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ABSTRACT

Although Evolutionary Computation (EC) has been used
with considerable success to evolve computer programs, the
majority of this work has targeted the production of serial
code. Recent work with Grammatical Evolution (GE) pro-
duced Multi-core Grammatical Evolution (MCGE-II), a sys-
tem that natively produces parallel code, including the abil-
ity to execute recursive calls in parallel.

This paper extends this work by including practical con-
straints into the grammars and fitness functions, such as in-
creased control over the level of parallelism for each individ-
ual. These changes execute the best-of-generation programs
faster than the original MCGE-II with an average factor of
8.13 across a selection of hard problems from the literature.

We analyze the time complexity of these programs and
identify avoiding excessive parallelism as a key for further
performance scaling. We amend the grammars to evolve a
mix of serial and parallel code, which spawns only as many
threads as is efficient given the underlying OS and hardware;
this speeds up execution by a factor of 9.97.

Categories and Subject Descriptors

I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search - Heuristic methods

Keywords

Grammatical Evolution; Multi-cores; Symbolic Regression;
OpenMP; Automatic Parallel Programming.

1. INTRODUCTION
Multi-core processors are shared memory multiprocessors

integrated on a single chip and offer high processing power.
However, some challenges remain in exploiting their poten-
tial, particularly because, as the number of cores increase
(the so-called death of scaling1), the software needs to be de-
signed explicitly to realize the true potential of these cores.

1http://www.gotw.ca/publications/concurrency-ddj.htm
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OpenMP [13] is the de facto standard to write parallel
programs on multi-cores in C/C++. Although a powerful
tool, writing that is a non-trivial task, as sequential pro-
grammers still struggle with parallel design issues such as
synchronization, locking and program decomposition.

To alleviate this difficulty, [6] introducedMCGE-II to gen-
erate native parallel code on multi-cores, proved it by par-
allelising recursive calls. MCGE-II adds OpenMP pragmas
in GE grammars, and so solves the underlying problem such
that the solution is a parallel program. Although successful,
it made little attempt to optimize the efficiency, particu-
larly in terms of the execution time and the ease of program
evolution.

We re-design the MCGE-II grammars such that they now
partition data and task level parallelism under different pro-
duction rules making it convenient for evolution to select as
appropriate. Furthermore, we modify the fitness function
to explicitly take account of the execution time of the indi-
viduals. These changes combine to give an average speed-up
factor of 8.13 across a range of hard recursive problems from
the literature. Recursion is perfect for task level parallelism
as each recursive call can be invoked in a separate thread.

However, one risk in evolving parallel recursion is exces-
sive multi-threading that spawns a thread at every recursive
call; thus, each thread does little useful work. This can
degrade performance due to the overhead in first creating
and then scheduling these threads. Scheduling can be es-
pecially expensive as a large number of threads compete to
get a slice of CPU time. Therefore, we further tweak the
grammars such that the evolved programs can control the
creation of threads after a certain depth in their recursive
trace. Thus, the lower level recursive calls run in serial by
arresting thread creation, while the top level calls run in
parallel, that results in an average speed-up of 9.97.

We also consider code growth in GE but find it surpris-
ingly insignificant; therefore, code-growth does not affect
program execution.

The rest of the paper is detailed as follows: section 2 intro-
duces the existing literature of the paper; section 3 describes
the proposed approach; section 4 presents the experiments;
section 5 shows the results; section 6 discusses the factors
that influence the performance, while section 7 enhances the
performance; and finally, section 8 concludes.

2. BACKGROUND
Unlike MCGE-II, previous EC work has only treated evolv-

ing recursion and evolving parallel programs as separate
challenges. Below we only briefly review these two topics.

http://dx.doi.org/10.1145/2739480.2754746


2.1 Generation of Recursive Programs
Some of the earliest work on evolving recursion is from

Koza [9, Chapter-18] which evolved a Fibonacci sequence;
this work cached previously computed recursive calls for ef-
ficiency. Also, Brave [4] used Automatically Defined Func-
tions (ADFs) to evolve recursive tree search. In this, recur-
sion terminated upon reaching the tree depth. Then, [17]
concluded that infinite recursions was a major obstacle to
evolve recursive programs. However, [19] successfully used
an adaptive grammar to evolve recursive programs; the gram-
mar adjusted the production rule weights in evolving solu-
tions.

