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Abstract

This paper introduces a new design methodology (we called it an “innovization” task) in the
context of finding new and innovative design principles by means of optimization techniques.
Although optimization algorithms are routinely used to find an optimal solution corresponding
to an optimization problem, the task of innovization stretches the scope beyond an optimiza-
tion task and attempts to unveil new and innovative design principles relating to decision
variables and objectives, so that a deeper understanding of the problem can be obtained.
After describing the innovization procedure and its difference from a standard optimization
procedure, the innovization procedure is applied to a number of engineering design problems.
The variety of problems chosen in the paper and the resulting innovations obtained for each
problem amply demonstrate the usefulness of the innovization task. The results should encour-
age a wide spread applicability of the proposed innovization procedure (which is not simply
an optimization procedure) to other problem-solving tasks.

Keywords: Innovative design, optimization, engineering design, evolutionary optimization, multi-
objective optimization, commonality principles, Pareto-optimal solutions.

1 Introduction

Innovation, defined in Oxford American Dictionary as ‘the act of introducing a new process or
the way of doing new things’ has always fascinated man. In the context of engineering design of
a system, a product or a process, researchers and applicationists constantly look for innovative
solutions. Unfortunately, there exist very few scientific and systematic procedures for achieving
such innovations. Goldberg [12] narrates that a competent genetic algorithm – a search and
optimization procedure based on natural evolution and natural genetics – can be an effective
mean to arrive at an innovative design for a single objective scenario.

In this paper, we extend Goldberg’s argument and describe a systematic procedure involving
a multi-objective optimization task and a subsequent analysis of optimal solutions to arrive at
a deeper understanding of the problem, and not simply to find a single optimal (or innovative)
solution. In the process of understanding insights about the problem, the systematic procedure
suggested here may often decipher new and innovative design principles which are common to
optimal trade-off solutions and were not known earlier. Such commonality principles among
multiple solutions should provide a reliable procedure of arriving at a ‘blue-print’ or a ‘recipe’ for
solving the problem in an optimal manner. Through a number of engineering design problems,
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we describe the proposed ‘innovization’ process and present resulting innovized design principles
which are useful, not obvious from the appearance of the problem, and also not possible to achieve
by a single-objective optimization task.

In the remainder of the paper, we describe the importance of considering multiple conflicting
objectives in an innovative design task in Section 2. Thereafter, we present the proposed in-
novization procedure in Section 3. The innovization task is illustrated by applying the procedure
on a number of engineering design problems in Sections 4 to 8. Finally, conclusions are made in
Section 9.

2 Multiple Conflicting Objectives of Design

The main crux of the proposed innovization procedure involves optimization of at least two
conflicting objectives of a design. When a design is to be achieved for a single goal of minimizing
size of a product or of maximizing output from the product, usually one optimal solution is the
target. When optimized, the optimal solution portrays the design, fixes the dimensions, and
implies not much more. Although a sensitivity analysis can provide some information about the
relative importance of constraints, they only provide local information close to the single optimum
solution. Truly speaking, such an optimization task of finding a single optimum design does not
often give a designer any deeper understanding than what and how the optimum solution should
look like. After all, how much a single (albeit optimal) solution in the entire search space of
solutions can offer to anyone?

Let us now think of an optimum design procedure in the context of two or more conflicting
goals. Say, we are interested in the design of a product for minimum size and for maximum output
simultaneously. Ideally, such a bi-objective optimization task results in a set of optimal solutions,
known as Pareto-optimal solutions, each portraying a trade-off between the two objectives [19,
6]. Out of these optimal solutions lies a solution (say solution A) which is the best for size
consideration and a hopefully a different solution (say solution B) which is the best for output
consideration. There also lie a host of many other solutions which are not as good as A in terms
of size or not as good as B in terms of delivered output, but these intermediate solutions are
good compromises to solutions A and B. There exist a plethora of classical and evolutionary
approaches to arrive at a number of such Pareto-optimal solutions iteratively and reliably [6, 3,
2, 19]. However, we are not simply interested in finding a set of such optimal trade-off solutions,
rather find them and analyze them for discovering some interesting commonality principles in
them.

In the design of minimizing size of a product, it is intuitive that the obtained optimal design
will correspond to having as small a dimension as possible. Visibly, such a minimum-sized solution
will look small and importantly will often not be able to deliver too much of an output. If we
talk about the design of an electric induction motor involving armature radius, wire diameter and
number of wiring turns as design variables and the design goal is to minimize the size of the motor,
possibly we shall arrive at a motor which will look small and will deliver only a few horsepower
(as shown as solution A in Figure 1), just enough to run a pump for lifting water to a two-storey
building. On the other hand, if we design the motor for the maximum delivered power using the
same technology of motoring, we would arrive at a motor which can deliver, say, a few hundreds
of horsepower, needed to run a compressor in an industrial air-conditioning unit (solution B
in Figure 1). However, the size and weight of such a motor will be substantially large. If we
let use a bi-objective optimization method of minimizing size and maximizing delivered power
simultaneously, we shall arrive at these two extreme solutions and a number of other intermediate
solutions (as shown in the figure) with different trade-offs in size and power, including motors
which can be used in an overhead crane to hoist and maneuver a load, motors delivering 50 to
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Figure 1: Trade-off designs show a clear conflict between motor size and power delivered in a
range of TEFC three-phase squirrel cage induction motors (data taken from Siemens Ltd. [17]).
Despite the differences, are there any similarities in their designs?

70 horsepower which can be used to run a machining center in a factory, and motors delivering
about a couple of hundred horsepower which can be used an industrial exhauster fan.

If we now line up all such motors according to the worse order of one of the objectives, say
their increased size, in the presence of two conflicting objectives, they would also get sorted in the
other objective in an opposite sense (in their increased output). Obtaining such a wide variety of
solutions in a single computational effort is itself a significant matter, discussed and demonstrated
in various evolutionary multi-objective optimization (EMO) studies in the recent past [6, 3]. Here,
we suggest a post-optimality analysis which should result in a set of innovized principles about
the design problem, which we describe next.

After the multi-objective optimization task, we have a set of optimal solutions specifying the
design variables and their objective trade-offs. We can now analyze these solutions to investigate
if there exist some common principles among all or many of these optimal solutions. In the
context of the motor design task, it would be interesting to see if all the optimal solutions have
an identical wire diameter or have an armature diameter proportional or in some relation to the
delivered power! If such a relationship among design variables and objective values exist, it is
needless to say that they would be of great importance to a designer. Such information will provide
a plethora of knowledge (or recipe) of how to design the motor in an optimal manner. With such
a recipe, the designer can later design a new motor for a new application without resorting to
solving a completely new optimization problem again. Moreover, the crucial relationship among
design variables and objectives will also provide vital information about the theory of design of
a motor which can bring out limitations and scopes of the existing procedure and spur new and
innovative ideas of designing an electric motor.

