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ABSTRACT
Geometric discrepancies are standard measures to quantify
the irregularity of distributions. They are an important
notion in numerical integration. One of the most impor-
tant discrepancy notions is the so-called star discrepancy.
Roughly speaking, a point set of low star discrepancy value
allows for a small approximation error in quasi-Monte Carlo
integration. It is thus the most studied discrepancy notion.

In this work we present a new algorithm to compute point
sets of low star discrepancy. The two components of the
algorithm (for the optimization and the evaluation, respec-
tively) are based on evolutionary principles. Our algorithm
clearly outperforms existing approaches. To the best of our
knowledge, it is also the first algorithm which can be adapted
easily to optimize inverse star discrepancies.

Categories and Subject Descriptors
F.2.1 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity—Numerical Algorithms and Prob-
lems; I.2.8 [Artificial Intelligence]: Problem Solving, Con-
trol Methods, and Search—Heuristic Methods

Keywords
Geometric discrepancy, Monte-Carlo methods, information-
based complexity, search heuristics, genetic algorithms, al-
gorithm engineering

1. INTRODUCTION
For a point set X = {x(1), . . . , x(n)} ⊂ [0, 1)d and a point

y in [0, 1]d, the local star discrepancy d∗∞(X, y) of X in y
measures the absolute difference between the volume of the
box [0, y) and the fraction of points of X that are inside that
box, cf. Figure 1. The star discrepancy of X is the largest
such value; i.e., d∗∞(X) := supy∈[0,1]d d

∗
∞(X, y).

Star discrepancies are deeply related to the ubiquitous
task of numerical integration but have found several appli-
cations also in computer graphics, pseudorandom number

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’13, July 6–10, 2013, Amsterdam, The Netherlands.
Copyright 2013 ACM 978-1-4503-1963-8/13/07 ...$15.00.

0 1/2 1
0

2/3

1

y

Figure 1: The local discrepancy of X in y is 2/3 ·1/2−
3/12 = 1/12.

generators, experimental design, and option pricing, to name
but a few domains. The approximation error of Monte Carlo
and quasi-Monte Carlo methods can be expressed in terms of
the star discrepancy. To be more precise, let f : [0, 1]d → R
be a function for which we want to compute the integral∫

[0,1]d
f(s)ds. The Koksma-Hlawka inequality [18,21] states

that, for suitable f , the difference between this integral and
the average function value of f on a point set X is bounded
by ∣∣∣∣∣

∫
[0,1]d

f(s)ds− 1

n

n∑
i=1

f(x(i))

∣∣∣∣∣ ≤ V (f) · d∗∞(X) , (1)

where V (f) denotes the so-called variation in the sense of
Hardy and Krause. Since V (f) depends only on f and not
on X, the smaller the discrepancy d∗∞(X), the better ap-
proximation we can expect.

While the points x(1), . . . , x(n) in Eq. 1 are chosen ran-
domly in Monte Carlo integration, it has been known for a
long time that we can achieve better results by evaluating
f in low discrepancy point sets. Thus, in quasi-Monte Carlo
numerical integration, the set X = {x(1), . . . , x(n)} is cho-
sen deterministically, so that the factor d∗∞(X) in Eq. 1 is
as small as possible. It is thus one of the main challenges
in numerical analysis to compute explicit point sets X of
smallest possible star discrepancy value.

1.1 Scope and Previous Related Work
In this work, we present a new algorithm for construct-

ing low discrepancy point sets. In particular, we provide
improved upper bounds for the following two questions.

1 Star discrepancy: For given n and d, what is the small-
est star discrepancy that can be achieved by an n-point
configuration in [0, 1)d?



2 Inverse star discrepancy: For given d and ε, what is
the smallest possible value of n such that there exists
a set X ⊂ [0, 1)d of size |X| = n such that d∗∞(X) ≤ ε?

Note that the first question asks where to place the n
points such that the irregularity measured by the star dis-
crepancy is as small as possible, while the second question
is even more involved. It asks us to decide how many points
we need and (indirectly) where to place them, such that the
resulting irregularity is at most ε.

Our algorithm has originally been developed to address
the first question. However, it turns out that, using a bisec-
tion approach and multi-objective selection (see Section 3),
we can easily adapt it to answer also the second question.