Spector et al. [15] evolved recursive programs using PushGP
by explicitly manipulating its execution stack. The evolved
programs were of O

(

n2
)

complexity, which became O
(

nlog(n)
)

with an efficiency component in fitness evaluation.
Agapitos and Lucas [1, 2] evolved recursive quick sort

with an Object Oriented Genetic Programming (OOGP) in
Java. The evolved programs exhibited a time complexity
of O

(

nlog(n)
)

. Recently, Moraglio et al. [10] used a non-
recursive scaffolding method to evolve recursive programs
with a context free grammar based GP.

Next, we review automatic parallel programming with EC.

2.2 Automatic Evolution of Parallel Programs
This section describes research into the automatic gen-

eration of parallel programs irrespective of recursion. In
general, automatic generation of parallel programs can be
divided into two types: auto-parallelization of serial code
and the generation of native parallel code.

Auto-parallelization requires an existing (serial) program.
Using GP, [14, Chapter-5] proposed Paragen which had ini-
tial success, however, its reliance on the execution of can-
didate solutions ran into difficulties with complex and time
consuming loops. Later, Paragen-II [14, Chapter-7] dealt
the loop inter-dependencies, relying on a rough estimate of
execution time. Then, [14] extended Paragen-II to merge
independent tasks of different loops into one loop.

Similarly, genetic algorithms evolved transformations; [11]
and [18] proposed GAPS (Genetic Algorithm Parallelization
System) and, Revolver respectively. GAPS evolved sequence
restructuring, while Revolver transformed the loops and pro-
grams, both optimized the execution time.

On the other hand, native parallel code generation pro-
duces a working program that is also parallel. With multi-
tree GP, [16] concurrently executed autonomous agents for
automatic design of controllers.

Recently, Chennupati et al., [5] evolved natively paral-
lel regression programs. Then [6] introduced MCGE-II to
evolve task parallel recursive programs. The minimal execu-
tion time of them was merely due to the presence of OpenMP
pragmas which automatically map threads to cores. How-
ever, the use of a different OpenMP pragma alters the per-
formance of the parallel program, and skilled parallel pro-
grammers carefully choose the pragmas when writing code.
To that end, in this paper, we extend MCGE-II in two ways:
we re-structure the grammars so task and data level paral-
lelism is separate, and we explicitly penalize long executions.

3. MCGE-II
In this paper we extend MCGE-II [6] in two respects: first,

through the design of the grammars (section 3.1), which are
much richer and categorize rules better so as to accelerate

〈program〉 ::= 〈condition〉 〈parcode〉

〈omppragma〉 ::= 〈ompdata〉 | 〈omptask〉

〈ompdata〉 ::= #pragma omp parallel
| #pragma omp master
| #pragma omp single
| #pragma omp parallel for

〈omptask〉 ::= #pragma omp parallel sections
| #pragma omp task

〈shared〉 ::= shared(〈input〉, temp, res) 〈newline〉 ‘{’

〈private〉 ::= private(a) | firstprivate(a) | lastpri-
vate(a)

〈condition〉 ::= if(〈input〉 〈lop〉 〈const〉) ‘{’ 〈newline〉
〈line1 〉; 〈newline〉 〈line2 〉; 〈newline〉‘}’

〈parcode〉 ::= else ‘{’ 〈newline〉 〈omppragma〉
〈private〉 〈shared〉 〈blocks〉 〈newline〉
‘}’ 〈newline〉 ‘}’ 〈newline〉 〈result〉

〈blocks〉 ::= 〈parblocks〉 | 〈blocks〉 〈newline〉 〈blocks〉

〈parblocks〉 ::= 〈secblocks〉 | 〈taskblocks〉

〈secblocks〉 ::= #pragma omp section 〈newline〉 ‘{’
〈newline〉 〈line1 〉; 〈newline〉 〈atomic〉
〈newline〉 〈line2 〉 〈bop〉 a; 〈newline〉‘}’

〈taskblocks〉 ::= #pragma omp task 〈newline〉 ‘{’
〈newline〉 〈line1 〉; 〈newline〉 〈atomic〉
〈line2 〉 〈bop〉 a;〈newline〉‘}’

