

·H2B3(H1C2 + H31

−
(

7.16973 − (5.81691 + H2D1)

·
((

(−((H33 − H2D2)·H2B3)− (H1C2 + H31 − (7.16973 − (5.81691 + H2D1)·7.16973)))

−
(
((H33 − H1B2)·H44)− H2D5·H2B3

(
H1C2 + H31 −

(
H33 + (H1C2 + H2B3)− ((H2D5·H33) + (H1A5 + (H2B1·H1A4·H33))) + (H1A5 + (( H2B1

H1A5 ) + H1A4)·H31)

−
(

H33−9.66955(
H2D5·H2B3−(H1C2−(H1C2−( H2D2

H2D1 ·H2D2))))

))))))))
+ (9.66955 − (H2D5·H2B3·(H1C2 + H31 − ( H2D2

(H2D1·H2B1·H2D2) )·5.46992)))

)))))

(A1)

The equation form of the genetic programming model for domestic hot water is
as follows:

Domain Domestic hot water

=



 ( DHW1D1·DHW2B5

DHW1A4 )+DHW1B1·DHW2B5
DHW1A4

+ −3.1451
DHW1B1 ·DHW1D3

−3.14511
DHW1D1·DHW1A2

DHW1B3
−(DHW2B1+9.18609−DHW32)




·



(
DHW1D3−

(
−3.14511
DHW1B3 −(DHW2B1+9.18609−DHW32)

))
·





 −( DHW1D1·DHW1A2
DHW1D1 )

DHW1A4


DHW31+DHW2B2

DHW34

+ DHW2B1
DHW1D3

(DHW1A4·DHW1B1)·

DHW31+

(
DHW34
−3.14511
DHW1D3

)
·((DHW1A4·DHW1B1)·(DHW31+DHW2B1·DHW2B5))

DHW2B5






((DHW1A4·DHW1B1)·(DHW31−(DHW2B1+9.18609−DHW2B5)))



·3.21647

(A2)

The equation form of the genetic programming model for cooling is as follows:

Domain cooling =

((
((C1B2 + C2A1)− 7.66353)−

((
C1A4· ((C1A4·C1F1)·C34)·((C1F1−C43)−(C1A4·(7.66353+C1F1)))

C43

)
·C1F3

))

−(C1D3·C1D1)

)
·((C2A1 − 7.66353) + C43 − (C1F1 − C1F3))

−
(
((C43 − (C2A1 − C1F1))·C1D3)·

(
C1D5 + (C1A4·((C2A1−7.66353)+C43+C1F1))·(C34)·7.66353

(C43+(C43−(C1F1−C43))−(C1F1−C1F3))

)

+(C43 − (C2A1 − C1F1)) + (C43·C34)

)
·7.66353 − ((C1F1 − C43)− (C1F1 − C1F3))

−
(

C1D3 +

(
C1D5+(C1F1−7.66353)+ ((C43−(C1F1−7.66353))+(C43·C34))

(C1F1−C43)·(C1A4·(7.66353+C43+(C43·C34)))

)
(C1F1−C43)·

(
C1A4·

(
7.66353+C43+(C43·(C43·C1F3))

)) )

−
(

C1D3 + (C1D5·(C1D5+C1F1)·C34)
7.663553

)

(A3)

The equation form of the genetic programming model for ventilation is as follows:
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Domain Ventilation =

 8.4716− V31−(−5.25128)
(V2C2·V1C5)

V62 +(V1C3+V1A3)

V62 ·V33

·V64 − 84716+

(V64·V33)−V31+ (V2C2·V1C5)·V2D2·(V1C3−5.25128)
V1C1

V1A2+

((V61+V1C3+(V2C2·V1C5)·V2D2·(V1C3+V2C3))÷(V1C2−V61))×

8.4716−
V31−

8.4716− V61+V1C3+V2C3
V1C2−V1C2

(V2C2·V1C5)·V2D2·(−5.25128)
V2D2·(V1C3−5.25128)


V1C2·V1A5

+ V2D3−

8.4716−
8.4716− V31−(−5.25128)

(V2C2·V1C5)·V2D2(V1C3+V1A3)
V62

−5.25128 − (V64·V1C1)÷V1A2

V1A2+

((
8.4716− V2C3−(V1C2−V1C2)

(V2C2·V1C5)·V2D2·(V1C3−5.25128)

)
·V62·V33·V1A5

)
V2C1

−

(V2D1+V1A2−6.96117·V2D1)
V2D2 − V1C4

)

(A4)

The equation form of the genetic programming model for lighting is as follows:

Domain Lighting =

(
L25−L1A3(((

L21+
(

(L23+L23)+L1A3
L1A1 ·3.27069

))
·(L25−L1A4)

)
−L24

)
−L22

·L1A1

)
×
(
(L25 − L22)−

(
L23+L23+L22
−0.160899

)
·
(
(L25−L1A3)·L1A1
L24+(L1A4+L21)

))
− ((L23 + L23 + L22)·(−0.160899))·

( (
(L23+L1A3)
(L25−L1A3)

)
·L1A1

(( L24
L1A4+L1A4 )+L1A2)+ L22

L22

)
+
(

3.27069·(
L24

L1A4+L1A3

)
·
(

L1A3 −
(

L1A1 + (L23+L1A3)
L22

)))
·
(
(L1A2×L22)

L24

)
+
(

L24
L1A4+L1A4 + L1A2

)
÷
(

L23+L22
L1A3

)
(A5)

The equation form of the genetic programming model for the dynamic building
envelope (DBE) is as follows:

Domain Dynamic building envelope =

(
(DE41 − (5.87984 − (DE11·DE22)))·

(
DE44+

(
DE44 −

(
DE15 +

(
(DE42 − DE44) + DE22·DE11

DE24·DE44 + DE12 + DE23
)))))

+ ((DE42 − DE44)+

DE22·DE11

(DE42−DE13)+(DE22−DE13)+
(DE42−DE13)+(DE22−DE13)+

(DE42−DE44)+ DE22·DE11
DE24·DE11 −(DE42−DE22)

DE11
DE24

·DE14

+

(
DE13+

(DE22 − DE13) + (DE43−DE12)·DE22·DE11
(DE22−(DE22−DE13)·DE44)+DE22 ·DE14

)
+ ((DE42 − DE13) + (DE22 − DE13)+

(DE42−DE13)+(DE22−DE13)+
(DE42−DE44)+ DE22·DE11

DE24·DE11 −(DE42−DE22)
DE11

DE24 − DE13 + DE22

)
− (DE42 − DE42)

(A6)

The equation form of the genetic programming model for electricity is as follows:

Domain Electricity =

− EL35
(EL124−EL125)·(EL122−7.29756)

(EL82− EL31
EL124 )

(EL124−(−7.29756))−(EL82− EL31
EL114 )

−







EL124− (EL124·EL51)
(EL124−EL125)·(−7.29756)

(EL82− EL31
EL124 )

(EL122·(EL122·(−7.29756)))


−EL125

(EL82− EL31
−7.29756 )

(EL82− EL31
EL125 )


− 8.69097


−

EL81 −

((EL122·EL34) + (EL122·EL41))−

EL82·

(EL35 − EL33)− (EL124·EL51)
(EL124−EL125)·(−7.29756)

(EL82− EL31
EL112 )



(A7)
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55. Kovačič, M.; Šarler, B.; Župerl, U. Natural gas consumption prediction in Slovenian industry—A case study. Mater. Geoenvironment

2016, 63, 91–96. [CrossRef]
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