Such a task has a third dimension in the context of practices in industries. Successful indus-
tries standardize their products for reuse, easier maintenance and also for cost reduction. For
industries interested in producing a range of products (such as electric motor manufacturing com-
panies produce motors of a particular type ranging from a few horsepower to a few hundreds of
horsepower), if some commonality principles of their designs can be found, this may help save
inventory costs by keeping only a few common types of ingredients and raw materials (such as
wires, armatures etc.) and also may help simplify the manufacturing process, in addition to
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cutting down the need for specialized man-powers.
It is argued elsewhere [7] that since the Pareto-optimal solutions are not any arbitrary so-

lutions, rather solutions which mathematically must satisfy the so-called Fritz-John necessary
conditions (involving gradients of objective and constraint functions) [13], in engineering and sci-
entific systems and problems, we may be reasonably confident in claiming that there would exist
some commonalities (or similarities) among the Pareto-optimal solutions which will ensure their
optimality. On the other hand, there would exist some dissimilarities among them which will
make them different from each other and place them on various locations on the Pareto-optimal
frontier providing an optimal trade-off among objectives. Whether such similarities exist for all
solutions on the Pareto-optimal front or some kind of similarity exist partially among solutions on
a part of the Pareto-optimal front and another kind of similarity exists in another part of the front
or there exist hierarchical (or level-wise) similarities (some kind to all and some sub-kind to a por-
tion of the front) are matters which may vary from problem to problem. Whatever is the extent of
commonalities, if exist, must portray some design principles which are worth knowing. We argue
and demonstrate amply in the subsequent sections that such design principles deciphered from
the obtained Pareto-optimal solutions may often bring out new and innovative principles which
were unknown earlier. They are also useful in design activities and provide a better understanding
of parameter interactions. Since these innovative principles are derived through the outcome of a
carefully performed optimization task, we call this procedure an act of ‘innovization’ – a process
of obtaining innovative solutions and design principles through optimization.

3 Innovization Procedure

As described above, the analysis of the optimized solutions will result in worthwhile design prin-
ciples, if the trade-off solutions are really close to the optimal solutions or if they are exactly
on the Pareto-optimal frontier. Since for engineering and complex scientific problem-solving, we
need to use a numerical optimization procedure and since in such problems, the exact optimum is
not known a priori, adequate experimentation and verification must have to be done first to gain
confidence about the closeness of the obtained solutions to the actual Pareto-optimal front. In all
case studies performed here, we have used the well-known elitist non-dominated sorting genetic
algorithm or NSGA-II [8] as the multi-objective optimization tool. NSGA-II begins its search
with a random population of solutions and iteratively progresses towards the Pareto-optimal
front so that at the end of a simulation run, multiple trade-off optimal solutions are obtained
simultaneously. Due to its simplicity and efficacy, NSGA-II is adopted in a number of commercial
optmization softwares and has been extensively applied to various multi-objective optimization
problems in the past few years. For a detail procedure of NSGA-II, readers are referred to the
original study [8]. The NSGA-II solutions are then clustered to identify a few well-distributed
solutions. The clustered NSGA-II solutions are then modified by using a local search procedure
(we have used Benson’s method [1, 6] here). The obtained NSGA-II-cum-local-search solutions
are then verified by two independent procedures:

1. The extreme Pareto-optimal solutions are verified by running a single-objective optimiza-
tion procedure (a genetic algorithm is used here) independently on each objective function
subjected to satisfying given constraints.

2. Some intermediate Pareto-optimal solutions are verified by using the normal constraint
method (NCM) [18] starting at different locations on the hyper-plane constructed using the
individual best solutions obtained from the previous step.

When the attainment of optimized solutions and their verifications are made, ideally a data-
mining strategy must be used to automatically evolve design principles from the combined data of
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optimized design variables and corresponding objective values. By no means this is an easy task
and is far from being a simple regression task of fitting a model over a set of multi-dimensional
data. We mentioned some such difficulties earlier: (i) there may exist multiple relationships which
are all needed to be found by the automated programming, thereby requiring to find multiple
solutions to the problem simultaneously, (ii) a relationship may exist partially to the data set,
thereby requiring a clustering procedure to identify which design principles are valid on which
clusters, and (iii) since optimized data may not exactly be the optimum data, exact relationships
may not be possible to achieve, thereby requiring to use fuzzy rule or rough set based approaches.
While we are currently pursuing various data-mining and machine learning techniques for an
automated learning and deciphering of such important design principles from optimized data set,
in this paper we mainly use visual and statistical comparisons and graph plotting softwares for
the task.

We present the proposed innovization procedure here:

Step 1: Find individual optimum solution for each of the objectives by using a single-objective
GA (or sometimes using NSGA-II by specifying only one objective) or by a classical method.
Thereafter, note down the ideal point.

Step 2: Find the optimized multi-objective front by NSGA-II. Also, obtain and note the nadir
point1 from the front.

Step 3: Normalize all objectives using ideal and nadir points and cluster a few solutions Z (k)

(k = 1, 2, . . . , 10), preferably in the area of interest to the designer or uniformly along the
obtained front.

Step 4: Apply a local search (Benson’s method [1] is used here) and obtain the modified opti-
mized front.

Step 5: Perform the normal constraint method (NCM) [18] starting at a few locations to verify
the obtained optimized front. These solutions constitute a reasonably confident optimized
front.

Step 6: Analyze the solutions for any commonality principles as plausible innovized relationships.

Since the above innovization procedure is expected to be applied to a problem once and for all,
designers may not be quite interested in the computational time needed to complete the task.
However, if needed, the above procedure can be made faster by parallelizing Steps 1, 2, 4 and 5
on a distributed computing machine.

We now illustrate the working of the above innovization procedure on a number of engineering
applications. In all problems solved in this paper, we use sufficiently large population size and
run an evolutionary multi-objective optimization algorithm (NSGA-II) for sufficient generations
so as to have confidence on the obtained trade-off frontier.

4 Two-Member Truss Design

We begin with a three-variable, two-objective truss design problem. This problem was originally
studied using the ε-constraint method [2, 19] and later by an evolutionary approach [6], but was
never attempted to verify the optimality of the obtained solutions. The truss (Figure 2) has to
carry a certain load without elastic failure. We consider two objectives of design: (i) minimize

1It is interesting to note that finding a set of trade-off Pareto-optimal solutions using an evolutionary multi-
objective optimization (EMO) procedure is one way of arriving at the nadir point. Finding the nadir point is an
important task in the classical multi-criterion decision-making approaches and is also reported to be a difficult task
[15].
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Figure 2: A two-membered truss structure.

total volume of truss members and (ii) minimize the maximum stress developed in both members
(AC and BC) due to the application of the 100 kN load. There are three decision variables:
cross-sectional area AC (x1) and BC (x2) measured in m2 and the vertical distance between A
(or B) and C (y) measured in m. The non-linear optimization problem is given as follows:

Minimize f1(~x, y) = x1

√

16 + y2 + x2

√

1 + y2,
Minimize f2(~x, y) = max(σAC , σBC),

Subject to max(σAC , σBC) ≤ Smax,
0 ≤ x1, x2 ≤ Amax,
1 ≤ y ≤ 3.

(1)

Using the dimensions and loading specified in Figure 2, it can be observed that member AC is
subjected to 20

√

16 + y2/y kN load and member BC is subjected to 80
√

1 + y2/y kN load. The
stresses are calculated as follows:

σAC =
20

√

16 + y2

yx1
, (2)

σBC =
80

√

1 + y2

yx2
. (3)

Here, we limit the stresses to Smax = 1(105) kPa and cross-sectional areas to Amax = 0.01 m2. All
three variables are treated as real-valued and the simulated binary crossover (SBX) with ηc = 10
and the polynomial mutation operator with ηm = 50 are used [6]. All constraints are handled using
the constraint-tournament approach developed elsewhere [6]. Figure 3 shows all non-dominated
solutions obtained by NSGA-II. Although the trade-off between the two objectives is clear from
the figure, we perform two other studies to gain confidence about optimality of these solutions.
First, we employ a single-objective genetic algorithm to find the optimum of individual objective
functions subjected to the constraint and variable bounds. Figure 3 marks these two solutions as
’1-obj’ solutions. It is evident that NSGA-II front extends to these two extreme solutions. Next,
we use the NCM method [18] with different starting points from a line joining the two extreme
solutions. The solution found at the end of each optimization is shown in the figure as well.
Since these solutions fall on the NSGA-II front, it gives us confidence that the obtained NSGA-II
non-dominated solutions are close to the Pareto-optimal front (if not on the front).