〈atomic〉 ::= #pragma omp atomic

〈line1 〉 ::= temp = 〈expr〉 | a = 〈expr〉;

〈line2 〉 ::= res 〈bop〉= temp

〈expr〉 ::= 〈input〉 | 〈stmt〉 | 〈stmt〉 〈bop〉 〈stmt〉

〈result〉 ::= return res;

〈stmt〉 ::= fib(〈input〉 〈bop〉 〈const〉);

〈input〉 ::= n

〈lop〉 ::= ‘>=’ | ‘<=’ | ‘>’ | ‘<’ | ‘==’

〈bop〉 ::= + | - | * | /

〈const〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

〈newline〉 ::= \n

Figure 1: The design of MCGE-II grammar to gen-
erate natively parallel recursive Fibonacci programs.



evolution; and second, through a modified fitness function
(section 3.2), which considers time in its evaluation. Both
of them help optimize the performance (execution time) of
the evolving parallel recursive programs.

3.1 Design of Grammars
The grammars in this paper are designed such that they

offer clear separation among OpenMP pragmas, task and
data parallel. This separation benefits the quick generation
of candidate solutions because of grammatical bias [17]. Fig-
ure 1 shows the grammar that generates a natively parallel
recursive Fibonacci program. The non-terminals <omptask>
and <ompdata> represent the task and data parallel pragmas
respectively, while <omppragma> selects one of the two op-
tions. Notice, the generation of the task level pragma shown
in <omptask> forms the best fit individual as the goal is the
automatic generation of task parallel recursion.

The programs take an integer (n) input (<input>), while
the variable res returns the end result of the parallel program
evaluation. Moreover, the two local variables (temp, a) store
the intermediate results of recursive calls. The input and the
two variables are shared among the threads with the clause
(<shared>), while a is a thread private (<private>) variable.
Evolution selects a private clause from the three OpenMP
private (<private>) clauses.

Of the three private clauses: private(a) makes a variable
thread specific, any changes on the variable are invisible af-
ter the parallel region; firstprivate(a) holds a value through-
out the program despite the parallelization; lastprivate(a)
keeps the changes of the last thread in the parallel region.
Since the variable updates are thread specific, programs with
private(a) are the best programs. Note, the other clauses
degrade the fitness as they evolve incorrect solutions.

The non-terminal symbol <stmt> depicts the recursive call
of the Fibonacci program. The non-terminal <blocks> gen-
erates a sequence of parallel blocks with each block contain-
ing an independent recursive call. To that end, section 7
presents a complete task parallel recursive program.

3.2 Performance Optimization
As the choice of OpenMP pragmas can significantly im-

pact the performance of a program, we encourage the right
degree of parallelism with its execution time in the fitness,
which increases the pressure in choosing the best pragma.

Thus, the fitness function that we use in optimizing the
performance is the product of two factors: execution time
and the mean absolute error, both are normalized in the
range (0, 1) – a maximization function. The following equa-
tion represents the fitness of the evolved program (fpprog):

fpprog =
1

(

1 + t
) ∗

1
(

1 +
1

N

N
∑

i=1

|yi − ŷi|

) (1)

where, t is the time taken by the evolved parallel program to
evaluate across all the training cases (N); The terms yi and,
ŷi represent the actual and, the evolved outputs respectively.

Since using an inapt pragma increases the time to execute
the evolved program, the first term, normalized execution
time in eq. 1 helps to select the correct pragma. Meanwhile,
the second term, normalized mean absolute error (in eq. 1)
enforces program correctness. Together, the two objectives
push for a correct and efficient parallel program.

Table 1: The summary of the problems (in increas-
ing order of difficulty) under investigation with the
properties used in the experiments.