Our algorithm builds on previous work presented in [3]
on the construction of low L2-discrepancy sequences (see [2]
for an earlier GECCO version) and in [13] on the evalua-
tion of the star discrepancy of a given point set. It has
two components, an optimization component, which com-
putes candidate point sets, and an evaluation component
for assessing the quality of the proposed solutions. During
the optimization process, the evaluation component is called
several times. The two components of the algorithm will be
described in Section 3. On the structure of the algorithms
we note here only that the optimization part is based on a
genetic algorithm, while the evaluation component is based
on threshold accepting (TA)—a variant of simulated anneal-
ing with derandomized selection rules.

Evaluating the star discrepancy of a given point set X is
known to be NP-hard [12]. In fact, it is even W[1]-hard in
d [10], implying that, under standard complexity assump-
tions, there is no algorithm to evaluate the star discrep-
ancy of n points in d dimension in a running time no(d).
The best known exact algorithm for evaluating discrepan-
cies, the DEM-algorithm, has a running time of n1+d/2 [6].
For most relevant settings this is too slow to be applica-
ble. This is true in particular for our setting, where many
candidate point sets need to be evaluated. In fact, the com-
plexity of star discrepancy evaluation is the main reason why
only few algorithmic approaches are known for the explicit
construction of low star discrepancy point sets, cf. also the
comment in [3, page 3].

A new robust algorithm to estimate star discrepancy val-
ues has been proposed in [13]. This algorithm has been
reported to give very accurate discrepancy estimates, and
our experiments confirm these statements. We thus use this
algorithm for the intermediate discrepancy evaluations; i.e.,
for the optimization process of creating good candidate point
configurations. Where feasible, we do a final evaluation of
the candidate sets using the exact DEM-algorithm described
above.

1.2 Structure of the Paper
An introduction to the star discrepancy problem is given

in Section 2. We discuss there also the issue of computing
star discrepancy values, and we introduce the generalized
Halton sequence, for which our algorithm finds good gener-
ating vectors. The algorithm itself is presented in Section 3.

Section 4 surveys our empirical results. For the star dis-
crepancy problem we compare our results with those pre-
sented in [7, 24, 25]. The point sets computed by our al-
gorithm clearly outperform those reported there. We also
show that our algorithm produces surprisingly good bounds
for the inverse star discrepancy problem, thus easily answer-
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Figure 2: The discrepancy of X is obtained in one
of the grid points y ∈ Γ(X).

ing one of the subproblems in Open Question 42 from [22].
Our bounds for all three subproblems are better by a fac-
tor (!) of 5 to 7 compared to what was asked for in [22], but
for two subproblems our values are computed only by the al-
gorithms from [13] and need to be verified by computations
with the DEM-algorithm.

2. STAR DISCREPANCIES
Throughout this work, we denote by n the size of the set

X := {x(1), . . . , x(n)} ⊂ [0, 1)d under consideration and by
d the dimension of the problem instance.

For a point y ∈ [0, 1]d the local discrepancy of y with
respect to X is defined by

d∗∞(y,X) :=

∣∣∣∣Vy − A(y,X)

n

∣∣∣∣ ,
where Vy :=

∏d
j=1 yj denotes the Lebesgue volume of the

box [0, y) and

A(y,X) := |{i ∈ {1, . . . , n} | ∀j ∈ {1, . . . , d} : x
(i)
j < yj}|

is the number of points of X that fall into this box. The
discrepancy of X is

d∗∞(X) := sup
y∈[0,1]d

d∗∞(y,X) ,

the largest local discrepancy value.

2.1 Computation of Star Discrepancies
It has been observed in [20] that the computation of d∗∞(X)

can be discretized. In fact, if we let Γj(X) := {x(i)
j | 1 ≤ i ≤

n}, the set of X-values in the jth coordinate (1 ≤ j ≤ d),
and Γ(X) :=

∏
1≤j≤d (Γj(X) ∪ {1}) be the grid spanned by

X, then

d∗∞(X) := max
y∈Γ(X)

{
Vy −

A(y,X)

n
,
Ā(y,X)

n
− Vy

}
,

where Ā(y,X) := |{i ∈ {1, . . . , n} | ∀j ∈ {1, . . . , d} : x
(i)
j ≤

yj}| is simply the number of points of X that fall into the
closed box [0, y]. That is, instead of evaluating the con-
tinuous space [0, 1]d, the search space can be reduced to a
discrete one of size (n+ 1)d, cf. Figure 2.