4.1 Innovized Principles

Before we discuss the NSGA-II solutions, we perform an exact analysis to find the Pareto-optimal
solutions. The problem, although simple mathematically, is a typical optimization problem having
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two resource terms in objectives involving variables x1 and x2 each and interlinking them with
another variable y. For such problems, the optimum occurs when the identical resource allocation
between two terms in both objective and constraint functions are made:

x1

√

16 + y2 = x2

√

1 + y2, (4)

20
√

16 + y2

yx1
=

80
√

1 + y2

yx2
. (5)

Thus, every optimum solution is expected to satisfy both the above equations, yielding y = 2 and
x1/x2 = 0.5. Using y = 2 m in the expression for the first (volume) objective, we can also obtain
x2 = V/2

√
5 m2, where V is the volume (in m3) of the structure. Substituting these values to

the objective functions V = f1 and S = f2, we also obtain SV = 400 kN – an inverse relationship
between the objectives. Thus, the solutions in the Pareto-optimal front are given in terms of
volume V , as follows:

x1 =
V

4
√

5
m2, x2 =

V

2
√

5
m2, y = 2 m, S = 400/V kPa.

When the variable x2 reaches its maximum limit, that is, at the transition point, V = 0.04472 m3

and S = 8, 944.26 kPa, and x2 cannot be increased any further. Interestingly, volume V can still
be increased in an optimal manner, as we shall see later.

The inset plot (drawn with a logarithmic scale of both axes) in Figure 3 shows this interesting
aspect of the obtained front. There are two distinct behaviors of the optimal front around the
transition point T marked in the figure: (i) one spanning from the smallest-volume solution to
about a volume of about 0.04478 m3 (point T), and (ii) another spanning from this transition point
till the smallest-stress solution. The extreme solutions and this intermediate solution, obtained
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Figure 3: NSGA-II solutions obtained for the
two-member truss structure problem.
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Figure 4: Variation of x1 and x2 for the truss
structure problem.

by NSGA-II, are tabulated in Table 1. An investigation on the values of the decision variables
reveals the following innovizations:

1. The inset plot in Figure 3 reveals that for optimal structures, maximum stress (S) developed
is inversely proportional to the volume (V ) of the structure, that is, SV = constant, as was
predicted above. When a straight line is fitted with the logarithm of two objective values,
SV = 402.2 relationship is found.
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Table 1: Two extreme solutions and an interesting intermediate solution (T) for the two-member
truss design problem are presented.

Solution x1 (m2) x2 (m2) y (m) f1 (m3) f2 (kPa)

Min. Volume 4.60(10−4) 9.05(10−4) 1.935 0.004013 99,937.031
Intermediate (T) 49.30(10−4) 99.89(10−4) 2.035 0.044779 8,945.610
Min. of max. stress 39.54(10−4) 100.00(10−4) 3.000 0.051391 8,432.740

2. The inset plot also reveals that the transition occurs at V = 0.044779 m3, close to the
theoretical value.

3. To achieve a solution with smaller maximum stress (and larger volume) optimally, both
cross-sectional areas (AC and BC) need to be increased linearly with volume, as shown in
Figure 4. The figure also plots the mathematical relationships (x1 and x2 versus V ) obtained
earlier with solid lines, which can be barely seen as the obtained NSGA-II solutions fall on
top of these lines.

4. A further investigation reveals that the ratio between these two cross-sectional areas is
almost 1:2 and the vertical distance (y) takes a value close to 2 m for all solutions.

5. Figure 5 reveals that the stresses developed on both members (AC and BC) are identical
for any optimized solution.
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Figure 5: Variation of stresses in AC and BC
of the two-member truss structure problem.
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Figure 6: Variation of y for the two-member
truss structure problem.

These are interesting properties about the design problem which may not be so intuitive to a
designer. But, the above innovized principles can be explained from the mathematical formulation
described above. Thus, although these optimality conditions can be derived mathematically from
the problem formulation given in Equation 1 in this simple two-membered truss-structure design
problem, they may be often tedious and difficult to achieve exactly for large-sized and complex
problems. Applying a numerical optimization technique and investigating the optimized solutions
have the potential of revealing such important innovative principles of design.

For solutions beyond the intermediate solution (T), a different scenario occurs. Since x2

reaches its upper limit (0.01m chosen here) at this critical point, x2 cannot be increased further
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and it remains fixed to this upper limit for all larger volume solutions. However, two optimality
properties – (i) the stresses in both members continue to have identical values and (ii) relationship
between two cross-sectional sizes dictated by Equation 4 continues to hold good. But, now x1

and y gets adjusted in a different manner: y (in m) is increased and x1 (in m2) is reduced with
an increase in overall volume (V in m3) of the structure, as given below:

y =

√

3200V 2 + 40V
√

6400V 2 − 12 − 4, (6)

x1 = 0.0025

√

16 + y2

1 + y2
. (7)

Beyond this critical point (T), since x2 cannot be increased any further, the only way to reduce
the stresses is to increase y in a manner so as to make the stresses in both members equal. An
increase of y increases the length of the members, but decreases the component of the applied load
on each member. Thus, a smaller cross-sectional area can be used to withstand the smaller load
causing a smaller developed stress. Equation 7 shows how the cross-section must be decreased as
a function of y.

Following observations can be made from the obtained solutions:

1. All NSGA-II solutions having a volume larger than the transition solution (T) is found to
have a fixed x2 = 0.01 m2 (upper limit of x2).

2. Figure 4 also verifies that beyond the transition point T, x1 decreases with volume.

3. To verify the variation of y with V given in Equation 6, Figure 6 is plotted with NSGA-II
solutions and with Equation 6. The optimal relationship between the two objectives is as
follows: SV = (4 + y2)/(0.01y). Since for Pareto-optimal solutions having V > 0.04472 m3,
the parameter y increases with V , the quantity SV increases with V , as depicted in the
inset plot of Figure 3.

Some of the above properties (such as, the existence and location of the transition point, cross-
sectional area x2 being constant beyond the transition point, and reduction of x1 beyond the tran-
sition point to increase V optimally) are difficult to comprehend from the problem formulation and
importantly are also difficult to obtain by any other means, including multiple single-objective op-
timizations of different weighted-sum problems. Even though, a classical weighted-sum approach
can be used to get a few points on the Pareto-optimal front, finding the transition point accidently
with a particular weight vector will be highly unlikely.

4.2 Higher-Level Innovizations

Before we leave this case study, we would like to raise another important aspect of the innovization
procedure. Since an analysis is performed on the solutions obtained by solving a particular
optimization problem (that is, for fixed values of all problem parameters), one may wonder how the
innovized results will change if different parameter values were used. In the context of the above
truss-structure design, the parameters kept fixed for the entire analysis were: (i) upper limit of
developed stress, Smax, (ii) upper limit of cross-sectional areas, Amax, (iii) lower and upper bound
of y. It would be interesting to investigate whether the innovized principles deciphered above will
still be valid parametrically for variations of these parameters! For example, one may think that
the reason for the fixed-x2 solutions (near smallest stress value) occurred due to the use of a small
Amax. It may be worthwhile to ponder whether the two-pronged behavior of the Pareto-optimal
front observed above would still remain, if the cross-sectional limit Amax is increased.
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To get a complete idea of the innovized principles, one needs to redo the multi-objective
optimization runs for different values of problem parameters and perform further analysis. Fig-
ure 7 shows the Pareto-optimal fronts obtained with different Amax values and by keeping rest
all parameters the same as before. Interestingly, in all simulations the two-pronged behavior
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Figure 7: Pareto-optimal fronts for different values of Amax show two-pronged behavior for the
truss-structure design problem.

appear, meaning that the property of fixed-y solutions for smaller volume solutions followed by
fixed-x2 solutions for smaller stress values is universal. A higher-level innovizations for the above
truss-structure design problems are as follows:

1. As long as the required cross-sectional areas can be accepted, there exists an optimum y.
By fixing y at this optimal value, a trade-off between stress and volume can be obtained by
directly changing x1 and x2 by an identical rate.