# Problem
Type

LV Range
Input Return

1 Sum-of-N int int 3 [1,1000]

2 Factorial int
unsigned

3 [1,60]
long long

3 Fibonacci int
unsigned

3 [1,60]
long long

4 Binary-Sum int [ ], int, int int 2 [1,1000]
5 Reverse int [ ], int, int void 2 [1,1000]
6 Quicksort int [ ], int, int void 3 [1,1000]

4. EXPERIMENTAL CONTEXT
We evaluate our approach on six recursive problems. Ta-

ble 1 presents them with their properties: type of input
and return values, the number of arguments, number of lo-
cal variables (LV); the range of elements from which the
input is considered. The output is the result of the con-
ventional algorithm of the respective problem. The local
variables (LV) are the auxiliary variables. The training set
contains 30 data points. The first three (Sum-of-N, Facto-
rial, Fibonacci) problems accept a single positive integer as
input; for Sum-of-N, it is randomly generated from the range
[1, 1000] while, for Factorial and Fibonacci problems, it is in
the range [1, 60] due to the limitations in the data type range
in C. While the remaining three problems (Binary-Sum, Re-
verse, Quicksort) accept an array of integers along with their
start and end indices as input, for which, an array of 1000
elements are randomly generated from the range [1, 1000].
Note, the grammars are general enough except for a few
minor changes with respect to the problem at hand.

Table 2 describes the algorithmic parameters along with
the experimental environment used to evaluate our approach.

Table 2: Parameters and experimental environment.

GE parameter settings

Parameter Value

point mutation 0.1
one point crossover 0.9

selection Roulette Wheel
replacement strategy Steady state

initialization Sensible
minimum depth 9
maximum depth 25

wrapping disabled
population size 500
generations 100

runs 50
Experimental environment

CPU Intel (R) Xeon (R) E7-4820,
16 cores

OS Debian Linux v 2.6.32,
64-bit

C++ GNU GCC v 4.4.5
libGE v 0.26

OpenMP libgomp v 3.0
Timer utility omp get wtime()
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Figure 2: The speed-up of MCGE-II (Unoptimized, Grammar, Time, Combined) variants for all the six
experimental problems. The number of cores vary as 2, 4, 8 and 16. The horizontal dashed line (–) represents
the speed-up of 1 and acts as a reference for the remaining results.

Table 3: Friedman statistical tests with Hom-
mel’s post-hoc analysis on performance of all
the four MCGE-II variants. The boldface
shows the significance at α = 0.05, while as-
terisk (*) shows the best variant.

Cores
MCGE-II Average p p

variant Rank value Hommel

4

Unoptimized 3.25 0.0025 0.0167
Grammar 3.1667 0.0036 0.025

Time 2.5833 0.0331 0.05
Combined∗ 0.9999 - -

8

Unoptimized 3.1667 0.0036 0.025
Grammar 3.6667 3.47E-4 0.0167

Time 2.1667 0.1175 0.1
Combined∗ 1.0 - -

16

Unoptimized 3.4999 7.96E-4 0.0167
Grammar 3.4999 7.96E-4 0.025

Time 1.9999 0.1797 0.05
Combined∗ 1.0 - -

Table 4: The mean best generation (mean ± [standard devia-
tion]) of all the four MCGE-II variants (Unoptimized, Gram-
mar, Time, Combined). The lowest value is in boldface.

#

MCGE-II
Unoptimized Grammar Time Combined
mean best mean best mean best mean best
generation generation generation generation

1 59.14 ± [4.96] 45.38 ± [2.81] 51.63 ± [6.19] 43.27 ± [5.37]
2 38.43 ± [2.85] 31.19 ± [4.73] 39.35 ± [3.19] 36.51 ± [3.67]
3 77.36 ± [5.58] 44.73 ± [5.26] 65.19 ± [6.43] 59.89 ±[4.15]
4 71.83 ± [6.37] 59.14 ± [5.34] 68.88 ± [4.51] 61.43 ± [5.19]
5 56.68 ± [2.19] 47.53 ± [2.19] 51.09 ± [2.39] 45.32 ± [4.92]
6 49.25 ± [4.57] 40.49 ± [5.23] 52.49 ± [2.58] 47.28 ± [3.15]

Friedman tests with Hommel’s post-hoc analysis. Boldface shows the
significance at α = 0.05, while asterisk (*) shows the best variant.