However, for most practical purposes, 2(n + 1)d function
evaluations are way too many, and one has to resort to dif-
ferent methods for evaluating star discrepancy values. As
mentioned in the introduction, computing the star discrep-
ancy of a given point set is known to be a hard problem,
and the best known exact algorithm, the DEM-algorithm



from [6], has a running time of n1+d/2. A new promising
algorithm for approximate star discrepancy evaluation has
been presented in [13]. We discuss this algorithm in Sec. 3.3.

Given the importance of low star discrepancy point se-
quences in numerical integration and its various other appli-
cations in computer science, it is thus mainly due to the com-
plexity of evaluating star discrepancies that not much work
has been done in the search heuristics community to con-
struct low star discrepancy point sequences. On the other
hand, there has been some effort to construct low discrep-
ancy point sets for other measures of irregularity, see, for ex-
ample, the work in [3], which constructs point sets that are
optimized for Hickernell’s modified L2-discrepancy—a mea-
sure that can be computed efficiently in O(dn2) arithmetic
operations. See [9] for a recent survey on the computation
of geometric discrepancies.

2.2 Low Star Discrepancy Point Sets
The ultimate goal of star discrepancy theory is to find, for

given parameters n and d, a set X ⊂ [0, 1)d of size |X| = n
such that d∗∞(X) is as small as possible. A closely related
question of similar practical and theoretical relevance is the
inverse star discrepancy problem: for given d and ε > 0,
what is the smallest integer n such that there exists a point
set X of size |X| = n satisfying d∗∞(X) ≤ ε.

Since the early twentieth century, a lot of work has been
done to address these two questions, see [5,11,17,22] for re-
cent surveys. Many different low discrepancy sequences have
been defined (e.g., Sobol, Faure, and Halton sequences), and
theoretical bounds on their performance have been proven.
Furthermore, general lower bounds for the star discrepancy
of any n-point set in d dimensions exist. However, the prob-
lem with all these bounds (in the interest of space, we can-
not give a detailed survey here but we refer to [11] for a
concise summary of the known bounds) is that they are ei-
ther asymptotic statements (and thus of limited relevance
in the regime of practical interest) or the precision of the
results is not accurate enough to allow for a comparison be-
tween the different constructions. We note also that there is
a gap between all known lower bounds and the best known
upper bounds for the star discrepancy problem. It thus re-
mains a challenging open question to construct such point
sets, and it is a well suitable problem for demonstrating the
strength of bio-inspired approaches for classical optimization
challenges.

In [3], the candidates for the L2-optimized point sets are
so-called generalized Halton sequences. Since these point
sets exhibit not only low L2 discrepancies, but also low star
discrepancies, we use here the same construction for finding
our candidate sets. Given the lack of space, we give here
only the required definitions of the point sets, and we refer
the interested reader to [3] and the books [19, 23] or the re-
cent survey [9] for further information on generalized Halton
sequences.

The Generalized Halton Sequence. The Halton se-
quence [16] is a generalization of the one-dimensional van
der Corput sequence [26]. For any prime number p ∈ N the
ith number of this latter sequence in base p, is given by

ϕp(i) :=

k∑
`=1

d`p
−` , (2)

where i = dkdk−1 . . . d1 is the digital expansion of i in base
p; i.e., i =

∑k
`=1 d`p

`−1.
The multidimensional Halton sequence is simply obtained

by grouping together van der Corput sequences of different
bases. More precisely, let p1, . . . , pd be the first d prime num-
bers. The ith element of the d-dimensional Halton sequence
is given by

x(i) := (ϕp1(i), . . . , ϕpd(i)) .

The Halton sequence is a low-discrepancy sequence; i.e.,
its first n points X = (x(i))ni=1 in dimension d satisfy the
star discrepancy bound

d∗∞(X) = O
(
n−1 ln(n)d

)
. (3)

In fact, the Halton sequence was the first construction for
which Eq. 3 was verified for any dimension d [16], and up
to now there is no sequence known that exhibits a better
asymptotic behavior.