2. Since x2 (in this configuration) would reach the upper limit faster than x1 due to its re-
quirement of carrying a larger load, for any further reduction in stress value, x2 must be
kept fixed at the upper bound and y should be increased till allowed. While doing so, the
optimal procedure would be to reduce x1. Thus, the minimum-stress configuration would
be for the maximum value of x2 and for the largest value of y or the smallest value of x1,
whichever happens faster.

3. Figure 7 also shows that all fronts produce the same relationship SV ≈ 400 kN for optimality.
Since, y = 2 is an optimal solution for any Amax, ideally, SV = 2 × 20(16 + y2)/y or 400
kN for all cases. Thus, for all optimal trusses having no bounds on cross-sectional size, an
optimal truss will have SV = 400 kN.

Similarly, further higher-level innovizations can be investigated by varying other fixed parameters
and more insights can be revealed.

Two aspects are clear from the above discussion. The evolutionary multi-objective optimizer
(NSGA-II) is capable of finding solutions close to the Pareto-optimal front and an analysis of the
obtained solutions can reveal important information about the problem which may be difficult to
achieve by an exact mathematical analysis. We now consider more difficult problems.
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5 Gear Train Design

A compound gear train is to be designed to achieve a specific gear ratio between the driver and
driven shafts (Figure 8). The problem considered here is a modification to the problem solved
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Figure 8: A gear train.

elsewhere [14, 4]. The objective of this gear train design is to find the number of teeth in each
of the four gears so as to (i) minimize the error between the obtained gear ratio and a required
gear ratio of 6.931:1 and (ii) minimize the maximum size of four gears. Since gear diameter
is proportional to number of teeth which must be an integer, both objectives can be written
in terms of four integer decision variables: x = (x1, x2, x3, x4) = (Td, Tb, Ta, Tf ). We write the
two-objective optimization problem as follows:

Minimize f1(~x) =
∣

∣

∣6.931 − x3

x1

x4

x2

∣

∣

∣ ,

Minimize f2(~x) = max(x1, x2, x3, x4),

Subject to f1(~x)
6.931 ≤ 0.5,
12 ≤ x1, x2, x3, x4 ≤ 60,
all xi’s are integers.

(8)

The constraint ensures that the error between obtained gear ratio and the desired gear ratio is not
more than the 50% of the desired gear ratio. The decision variables are treated as integers and
handled using six-bit binary strings in NSGA-II and single-point crossover and bit-wise mutation
operators [11] are used. The all-zero string is coded to represent Ti = 12 (for i = 1, . . . , 4) and
all-one string is coded to represent Ti = 75. A constraint Ti ≤ 60 is then used to make sure that
the number of gear teeth in the range [12,60] are emphasized.

The individual minimum solutions obtained using single-objective GAs and NSGA-II are
shown in Table 2. The Pareto-optimal front obtained using NSGA-II is shown in Figure 9. Due to

Table 2: The extreme solutions for the gear train design problem.
Solution x1 x2 x3 x4 f1 f2

Min. Error 20 13 53 34 2.3077(10−4) 53
Min. of max. size of any gear 12 12 22 23 3.4171 23

the discreteness of the decision space, the non-dominated solutions are clustered to a few solutions
in the objective space. These optimized solutions are then verified using the normal-constraint
method (NCM). The obtained NCM solutions are also plotted in Figure 9.
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5.1 Innovized Principles

Next, we analyze the NSGA-II solutions to decipher any commonality principles:

1. To minimize the second (size) objective, gears d and b have almost the smallest allowable
number of teeth, as shown in Figure 10. The allowable limits on the gear-teeth (12 to 60)
are shown shaded. In order to achieve a small normalized error (less than 0.1) in the overall
gear-ratio from the desired value (6.931), in these gear-trains Tb and Td values are required
to be adjusted somewhat, but they still remain close to their respective lower bounds.

2. The maximum size of four gears occurs either for gear a or for gear f , a matter although
intuitive, comes out as an outcome.

3. To reveal an interesting matter, Figure 11 plots the first-stage ratio (Ta/Td) with the second-
stage ratio (Tf/Tb) for all optimized solutions. It is clear that there are two types of solutions:

A

Ta Tf
Td Tb

=6.931

Ta/Td

T
f
/
T
b

1.8 2.2 2.6 3.0 3.4
1.8

2.2

2.6

3.0

3.4

Figure 11: Two types of gear-trains are discovered as optimal.
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(i) gear-trains which have very small error (say, less than 0.1), that is, the product of the
second and first-stage ratios is almost equal to the desired overall ratio (6.931:1) and (ii) gear-
trains which have comparatively larger error from the desired gear ratio. Interestingly, for
these latter gear-trains (a vertical error-bar on them indicates the error), both the first and
the second-stage ratios are identical (except the one with the largest error). Although a large
error can happen for many different combinations of errors in two stages, the minimization
of the second objective (maximum number of gear teeth) causes both stages of gear-ratios to
be identical – a matter which is not quite intuitive, but comes out as an innovized principle
to this problem.

4. However, when the error is small (say, less than 0.1), although a gear-train (solution A
(12, 12, 32, 31) in the inset plot of Figure 9) with almost identical gear ratios (first stage
32/12 = 2.667 and second-stage 31/12 = 2.583) (ideally,

√
6.931 = 2.633) exists in the

Pareto-optimal set, there are certainly many other ways (making the product Ta

Td

Tf

Tb
almost

equal to 6.931) to achieve the overall gear ratio, as shown in Figure 11. It is also interesting
to note that solution A in Figure 9 is a knee solution. In order to move to neighboring
solutions in either objective, a comparatively larger sacrifice in one objective must be made
to have a small gain in the other objective. From a consideration of both objectives, this
solution would be an ideal choice to a decision-maker and an investigation of the obtained
solutions also reveals that this solution makes an almost equal distribution of gear-ratios
between two stages and also produces a small error in overall gear-ratio from the desired
value.

5. In the category of small-error gear-trains, exactly half of them have larger first-stage ratio
than that in the second stage and other half have larger second-stage ratio than that in the
first stage. This is apparent as the combined gear-ratio of (Ta/Td) · (Tf/Tb) = 6.931 can be
achieved for Ta/Td = α and Tf/Tb = β making α · β = 6.931. An identical combined gear
ratio can also be achieved by swapping the first-stage gears with the second-stage gears,
thereby making Ta/Td = β and Tf/Tb = α.

This example, though simple again, brings out a number of interesting properties of a gear-train
design problem. Importantly, this study also depicts that NSGA-II and other procedures described
here are also capable to be applied to non-linear integer programming problems.

6 Multiple-Disk Clutch Brake Design

In this problem, a multiple clutch brake [20], as shown in Figure 12, needs to be designed. Two
conflicting objectives are considered: (i) minimization of mass (f1 in kg) of the brake system and
(ii) minimization of stopping time (T in s). There are five decision variables: ~x = (ri, ro, t, F, Z),
where ri is the inner radius in mm, ro is the outer radius in mm, t is the thickness of discs in mm,
F is the actuating force in N and Z is the number of friction surfaces (or discs). All five variables
are considered discrete and their allowable values are given below:

ri = (60, 61, 62, . . . , 78, 79, 80)mm,
ro = (90, 91, 92, . . . , 108, 109, 110)mm,
t = (1, 1.5, 2, 2.5, 3)mm,
F = (600, 610, 620, . . . , 980, 990, 1000)N,
Z = (2, 3, 4, 5, 6, 7, 8, 10).
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Figure 12: A multiple-disk clutch brake.