MCGE-II variant Average Rank p-value p-Hommel

Unoptimized 3.0 5.3205E-4 0.001596
Grammar∗ 1.16666 - -

Time 2.33333 0.0321438 0.042
Combined 1.99999 0.0024787 0.02



We compare the performance among four MCGE-II vari-
ants. The first variant, named as MCGE-II (Unoptimized)
hereafter, does not separate task and data parallelism; in-
stead, all the rules in <omptask> and <ompdata> are lumped
together under <omppragma>. Thus, it is hard to omit data
parallelism when it only requires task parallelism, while the
fitness function is only the normalized mean absolute er-
ror (second term in eq. 1). The second variant (MCGE-II
(Grammar)), uses the grammars shown in Figure 1, while
the fitness function is the normalized mean absolute error.
The third variant (MCGE-II (Time)), uses the same gram-
mars as with the first variant (MCGE-II (Unoptimized)),
but fpprog (eq. 1) for fitness evaluation. The fourth vari-
ant, named as MCGE-II (Combined) hereafter, uses both
the grammars as in Figure 1 and the fitness function fpprog.

5. EXPERIMENTAL RESULTS
In this section we report the speed-up in terms of the

mean best execution time (MBT), that is, the average ex-
ecution time of the best of generation programs in each

of 50 runs. Now, the Speed-up =
TMBT−1−core

TMBT−n−cores

where,

TMBT−1−core is the mean best execution time on a single
core, while TMBT−n−cores is that of n-cores of a processor.

Figure 2 presents the speed-up of all the four MCGE-II
(Unoptimized, Grammar, Time, Combined) variants across
all the six experimental problems. The speed-up is for vary-
ing the cores: 2, 4, 8, and 16, with respect to 1-core.

Table 3 shows the Friedman statistical tests with Hom-
mel’s post-hoc [8] analysis on the speed-up of the four MCGE-
II variants for all the six problems at α = 0.05. The first
column indicates the number of cores under execution. The
second column shows the MCGE-II variant, while the third
column presents the average rank. The fourth and the fifth
columns show the p-value and Hommel’s critical value re-
spectively. The lowest average rank shows the best (MCGE-
II (Combined)) variant, and is marked with an asterisk (*).
A variant is significantly different from the best variant if
p-value is less than p-Hommel at α = 0.05, is in boldface.

Although we do not show in Table 3, for 2 cores none of
the variants is better than the others, which could be at-
tributed to the multi-threading overhead offsetting the per-
formance gains. However, we see differences with higher
numbers of cores. For 4 cores, MCGE-II (Combined) sig-
nificantly outperforms the remaining three variants (Unop-
timized, Grammar, Time), while for 8 and 16 cores MCGE-
II (Combined) significantly outperforms the two MCGE-II
(Unoptimized, Grammar) variants, but the difference with
MCGE-II (Time) is insignificant. We believe that this is
due to the fact that both in MCGE-II (Time, Combined),
include execution time in fitness evaluation.

We also investigate the effect of restructuring grammars
in this study, on the ease of evolving the correct programs.
To this end, we measure the mean number of generations re-
quired to converge to the best fitness, with a pre-condition
that the program under consideration must be correct, av-
eraged across 50 runs; we call it the mean best generation.
Table 4 shows the mean best generation of all the four vari-
ants2 along with significance tests. The lowest mean best
generation is in boldface for the respective problem of an

2Note, the results are for 16 cores. They are similar for the
remaining cores, but left out due to space constraints.

MCGE-II variant. The significance tests show that MCGE-
II (Grammar) significantly outperforms MCGE-II (Unop-
timized, Time, Combined) at α = 0.05. That is MCGE-
II (Grammar) requires less number of generations over the
other variants in producing the best fit programs due to
the grammatical bias [17] exerted through the changes (Fig-
ure 1) in the design of grammars.

However, the performance results (Table 3) indicate that,
although MCGE-II (Grammar) quickly generates the paral-
lel recursive programs, it has been outperformed by MCGE-
II (Time, Combine) in terms of their efficiency. A pair-
wise comparison between MCGE-II (Time, Combined) at
α = 0.05 shows that MCGE-II (Combined) outperforms
MCGE-II (Time) in terms of number of generations. That
is, MCGE-II (Combined) quickly generates efficient paral-
lel recursive programs than MCGE-II (Time) due to the
grammatical bias. Hence, MCGE-II (Combined) is the best
variant that reports an average (on all the problems) speed-
up of 8.13 for 16 cores, a significant improvement of 23.86%
over MCGE-II (Unoptimized) that reports 6.19 speed-up.