Nevertheless, the Halton sequence suffers from strong cor-
relation between the sequences in high dimensions, thus mo-
tivating Braaten and Weller [1] to suggest a generalized (also
referred to as scrambled) Halton sequence . In this sequence,
Eq. 2 is replaced by

ϕ
πp
p (i) :=

k∑
`=1

πp(d`) p
−` ,

where πp is a permutation of {0, 1, . . . , p− 1} with fixpoint
πp(0) = 0 (so that ϕ

πp
p (i) 6= 0). The ith element of the

d-dimensional generalized Halton sequence is then defined
by

x(i)(Π) := (ϕ
πp1
p1 (i), . . . , ϕ

πpd
pd (i)) , (4)

where we abbreviate Π := (πp1 , . . . , πpd).
To answer the discrepancy question, we thus need to find

a vector of permutations Π such that the star discrepancy
of the point set X(Π) = {x(1)(Π), . . . , x(n)(Π)} is as small
as possible. Since the point set is completely determined
by the permutations Π, we call Π the generating vector of
X(Π).

3. ALGORITHM
The optimization of the generating vectors for the gener-

alized Halton sequence is made with a very simple genetic
algorithm. As presented in Algorithm 1, a (µ + λ) scheme

is used. In each generation an offspring population P
(g)
o

of λ individuals is generated from the parental population

P
(g)
p . Each individual is produced using either mutation or

crossover according to some probabilities. The new indi-
viduals are evaluated (f(X(Γi)) in line 1) and the parents
reevaluated (f ′(X(Πi)) in line 1) with respect to the dis-
crepancy of the point set that they generate. The selection
of the next generation parental population is made based on

the fitness of the individuals of both populations P
(g)
p and

P
(g)
o . We use as stopping criterion a fixed number of genera-

tions. This section describes in more detail each component
of the genetic algorithm.

3.1 Representation
Following a similar procedure as in [3], we optimize over

the generating vector Π of the generalized Halton sequence.
The difference of our work compared to [3] is the objective



Algorithm 1: Genetic Optimization

initialize P
(1)
p ← {(Πi, f(X(Πi))) | i = 1, . . . , µ};1

while ¬stop do2

for i = 1, . . . , λ do3

if crossover then4

Π1,Π2 ← select random
(
P

(g)
p , 2

)
;5

Γi ← mate (Π1,Π2);6

else if mutation then7

Π← select random
(
P

(g)
p , 1

)
;8

Γi ← mutate (Π);9

P
(g)
o ← {(Γi, f(X(Γi))) | i = 1, . . . , λ};10

P
(g)
p ←11

{(Πi,max{f(X(Πi)), f
′(X(Πi))}) | i = 1, . . . , µ};

P
(g+1)
p ← select

(
P

(g)
p ∪P

(g)
o , µ

)
;12
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Figure 3: Representation of the individual’s geno-
type and its conversion to the phenotype.

function—[3] considers L2-discrepancies while we optimize
for star discrepancy—and the fact that here in our work,
we are interested in generating low star discrepancy point
sets, not sequences. This allows us to do the optimization
for all the permutations at the same time (since we do not
need to find a configuration that would be good also for all
smaller number of points). Therefore, we use an adjusted
implementation of the algorithm from [3].

For the optimization of a d-dimensional point set, the
genotype of the individuals contains d− 1 independent per-
mutations. By definition, the first permutation of the gen-
erating vector is always [0 1] since the first prime number
p1 is 2 and we require that πi(0) = 0 always. For the same
reasons, the second permutation π3 is either [0 1 2] or [0 2 1]
and the third one, π5 is chosen from all 4! possible permuta-
tions of {0, 1, . . . , 4} with π5(0) = 0. For technical reasons,
the 0 is removed from the permutations in the genotype,
and we call the permutation itself (with the prepending 0)
the configuration. Finally, the point set X is generated by
Eq. 4 with the generating vector Π set to the configura-
tion constructed from the genotype. An example showing
the translation from a genotype into a phenotype for a 4-
dimensional point set is given in Figure 3.

3.2 Variations
As seen in Algorithm 1, crossover and mutation are used

to produce the offspring. These operators, when applied on
an individual, affect all underlying permutation vectors of
its genotype. The crossover chosen is the partially matched
crossover [15]; it chooses two crossover points and exchanges
the alleles between these two points. The mutation is a uni-
form partial reordering of the alleles as presented in [3]; the
reordered alleles are chosen by a uniform matching proba-

bility. Both operators preserve the validity of a permutation
representation; i.e., the resulting offspring are again permu-
tations of the required length.