The optimization problem is formulated below:

Minimize f1(~x) = π(x2
2 − x1

2)x3(x5 + 1)ρ,

Minimize f2(~x) = T = IZω
Mh+Mf

,

Subject to g1(~x) = x2 − x1 − ∆R ≥ 0,
g2(~x) = Lmax − (x5 + 1)(x3 + δ) ≥ 0,
g3(~x) = pmax − prz ≥ 0,
g4(~x) = pmaxVsr,max − przVsr ≥ 0,
g5(~x) = Vsr,max − Vsr ≥ 0,
g6(~x) = Mh − sMs ≥ 0,
g7(~x) = T ≥ 0,
g8(~x) = Tmax − T ≥ 0,
ri,min ≤ x1 ≤ ri,max,
ro,min ≤ x2 ≤ ro,max,
tmin ≤ x3 ≤ tmax,
0 ≤ x4 ≤ Fmax,
2 ≤ x5 ≤ Zmax.

(9)

The parameters are given below:

Mh = 2
3µx4x5

x2
3
−x1

3

x2
2
−x1

2 N·mm, ω = πn/30 rad/s, A = π(x2
2 − x1

2) mm2, prz = x4

A N/mm2,

Vsr = πRsrn
30 mm/s, Rsr = 2

3
x2

3
−x1

3

x2
2
−x1

2 mm, ∆R = 20 mm, Lmax = 30 mm,

µ = 0.5, pmax = 1 MPa, ρ = 0.0000078 kg/mm3, Vsr,max = 10 m/s,
s = 1.5, Tmax = 15 s, n = 250 rpm, Ms = 40 Nm,
Mf = 3 Nm, Iz = 55 kg·m2, δ = 0.5 mm, ri,min = 60 mm,
ri,max = 80 mm, ro,min = 90 mm, ro,min = 110 mm, tmin = 1.5 mm,
tmax = 3 mm, Fmax = 1, 000 N, Zmax = 9.

Individual minimum solutions are found by a single-objective NSGA-II and are shown in Table 3.
The trade-off between two objectives is clear from the table. The Pareto-optimal front obtained
using NSGA-II is shown in Figure 13. The extreme solutions shown in the table are also members
of the Pareto-optimal front. The front is also verified by finding a number of optimal solutions
using the NC method. The two extreme solutions shown in Table 3 are also identical to those
reported elsewhere [20].

6.1 Innovized Principles

Following observations are made by analyzing the NSGA-II results.
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Table 3: The extreme solutions for the multiple-disk clutch brake design.
Solution x1 (mm) x2 (mm) x3 (mm) x4 (N) x5 f1 (kg) f2 (s)

Min. brake mass 70 90 1.5 1000 3 0.4704 11.7617
Min. stopping time 80 110 1.5 1000 9 2.0948 3.3505
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Figure 14: Stopping time (s) versus braking
area (mm2) for the optimal solutions of the
clutch brake design problem.

1. The Pareto-optimal front is fragmented into a number of contiguous regions of identical Z
values, as shown in Figure 13. This means that fixing the number of discs is the highest-
level decision-making process by which the location of specific stopping time and brake mass
value get more or less set. This is not an intuitive matter, as the solutions on the Pareto-
optimal front could have been ordered in any arbitrary manner. But for solutions to be
optimal, the range of brakes from the least-weight design to quickest-acting design must be
achieved with a monotonically increasing number of discs. For the smaller-weight solutions,
fewer number of discs are needed, whereas for a quicker-acting design, the number of discs
required are more. A design with only two discs (Z = 2) becomes infeasible with respect
to the maximum stopping time constraint (g8(~x)) chosen in this study and hence does not
appear on the optimal frontier. Since Zmax = 9 is chosen, Z = 10 solutions also do not
appear as optimal.

2. Interestingly, there are two distinct relationships observed among the solutions of the Pareto-
optimal front. For every fixed-Z portion of the front, there is a trade-off which starts with
a small value of brake-mass having smallest values of ri (70 mm) and ro (90 mm), but in
order to remain optimal both radii increase linearly by maintaining a difference of exactly
∆R = 20 mm, making the constraint g1 active. When ri reaches its maximum limit (80
mm), ri remains constant at this upper limit, but ro keeps on increasing to produce faster
stopping time solutions. These fixed-ri solutions are marked in filled circles in Figure 13.
For example, with Z = 3, there are two such solutions which are Pareto-optimal.

3. Interestingly, for all optimal solutions, the following decision variables take identical values:

t = 1.5mm, F = 1, 000N.

The disc thicknesses (t) of all solutions are identical to the lower allowable value (tmin = 1.5
mm) and the applied force must be set to the largest allowable value (Fmax = 1, 000 N).
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These innovative relationships for an optimal solution is far from being intuitive and can
only be inferred from the obtained optimized data.

4. It is also interesting to note that the stopping time (T) is inversely proportional to the total
braking area (S) of the system, as shown in Figure 14. Although it may be intuitive to
a designer that a quicker stopping time solution is expected to be achieved for a braking
system having a larger braking area, NSGA-II solutions bring out an exact relationship
(T · S = 308, 106 mm2·s) between the two quantities in this problem. Since the thickness of
the discs is found to be exactly the same for all optimal solutions, the mass (first objective)
and braking surface area are proportional to each other. Figure 13 also shows an inverse
relationship between the two objectives. It is also interesting to note that for solutions
having the inner disc radius more than its allowed upper limit (80 mm), as shown in the
Figure 14 with filled circles, the above inverse relationship does not hold.

As indicated above, it is clear from the results that fixing the number of discs is the highest-level
decision-making in this design process. Say for example, if we need to design a brake system
capable of stopping in a maximum of 5 seconds, Figure 13 immediately indicates that a minimum
of Z = 7 discs are needed with a smallest weight of 0.964 kg, requiring ri = 72 mm and r0 = 92
mm. Any optimal design with a particular stopping time T must have an overall surface area
of contact equal to S = 308, 106/T mm2. Moreover, if a brake with a stopping time in the
range 4.6 seconds to about 5.1 seconds is required, the optimal design should have seven discs
with its weight ranging between 0.941 kg to 1.047 kg. Thus, Figure 13 and the corresponding
decision variables values can be used as a ‘recipe’ of arriving at an optimal design for a particular
desired performance of the braking system. Moreover, the use of the smallest possible thickness
of discs and largest possible applied load would ensure working of the brake system at its optimal
performance.

6.2 Higher-Level Innovizations

It seems from the above simulation runs that the parameter ri,max is an important one. In order
to investigate the effect of this parameter on the obtained Pareto-optimal solutions, we rerun
NSGA-II for two other ri,max values (85 and 90 mm) and plot the frontiers in Figure 15. In both
these cases, ∆R = 20 mm, t = 1.5 mm, F = 1, 000 N remain as innovizations. Three higher-level
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Figure 15: Effect of ri,max on the trade-off solutions of the clutch brake design problem.

innovized principles are obtained from this study:
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1. With larger upper limit of ri, the gap between trade-off fragments of two consecutive Z
values reduce. Thus, the deviation of optimal solutions (shown with filled circles) from fixed
T ·S relationship observed in Figure 14 is purely due to the fixation of the upper limit of ri.

2. Solutions obtained with fixed ri = ri,max are better for a larger ri,max value. However,
solutions having ri < ri,max and obtained with different ri,max values all follow the T · S =
308, 106 relationship. Thus, the T -S relationship is independent of the choice of ri,max.