AlthoughMCGE-II (Combined) boosts up the performance
over the original system, it fails to fully utilize the power of
multi-cores. That is, it reported a speed-up of 8.13 on 16
cores of processor, where the ideal case should be 16. Many
factors contribute in obviating to achieve the ideal scale-up.
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Figure 3: The lengths of GE, MCGE-II (Unopti-
mized, Combined) genotypes for Fibonacci. Space
constraints do not allow reporting the graphs for all
the problems but the trends are very similar.

6. DISCUSSION
The quality of parallel code is difficult to quantify as exe-

cution time often depends on the ability of OS to efficiently
schedule the tasks. This job itself is complicated by other
parallel threads (from other programs) running at the same
time. OpenMP abstracts away much of these concerns from
programmers, which makes it easier at the cost of some of
fine control. In order to compensate this, it is often neces-
sary to dig deeper by adapting to program to the hardware,
which makes the programmer’s job increasingly hard.

Hardware can cap the maximum number of threads; how-
ever, in the given grammars each recursive call spawns a
new thread. Then, the OS-specific factors for the Linux ker-



nels, which eventually fail to scale in scheduling the very
high number of threads. Moreover, a parent thread spawns
a child thread, it sleeps until all the child threads have
finished. This process expensive, when a large number of
threads are involved. Also, memory access restrictions over
shared and private variables, as in section 3, can add to the
complexity of the executing code.

Complexity in this instance comes from (at least) two key
sources. Firstly, as with any evolved code, we run the risk of
code growth, and, secondly, from the vagaries of scheduling
what can be a very high number of threads. We first examine
code growth.

6.1 Code Growth
We analyze the size of standard GE (without OpenMP

pragmas; it evolves serial programs), and MCGE-II geno-
types. GE genomes have two sizes [12]: actual and effective.
Actual length is the total size of a genotype, while effective
length is the part, used to generate the end program.

Figure 3 presents the actual and effective lengths of GE,
MCGE-II (Unoptimized, Combined) averaged across 50 runs
of 100 generations of Fibonacci. As expected, the actual and
effective lengths vary significantly for the particular set-ups,
with Wilcoxon Signed Rank Sum tests at α = 0.05.

When we compare across approaches, surprisingly, the
statistical tests show insignificant difference between the ac-
tual length of GE and MCGE-II (Unoptimized, Combined).
In fact GE generates larger genotypes than required, thus,
the MCGE-II grammars do not influence the actual length,
as both use the same search engine. Instead, MCGE-II uses
some of the actual size to map the OpenMP pragmas, hence,
effective length increases. In GE, the actual lengths range
from 25 to 47, while effective lengths range from 5 to 8 de-
pending on the problem.

The effective lengths of MCGE-II (Unoptimized, Com-
bined) are significantly larger than that of GE at α = 0.05
due to the extra mapping steps. In MCGE-II, they range
from 12 to 18, based on the problem. However, among the
MCGE-II variants, the effective lengths do not vary signif-
icantly. It shows the fact that the changes in the design of
MCGE-II grammars forfeit the overhead in code growth.

This slight increase in effective length may impact the per-
formance of the programs only for 2 cores as is manifested
in [7], hence, performance suffers (shown in section 5). How-
ever, for 4 cores and above, it has negligible implications, be-
cause now the impact of the extra cores is greater than that
of the extra code. Also note, the code growth is independent
of the number of cores under execution.

However, it is interesting to observe that GE does not
bloat like GP, a phenomenon that was also noted in [3]. And,
the reasons behind such observations remain unanswered,
leaving a lot of scope for future work.

6.2 Computational Complexity
We also empirically analyze the computational complex-

ity of MCGE-II (Combined) generated task parallel recur-
sive programs. In this analysis, we consider the number of
recursive calls of a program over the given input.