3.3 Fitness Evaluation
Naturally, the fitness of the individuals is the star dis-

crepancy of the point set that they generate; i.e., the star
discrepancy of their phenotype. We aim at minimizing this
value. To assess the discrepancy values we use two differ-
ent algorithms, the DEM-algorithm proposed in [6] and the
TA-algorithm from [13].

The DEM-algorithm is an exact algorithm for computing
the star discrepancy of a given point set. It is based on
dynamic programming and has a running time of n1+d/2.
The algorithm has been implemented by M. Wahlström and
is available from [27]. We use his implementation to evaluate
point sets for up to 9 dimensions. For these point sets, the
reevaluation step in line 1 of Algorithm 1 can be skipped.

Where the exact DEM-algorithm has an infeasible running
time, we resort to the TA-heuristic proposed in [13]. This
algorithm gives a lower bound for the discrepancy of a point
set and we use this lower bound to guide our optimization
procedure.

In the interest of space, we cannot give a full description
of this TA-approach but provide only a high level overview.
The goal of the TA-algorithm is to find a good (i.e., large)
lower bound for the star discrepancy of the given point set
X. To this end, it performs a guided random search on the
grid spanned by X, cf. Section 2.1. The algorithm uses a
(1+1) scheme; i.e., it keeps one individual at a time. In each
iteration, an offspring is created by sampling according to
some probability distribution from the neighborhood of the
parent individuum. The local star discrepancy is computed,
and the offspring replaces the parent if its local discrepancy
value is larger than or at least not much smaller than the
parent’s one. The “not much smaller part” is quantified by a
threshold value T < 0; i.e., we replace the parent grid point p
by the offspring point o if and only if d∗∞(o,X)−d∗∞(p,X) ≥
T . The threshold value changes over time, and converges to
0 so that the algorithm finally outputs a local maximum of
the star discrepancy value of X.

In order to gain precision on our estimation, the TA-
algorithm is reapplied on the parental population in each
generation (line 1) and the individual’s fitness is the maxi-
mum value of the current estimate and the newly calculated
one.

For the final candidate point sets we increase the accu-
racy of our star discrepancy estimation by performing an
additional 50 runs of the TA-algorithm. These values ei-
ther re-affirmed the previously computed ones, or they give
a slightly larger bound on the star discrepancy of the point
set, deviating by at most 5 to 10% from the previous values.

We note that for all reference point sets for which we know
the exact discrepancy, we also do an exact DEM-evaluation
of our candidate point set. Only for combinations of n and
d where no exact discrepancy values are found in the liter-
ature, we resort to the lower bounds provided by the TA-
algorithm. These lower bounds are at least as good as the
ones presented in the literature, since the new TA-evaluation
algorithm is better than the ones used in the previous works,
cf. [13].



3.4 Selection
When dealing with the star discrepancy question, we use

tournaments as selection mechanism [14]. Tournament se-
lection selects the best individual among k individuals which
are selected at random from the entire population.

For the inverse star discrepancy question, we are dealing
with two competing objectives: the number of points n on
the one hand, and the smallest star discrepancy of any n-
point set on the other. We thus need to resort here to a
totally different evaluation and selection scheme. We have
used for this problem the NSGA-II [4], a standard multiob-
jective selection algorithm. The evaluation is made using a
bisection method. For a given configuration, we try to find
the smallest number of points for which the discrepancy is
lower than the threshold. This method allows us to run only
log(b− a) times the discrepancy algorithm for a single con-
figuration, where a and b are the frontiers of the search for
the number of points. The bisection evaluation returns both
the discrepancy (which is lower than the threshold) and the
number of points. Here again the discrepancy is either com-
puted by the DEM-algorithm (wherever feasible) or by the
TA-heuristic (in all other cases).

4. RESULTS
We give a brief overview of the experimental setup in Sec-

tion 4.1. We then present the results of our algorithm. For
the star discrepancy question, we compare the results ob-
tained by our algorithm with those found in the literature
(Sec. 4.2). For the inverse discrepancy problem, we are not
aware of any paper addressing this question experimentally.
We thus present our results for answering a question on the
inverse discrepancy presented in [22] and [17] (Sec. 4.3).

All point configurations achieving the bounds presented
below are available online on [8].