3. With larger upper limit of ri, more light-weight brakes with only Z = 2 discs having a
stopping time less than or equal to 15 seconds are possible. Recall that with ri,max = 80
mm, Z = 2 solutions were infeasible. These light-weight brakes have larger ri and ro values
than the earlier case, thereby allowing to have a larger surface area per disc.

With the limit of ri,max = 85 or 90 mm, the lightest weight brake weighs 0.4145 kg having ri = 84
mm and ro = 104 mm, as opposed to 0.4704 kg obtained with ri,max = 80 mm. Similarly, a quicker-
acting brake can be designed with an increase in ri,max (T = 3.20 seconds with ri,max = 90 mm
compared to T = 3.35 seconds with ri,max = 80 mm).

7 Spring Design

A helical compression spring needs to be designed for minimum volume and for minimum devel-
oped stress. Three variables are used for this purpose: the wire diameter d which is a discrete
variable taking a few values mentioned below, the mean coil diameter D which is a real-valued
parameter varied in the range [1,30] in, and the number of turns N , which is an integer value
varied in the range [1,32]. The wire diameter d takes one of 42 non-equi-spaced values (as given
in [14]). Denoting the variable vector ~x = (x1, x2, x3) = (N, d,D), we write the two-objective,
eight-constraint optimization problem as follows:

Minimize f1(~x) = 0.25π2x2
2x3(x1 + 2),

Minimize f2(~x) = 8KPmaxx3

πx2
3 ,

Subject to g1(~x) = lmax − Pmax

k − 1.05(x1 + 2)x2 ≥ 0,
g2(~x) = x2 − dmin ≥ 0,
g3(~x) = Dmax − (x2 + x3) ≥ 0,
g4(~x) = C − 3 ≥ 0,
g5(~x) = δpm − δp ≥ 0,

g6(~x) = Pmax−P
k − δw ≥ 0,

g7(~x) = S − 8KPmaxx3

πx2
3 ≥ 0,

g8(~x) = Vmax − 0.25π2x2
2x3(x1 + 2) ≥ 0,

x1 is integer, x2 is discrete, x3 is continuous.

(10)

The parameters used are as follows:

K = 4C−1
4C−4 + 0.615x2

x3
, P = 300 lb, Dmax = 3 in, k = Gx2

4

8x1x3
3 ,

Pmax = 1, 000 lb, δw = 1.25 in, δp = P
k , lmax = 14 in,

δpm = 6 in, S = 189 ksi, dmin = 0.2 in, C = x3/x2,
G = 11, 500, 000 lb/in2, Vmax = 30 in3.
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The 42 discrete values of d are given below:

d =

























0.009, 0.0095, 0.0104, 0.0118, 0.0128, 0.0132,
0.014, 0.015, 0.0162, 0.0173, 0.018, 0.020,
0.023, 0.025, 0.028, 0.032, 0.035, 0.041,
0.047, 0.054, 0.063, 0.072, 0.080, 0.092,
0.105, 0.120, 0.135, 0.148, 0.162, 0.177,
0.192, 0.207, 0.225, 0.244, 0.263, 0.283,
0.307, 0.331, 0.362, 0.394, 0.4375, 0.5.

























The design variables d and D are treated as real-valued parameters in the NSGA-II with d taking
discrete values from the above set and N is treated with a five-bit binary string, thereby coding
integers in the range [1,32]. While SBX and polynomial mutation operators are used to handle d
and D, a single-point crossover and bit-wise mutation are used to handle N .

First, to obtain the individual minimum solutions, we use NSGA-II for solving each objective
alone and obtain the solutions shown in Table 4. The non-dominated front found by NSGA-II

Table 4: The extreme solutions for the spring design problem.
Solution x1 x2 x3 f1 f2

(in) (in) (in3) (psi)

Min. Volume 9 0.283 1.223 2.659 187,997.203
Min. Stress 21 0.5 1.969 27.943 56,626.148

also contains the same extreme solutions. Figure 16 shows the non-dominated front obtained by
NSGA-II. The solutions obtained by several starting solutions by the NC method are also shown

d=0.394

d=0.331

d=0.283 in

d=0.4375

d=0.5

NCM
1−obj

NSGA−II

 30 25 20 15 10 5 0
 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

Volume (in^3)

S
t
r
e
s
s
 
(
p
s
i
)

Figure 16: Pareto-optimal front obtained us-
ing NSGA-II for the spring design problem.
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Figure 17: Optimal solutions follow a relation-
ship between volume (size) and stress (perfor-
mance) in the spring design problem.

in the figure. A good agreement between single-objective results, NSGA-II results and NCM
results give us confidence in the optimality of the obtained front. For this problem, only the
minimum-volume solution obtained using a differential evolution based approach was reported
elsewhere [16] and it matches with the obtained NSGA-II solution.

18



7.1 Innovized Principles

Let us now analyze the optimal solutions to find if there are any innovized principles which can
be gathered about the spring design problem. We observe the following principles:

1. The Pareto-optimal front is fragmented and every fragment corresponds to a fixed value of
wire diameter d, as shown in Figure 16. Of 42 different allowed d values, only five values
make their places on the Pareto-optimal frontier. Here, fixing the d value fixes the range
of optimal objective values on the Pareto-optimal frontier, thereby making the selection of
this parameter the most important decision-making task in the design process.

2. Moreover, not every combination of D and N turns out to be optimal for these five values
of d. Figure 16 also shows (with a solid line) the complete non-dominated front obtained by
keeping d constant and using only D and N as decision variables. As evident from the figure,
some part of each front does not qualify (gets dominated by members of other fragments)
to remain as Pareto-optimal when all d values are allowed.

3. For an optimal solution having a small volume, a small d must be chosen. However, the
smallest available wire diameter (d = 0.009 in) is not an optimal choice. In fact, the smallest
optimal wire diameter is d = 0.283 in.

4. When the non-dominated solutions are plotted in a logarithmic scale (Figure 17), optimal
objective values (volume (V ) and stress (S)) are found to have an interesting relationship:
SV 0.517 = constant.

5. An investigation of optimal values of N and D reveals that they vary as N ∝ 1/D3 (shown in
Figure 18). Since different fixed-d plots are all parallel to each other, the above relationship
remains the same for all obtained solutions.
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constant relationship for the spring design
problem.

6. Similarly, an analysis of optimal values of d and D reveals: d ∝ D3/4 (shown in Figure 19)
for all trade-off solutions.

7. Combining the two relationships, we conclude that ND3/d4 is a constant for all non-
dominated solutions. It is interesting to note that this quantity is proportional to the
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inverse of spring constant k = Gd4/(8ND3). By substituting the constant derived from
the NSGA-II solutions, we obtain k = 560 lb/in for all optimal solutions. This reveals an
innovation for this spring design problem. In order to create an optimal solution, we simply
need to have a spring with a fixed spring constant of 560 lb/in for the chosen parameters
of the design problem. Obviously, one can have different combinations of d, D and N to
achieve this magical spring constant value. Figure 16 shows all such solutions which will
make a non-dominated optimal combination of two objectives. To design an optimal spring
having a small volume (or weight), the spring must be formed using a small sized wire,
a small mandrel diameter and a few number of turns. Interestingly, a bigger-sized spring
can also be designed with an identical spring constant by having a large sized wire, a large
mandrel diameter and a large number of turns. The latter design, although has an identical
spring constant to the former light-weight spring, will be able to withstand a larger amount
of stress. What we have achieved with the proposed innovization procedure is a ‘recipe’ to
arrive at different trade-off solutions (between size and strength), each having an identical
spring constant of 560 lb/in, but having differing dimensions.