Although, space limitations do not permit reporting the
details, the analysis shows that the problems Sum-of-N, Fac-
torial, Reverse exhibit O

(

n
)

(linear) complexity whereas,

Binary-Sum and Quick sort exhibit O
(

logn
)

and, O
(

nlogn
)

complexity respectively, while Fibonacci shows O
(

2n
)

com-

plexity. This demonstrates that the evolving programs are
competitive with that of the conventional human written
programs. It is to be noted that the use of parallel hardware
can only reduce the computational load by dividing it among
the existing processing elements, but not over the computa-
tional complexity. To that end in this paper, Binary-Sum
exhibits the lowest complexity (O

(

log(n)
)

).
However, this analysis suggests that Fibonacci required

an exponential number of recursive calls. In such cases the
performance fails to scale-up due to excessive parallelism,
because an exponential number of recursive calls create an
exponential number of threads, where too many threads op-
erate to perform too little individually. Clearly, this means
that the degree of parallelism needs to be managed better.
Hence, next we further optimize the performance.

〈condition〉 ::= if(〈input〉〈lop〉〈const〉)‘{’〈newline〉
〈line1 〉;〈newline〉〈line2 〉;〈newline〉‘}’

is altered to appear as

〈condition〉 ::= if(〈input〉〈lop〉〈const〉)‘{’〈newline〉
〈line1 〉;〈newline〉〈line2 〉;〈newline〉‘}’
〈newline〉 else if (〈input〉 〈lop〉
〈const〉〈const〉) ‘{’ 〈newline〉 〈line1 〉;
〈newline〉 〈line2 〉; 〈newline〉‘}’

Figure 4: The enhanced MCGE-II grammars to gen-
erate a program that is both serial and parallel.

i f (n <= 2) { temp = n ; r e s += temp ; }
e l s e i f (n <= 39)
{ temp = f i b (n−1)+ f i b (n−2); r e s += temp ; }
e l s e {
#pragma omp p a r a l l e l s e c t i o n s \
p r i v a t e ( a ) shared (n , temp , r e s )
{ #pragma omp se c t i on
{ a = f i b (n−1);

#pragma omp atomic r e s += temp+a ; }
#pragma omp se c t i on
{ a = f i b (n−2);

#pragma omp atomic r e s += temp+a ; }
} } r e tu rn r e s ;

Figure 5: Evolved program that combines both par-
allel and serial execution to increase the speed-up.

7. FURTHER PERFORMANCE SCALING
Armed with the knowledge from the previous section we

seek to constrain the systems so as to reduce the chances of
excessive parallelism. To do this, we combine parallel and
serial implementations of the evolved programs, which, fur-
ther improves the performance. This reduces the overhead
caused due to excessive parallelism as the top level recursive
calls distribute load across a number of threads, whereas
the lower level recursive calls carry out appropriately sized
chunks of work instead of merely invoking more threads.
We leave it up to evolution to detect the appropriate level
at which recursion switches from parallel to serial.

To replicate these changes, we enhance the MCGE-II gram-
mars (in Figure 1) to appear as shown in Figure 4, termed
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Figure 7: The performance of MCGE-II (Scaled).

Table 5: The mean best generation (mean ± [stan-
dard deviation]) of MCGE-II (Grammar, Combined,
Scaled). The lowest value is in boldface.

#

MCGE-II
Grammar Combined Scaled
mean best mean best mean best
generation generation generation

1 45.38 ± [2.81] 43.27 ± [5.37] 44.38 ± [2.81]
2 31.19 ± [4.73] 36.51 ± [3.67] 39.11 ± [4.73]
3 44.73 ± [5.26] 59.89 ±[4.15] 52.17 ± [4.45]
4 59.14 ± [5.34] 61.43 ± [5.19] 64.88 ± [3.51]
5 47.53 ± [2.19] 45.32 ± [4.92] 44.53 ± [2.19]
6 40.49 ± [5.23] 47.28 ± [3.15] 42.49 ± [5.23]

as MCGE-II (Scaled), hereafter. We alter the non-terminal
< condition > to generate nested if-else condition blocks.
The changes generate a program that runs both in parallel as
well as serial to reduce the execution time of the evolved pro-
grams. It also generates a two digit thread limiting constant
automatically, at which, the serial execution is initiated.

Figure 5 shows the MCGE-II (Scaled) generated parallel
recursive Fibonacci program. It adapts the thread limiting
constant to the given problem and computational environ-
ment; this constant, arrests the further creation of threads
and continues to execute serially. The intermediate result
(temp in else if) is shared among the threads, thus, further
optimizes the execution time, thereby, efficiently exploits the
power of multi-cores.

The constant (39) in the else if (Figure 4) condition is the
thread limiting constant for 16 cores. Figure 6 shows the
thread limiting constants range (with standard deviation)
with respect to the number of cores for all the six experi-
mental problems. It evolves different limiting constants for
each problem. Here, we evolve a two digit constant, which,
for a large input (say, a 1000000 element array) may not be
an optimal limitation, which might be a three or a four digit
constant. This can be addressed with digit concatenation
grammars [12, Chapter-5], a focus of the future research.

Figure 7 shows the speed-up of MCGE-II (Scaled) over all
the six experimental problems. Overall, MCGE-II (Scaled)
shows better performance over its counterparts.

Table 5 presents the mean best generation results of three
MCGE-II variations. The results show that MCGE-II (Gram-
mar) generates best programs faster than the two MCGE-
II (Combined, Scaled) variants because of the grammatical
bias, while the last two uses execution time in fitness evalu-
ation, thus, makes the evolution slightly hard but generates
the efficient task parallel recursive programs.

Table 6: Significance of performance and mean best
generation of MCGE-II (Unoptimized, Grammar,
Time, Combined, Scaled). Boldface shows the sig-
nificance, while asterisk (*) shows the best variants.

MCGE-II Average
p− value p−Hommel

variant Rank

Performance Optimization
Unoptimized 4.5 1.2604E-4 0.0125
Grammar 4.5 1.2604E-4 0.0166

Time 3.0 0.0284597 0.025
Combined 1.9998 0.0347332 0.05
Scaled∗ 0.99999 - -

Mean Best Generation
Unoptimized 4.333333 0.0019107 0.0125
Grammar∗ 1.5 - -

Time 3.833333 0.0105871 0.01667
Combined 2.49998 0.0355132 0.05
Scaled 3.666667 0.0176221 0.025

Table 6 shows the non-parametric Friedman tests with
Hommel’s post-hoc analysis on performance and mean best
generation of MCGE-II (Unoptimized, Grammar, Time, Com-
bined, Scaled). A variant with the lowest rank is the best
among all of them, and is marked with an asterisk (*). Sig-
nificantly different variants from the best variant at α = 0.05



are in boldface, and is determined when the p − value is
less than p-Hommel. For performance optimization, MCGE-
II (Scaled) outperforms the remaining four MCGE-II vari-
ants. Note, these results are for 16 cores of a processor,
and are similar for the 8 cores, while they are insignifi-
cant with 4 cores and below. On average, for 16 cores,
MCGE-II (Scaled) speeds up by a factor 9.97, which im-
proves over MCGE-II (Combined) and MCGE-II (Unopti-
mized) by 17.45% and 37.91% respectively.

For mean best generation, the MCGE-II (Grammar) out-
performs the remaining four MCGE-II variants. Note that
these results are for 16 cores, while they are similar for
8 cores and below. Although MCGE-II (Scaled) requires
slightly more number of generations over MCGE-II (Gram-
mar, Combined), it is considered as the best variant as it
generates efficient parallel programs.

However, a similar solution to avoid the inefficiency by the
recursive calls is by keeping a table that records the result
of a recursive call in its first evaluation. Then, we can refer
the table for the repeated recursive calls, similar to Koza [9].
But this approach has often been criticized [10] in the EC
community for not being an exact recursion.

8. CONCLUSION AND FUTURE WORK
In summary, we extended MCGE-II to automatically gen-

erate efficient task parallel recursive programs. This study
offered a separation between the task and data parallelism
in the design of the grammars along with the execution time
in fitness evaluation. The modifications in the grammar
favoured quick generation of programs, while the execution
time helped in optimizing their performance.

We then analysed the effect of OpenMP thread scheduling
and code growth on performance. Scheduling issues cause
performance implications, while code growth (except for 2
cores) has negligible effect on performance of the evolving
parallel programs. We also, analysed the computational
complexity of the evolving programs, where excessive par-
allelism restricted the degree of parallelism in the evolving
programs. We limited this behaviour with the evolution of
programs that run both in serial (for lower level recursive
calls) and parallel, thus, further optimized the performance.

Although the limiting constant that switches between par-
allel and serial modes of execution fails to generalize for large
input because we limit it to two digits, it is easy to amend
the grammar so that it can evolve a larger or smaller con-
stant as the problem demands.
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