8. Another interesting aspect of the obtained NSGA-II solutions is that the constraint g6 is
active for all solutions. By substituting the fixed parameters in the mathematical constraint
function (g6), we obtain k = (1000 − 300)/1.25 = 560 lb/in, thereby explaining the specific
value of the spring constant observed in the obtained data above. Since no other constraints
are active for all Pareto-optimal solutions, other constraints do not result in any other
innovization.

The above innovized principles provide us with a recipe of designing a spring optimally. For
example, if a spring has to be designed with a material having yield strength of 100,000 psi,
Figure 16 clearly shows that an optimal design must be made from a wire of diameter d = 0.394
in. Other design variables must take D = 1.779 in and N = 11 turns and the spring will have
a volume of 8.857 in3. The results can also be interpreted as follows. If the designer is looking
for designing a range of springs with materials having yield strength ranging from 130,000 psi to
165,000 psi, the optimal spring must be made from a wire of diameter 0.331 in, thereby requiring
to maintain a small inventory for storing only one-sized wires for making optimal springs. What
is also important here to note that all such springs will be optimal from a dual consideration of
volume (size) and strength (performance). The information about specific wire diameters (only
five out of chosen 42 different values) for optimality and a common property of having a fixed spring
constant (of 560 lb/in) are all innovations, which will be difficult to arrive at, otherwise. In this
particular problem, the chosen value of parameters G, Pmax, P , and δw allowed these properties
to emerge as innovations for a solution to be optimal. For some other parameter setting, some
other innovized principles may have been evolved. But to find such important principles of design,
our proposed methodology can be applied again (discussed in the next subsection) and it is not
clear how else such vital and useful information about a problem can be learned by any other
technique.

7.2 Higher-Level Innovizations

Next, we increase δw to twice to its previous value, that is, we set δw = 2.5 in. When we redo
the proposed innovization procedure, we once again observe that the constraint g6 is active for
all solutions. Substituting other parameters, we then obtain k = (1000 − 300)/2.5 = 280 lb/in,
half of what was achieved previously. Substituting the new values of the design variables in the
stiffness term k, we observe that all solutions possess more or less an identical k = 280 lb/in, as
can also be seen from Figure 20. We repeat the study for δw = 0.625 in and observe that the
corresponding stiffness of solutions come close to k = 1, 120 lb/in. This clearly brings out an
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Figure 20: Different δw causes different Pareto-optimal frontiers, each causing an identical spring
stiffness in all its solutions.

important innovization: All Pareto-optimal solutions must have an identical spring stiffness and
the stiffness value depends on the chosen values of fixed parameters.

8 Welded Beam Design

The welded beam design problem is well studied in the context of single-objective optimization
[21]. A beam needs to be welded on another beam and must carry a certain load F (Figure 21). It is

b

t

hl
F

Figure 21: The welded beam design problem.

desired to find four design parameters (thickness of the beam, b, width of the beam t, length of weld
`, and weld thickness h) for which the cost of the beam is minimum and simultaneously the vertical
deflection at the end of the beam is minimum. The overhang portion of the beam has a length of
14 in and F = 6, 000 lb force is applied at the end of the beam. It is intuitive that a design which is
optimal from the cost consideration is not optimal from rigidity consideration (or end-deflection)
and vice versa. Such conflicting objectives lead to interesting Pareto-optimal solutions. In the
following, we present the mathematical formulation of the two-objective optimization problem of
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minimizing cost and the end deflection [10, 5]:

Minimize f1(~x) = 1.10471h2` + 0.04811tb(14.0 + `),
Minimize f2(~x) = 2.1952

t3b ,
Subject to g1(~x) ≡ 13, 600 − τ(~x) ≥ 0,

g2(~x) ≡ 30, 000 − σ(~x) ≥ 0,
g3(~x) ≡ b − h ≥ 0,
g4(~x) ≡ Pc(~x) − 6, 000 ≥ 0,
0.125 ≤ h, b ≤ 5.0,
0.1 ≤ `, t ≤ 10.0.

(11)

There are four constraints. The first constraint makes sure that the shear stress developed at the
support location of the beam is smaller than the allowable shear strength of the material (13,600
psi). The second constraint makes sure that normal stress developed at the support location of
the beam is smaller than the allowable yield strength of the material (30,000 psi). The third
constraint makes sure that thickness of the beam is not smaller than the weld thickness from a
practical standpoint. The fourth constraint makes sure that the allowable buckling load (along
t direction) of the beam is more than the applied load F . A violation of any of the above four
constraints will make the design unacceptable. The stress and buckling terms are highly non-linear
to design variables and are given as follows [21]:

τ(~x) =

√

(τ ′)2 + (τ ′′)2 + (`τ ′τ ′′)/
√

0.25(`2 + (h + t)2),

τ ′ =
6, 000√

2h`
,

τ ′′ =
6, 000(14 + 0.5`)

√

0.25(`2 + (h + t)2)

2 {0.707h`(`2/12 + 0.25(h + t)2)} ,

σ(~x) =
504, 000

t2b
,

Pc(~x) = 64, 746.022(1 − 0.0282346t)tb3 .

Table 5 presents the two extreme solutions obtained by the single-objective GA and also by
NSGA-II. An intermediate solution, T (which will be explained latter), obtained by NSGA-II, is
also shown. Figure 22 shows these two extreme solutions and a set of Pareto-optimal solutions
obtained using NSGA-II. The obtained front is verified by finding a number of Pareto-optimal

Table 5: The extreme solutions for the welded-beam design problem.
Solution x1 (h) x2 (`) x3 (t) x4 (b) f1 f2

(in) (in) (in) (in) (in)

Min. Cost 0.2443 6.2151 8.2986 0.2443 2.3815 0.0157
Min. Deflection 1.5574 0.5434 10.0000 5.0000 36.4403 4.3904(10−4)

Intermediate (T) 0.2326 5.3305 10.0000 0.2356 2.5094 0.0093

solutions using the NC method.

8.1 Innovized Principles

Let us now analyze the NSGA-II solutions to decipher innovized design principles:

1. Although Figure 22 shows an apparent inverse relationship between the two objectives, the
logarithmic plot (inset) shows that there are two distinct behaviors between the objectives.
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Figure 22: NSGA-II solutions are shown for
the welded-beam design problem.
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Figure 23: Constraint values of all Pareto-
optimal solutions are shown for the welded-
beam design problem.

From an intermediate transition solution T (shown in Table 5 and in Figure 22) near the
smallest-cost (having comparatively larger deflection) solutions, objectives behave differently
than in the rest of the trade-off region. For small-deflection solutions, the relationship is
almost polynomial (f1 ≈ O(f−0.890

2 )).

2. Figure 23 plots the constraint values for all trade-off solutions. It is apparent that for all
optimal solutions the shear stress constraint is most critical and active. For small-deflection
(or large-cost) solutions, the chosen bending strength (30,000 psi) and allowable buckling
load (6,000 lb) are quite large compared to the developed stress and applied load. Any
Pareto-optimal solution must achieve the maximum allowable shear stress value (13,600
psi). Thus, in order to improve the design, selection of a material having a larger shear
strength capacity would be wise.

3. The transition point (point T) between two trade-off behaviors (observed in Figure 22)
happens mainly from the buckling consideration. Designs having larger deflection values (or
smaller cost values) reduce the buckling load capacity, as shown in Figure 23. When the
buckling load capacity becomes equal to the allowable limit (6,000 lb), no further reduction
is allowed. This happens at a deflection value close to 0.00932 in (having a cost of 2.509).

4. Interestingly, there are further innovizations with the design variables. For small-deflection
solutions, the decision variable b must reduce inversely (b ∝ 1/f2)) with deflection objective
(f2) to retain optimality. Since for these solutions, the shear stress constraint is only active
and since the shear stress constraint does not involve the variable b, this variable does not get
set by the constraint. On the other hand, b has an inverse effect between cost and deflection.
Thus, the optimal solutions reflect a similar pattern of variation to b: a reduction in b causes
a reduction in cost and an increase in deflection (Figure 23).

5. For small-deflection solutions, the decision variable t remains constant, as shown in Fig-
ure 24. This indicates that for most Pareto-optimal solutions, the height of the beam must
be set to its upper limit. Although t causes an inverse effect to cost and deflection, as
apparent from the equations, the active shear stress constraint involves t. Since shear stress
value reduces with an increase in t (apparent from the formulation), it can be argued that
fixing t to its upper limit would make a design optimal. Thus, if in practice solutions close
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Figure 24: Variations of design variables t and
b across the Pareto-optimal front are shown
for the welded-beam design problem.
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` across the Pareto-optimal front are shown
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to the smallest-cost solution are not desired, a beam of identical height (t = 10 in) may only
be procured, thereby simplifying the inventory.

6. However, an increase of ` and a decrease in h with an increase in deflection (or a decrease
in cost) are not completely monotonic, as can be seen from Figure 25. These two phenom-
ena are not at all intuitive and are also difficult to explain from the problem formulation.
However, the innovized principles for arriving at optimal solutions seem to be as follows:
for a reduced cost solution, keep t fixed to its upper limit, increase ` and reduce h and b.
This ‘recipe’ of design can be practiced only till the applied load is strictly smaller than the
allowable buckling load.

7. Thereafter, any reduction in cost optimally must come from (i) reducing t from its upper
limit, (ii) increasing b, and (iii) adjusting other two variables so as to make buckling, shear
stress, and constraint g4 active. In these solutions, with decreasing cost, the dimensions are
reduced in such a manner so as to make the bending stress to increase. Finally, the minimum
cost solution occurs when the bending stress equals to the allowable strength (30,000 psi, as
in Figure 23). At this solution all four constraints become active, so as to optimally utilize
the materials for all four purposes.

8. To achieve very small cost solutions, the innovized principles are different: for a reduced
cost solution, reduce t and increase `, h and b. Thus, overall a larger ` is needed to achieve
a small cost solution.

8.2 Higher-Level Innovizations

Here, we redo the innovization procedure for one different value of three allowable limits: shear
strength in constraint g1 is increased by 20%, bending strength in constraint g2 is increased by
20%, and buckling limit load in constraint g4 is reduced by 50%. We change them one at a time and
keep the other parameters identical to their previous values. Figure 26 shows the corresponding
Pareto-optimal frontiers for these three cases. Following innovizations are obtained:

1. It is clear that all three cases produce similar dual behavior (different characteristics on
either side of a transition point) in the Pareto-optimal frontier, as was also observed in the
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Figure 26: Effect of material strength and buckling load limit on the Pareto-optimal frontier for
the welded-beam design problem.

previous case. All other innovizations (such as t being constant and b being smaller with
increasing deflection, etc.) mentioned earlier remains the same in all three cases.

2. The minimum-cost solution depends on all three constraint (g1, g2 and g4) limits, but
the minimum-deflection solution only depends on the limit on shear stress constraint (g1).
However, at this solution, variables t and b take their largest allowable values of 10 in and
5 in, respectively.

3. An increase of shear strength by 20% causes the solutions to change. Recall that the shear
stress constraint (g1) was the most critical constraint in the original case. An increase in
shear strength value also makes the constraint active for all new trade-off solutions. Since
solutions change, a slightly different trade-off frontier emerges. Interestingly, the location
of the transition point along deflection axis does not get changed (since the buckling load
limit is not changed).

4. An increase of bending strength by 20% does not change smaller-deflection solutions. Since
a higher bending limit is allowed now, better cost solutions are found. A solution with a cost
of 2.3545 is now obtained with a deflection value of 0.021 in. The location of the transition
point in unaffected by this change in bending strength value.

5. Finally, a decrease in the buckling load limit by 50% changes the location of the transition
point (which moves towards a larger cost solution), however the rest of the original Pareto-
optimal frontier remains identical to the original front.

Thus, we conclude with confidence that (i) shear strength has a major role to play in deciding
the optimal variable combinations (the shear stress constraint remains active in all cases), (ii)
bending strength has an effect on the smallest-cost solution alone, as only this solution makes
the bending constraint active, and (iii) buckling load limit has the sole effect in locating the
transition point on the Pareto-optimal front. These information provide adequate knowledge
about relative importance of each constraint and variable interactions for optimally designing a
welded-beam over an entire gamut of cost-deflection trade-off. It is unclear how such valuable
innovative information could have been achieved otherwise merely from a mathematical problem
formulation.
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9 Conclusions

In this paper, we have introduced a new design procedure (through a new terminology, we called
’innovization procedure’) based on multi-objective optimization and a post-optimality analysis of
optimized solutions. We have argued that the task of a single-objective optimization results in
a single optimum solution which may not provide enough information about useful relationships
among design variables, constraints and objectives for achieving different trade-off solutions. On
the other hand, consideration of at least two conflicting objectives of design should result in
a number of optimal solutions, trading-off the two objectives. Thereafter, a post-optimality
analysis of these optimal solutions should provide useful information and design principles about
the problem, such as relationships among variables and objectives which are common among the
optimal solutions and the differences which make the optimal solutions different from each other.
We have argued that such information should often introduce new principles for optimal designs,
thereby allowing designers to learn innovations about solving the problem at hand.

On a number of engineering design problems having mixed discrete and continuous design
variables, many useful innovizations (innovative design principles) are deciphered. Interestingly,
many such innovizations were not intuitive and not known before. The ease of application of
the proposed innovization procedure has also become clear from different applications. It is also
clear that the proposed procedure is useful and ready to be used in other more complex design
tasks. The procedure will enable designers to perform the innovization task once and for all to
the problem at hand and the knowledge thus gained will go a long way in understanding the
intricacies of the problems and in solving such future design tasks. On another note, since the
Pareto-optimal frontier obtained using NSGA-II are verified by other single-objective optimization
techniques, the reported trade-off solutions also remain as ‘benchmark’ optimal solutions to these
problems.

However, the innovization procedure suggested here must now be made more automatic and
problem-independent as far as possible. In this regard, an efficient data-mining technique is in
order to evolve innovative design relationships from the Pareto-optimal solutions. Although some
apparent hurdles of this task have been pointed out in this paper, effort is underway at Kanpur
Genetic Algorithms Laboratory (KanGAL) in this direction.

Finally, it is also worth mentioning that similar to the expectation of common properties
to exist among Pareto-optimal solutions (as discovered and demonstrated amply in this paper),
commonality principles may also be expected to exist in other kinds of trade-off solutions, such
as among weakly Pareto-optimal solutions, locally Pareto-optimal solutions [6], and robust or
reliable Pareto-optimal solutions [9]. It would be interesting then to investigate how the innovized
relationships get changed from one type of optimal solutions to the other. For example, such
an analysis may provide answers to questions such as how are robust Pareto-optimal solutions
different from the Pareto-optimal solutions themselves! Another interesting extension of this
study would be to consider three or more conflicting objectives of design and a resulting post-
optimality analysis may yield higher-level innovizations than that may be obtained with the
two-objective procedure. The ease and ability of NSGA-II to handle different vagaries of design
variables (discrete, Boolean, real-valued etc.), nonlinearities in constraint and objective functions,
scalability in problem size, and multi-modality and multi-objectivity in problem formulations
allow such an innovization task tractable and worth performing.
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