4.1 Experimental Setup
All the experiments were run with the algorithm described

in the last section. Specific parameters for the operators are
given in Table 1. Given the satisfying results of these set-
tings, we did not attempt to fine tune these parameters.
During each discrepancy experiment the 25 best individu-
als are kept in an archive. Where discrepancy values are
computed only by the TA-algorithm and are thus just lower
bounds for the exact value, the fitness of the individuals
kept in the archive is dynamic as well (i.e., if the value of
the individual changes due to a reevaluation, it also changes
in the archive). The process is the same for the inverse
discrepancy experiments, but instead of a list of the best
individuals, the archive contains all the individuals that are
not Pareto-dominated by the archive.1

At the end of an experiment, we send to the final evalua-
tion the entire archive and the final population.

4.2 Low Discrepancy Point Sets
Tables 2 to 5 compare the discrepancy values obtained

with the genetic optimization of the Halton sequence against

1We recall that an element x ∈ Rd is Pareto-dominated by
a set S ⊆ Rd if there exists a vector y ∈ S that for all
objectives i ∈ {1, . . . , d} is at least as good as x (i.e., yi ≤ xi
for minimization objectives and yi ≥ xi for objectives to
be maximized), and is strictly better (yi < xi and yi > xi,
respectively) for at least one objective i ∈ {1, . . . , d}.

Dimensionality 4 – 10 11 – 25 100
Generations 50 100 200
Population Size (25 + 100) (25 + 100) (25 + 100)
Crossover Prob. 0.7 0.7 0.7
Mutation Prob. 0.3 0.3 0.3
Match Prob Mut. 0.05 0.05 0.05
Tournament Size 3 3 3

Table 1: Optimization algorithm parameters.

d n Results from [7] Optimized Halton
5 95 ∼ 0.11 0.08445
7 65 0.150 0.1361
7 145 0.098 0.08640
9 85 0.170 0.1435

Table 2: Exact discrepancy results for the sequences
presented in [7].

the results presented in [24,25], and [7]. Except for d = 4 and
n = 625, all our point sets achieve a lower discrepancy than
what has been presented in the literature. In fact, we can
observe that our sequences present sometimes a discrepancy
that is only half as large as the bounds presented in the
literature.

Figure 4 presents the discrepancy of our optimized point
sets against an aggregation of the best point sets in 7 di-
mensions of [25, Figure 5]. Again we see that all our values
are smaller than those presented there.

The efficiency of our algorithm allows us to do much more
than what can be represented by the comparisons with pre-
vious work. As an example, we present in the following our
results for minimizing the discrepancy in fixed dimension for
n ranging from 32 to 1024 points, cf. Figures 5 and 6.

Figure 5 shows for 4, 5 and 6 dimensions how the star
discrepancy decreases with growing n. The values computed
in this figure are exact values, i.e., they are computed with
the DEM-algorithm. As expected, we can see that with
growing dimension, more points are needed to achieve the
same discrepancy bounds.

In Figure 6 we plot similar results for dimension in which
the DEM-algorithm is infeasible. The values plotted in this
chart are thus computed by 50 runs of the TA-algorithm.
The situation in such higher dimensions seems to be very
similar to that in the smaller ones.
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Figure 4: Exact discrepancy results on 7 dimension
point sets.



d n Results from [7] Optimized Halton
9* 145 0.119 0.1083
12* 65 0.276 0.2049
12 145 0.156 0.1354
15 65 0.322 0.2413
15 95 0.258 0.1969
15 145 0.198 0.1589
18 95 0.293 0.2237
18 145 0.230 0.1823
20 145 0.239 0.1947
21 95 0.299 0.2434

Table 3: Approximated discrepancy results for the
sequences presented in [7]. Lines marked with a star
indicate that our final discrepancy measure is exact.

d n Results from [24,25] Optimized Halton
4 125 0.089387 0.05609
4 625 0.01772458 0.01905
5 25 0.238297 0.1800
5 125 0.1417881 0.07158
5 625 0.2666228 0.2352
6 49 0.210972 0.1823
6 343 0.08988426 0.1947
7 49 0.2690111 0.1641
8 121 0.1701839 0.1090
9 121 0.2121262 0.1244

Table 4: Exact discrepancy results for the sequences
presented in [24,25].

These plots could be easily extended to more points and
to higher dimensions, showing that we can easily get, for
any combination of d and n, a point configuration of low
star discrepancy value.

4.3 Inverse Star Discrepancy
The inverse star discrepancy problem is even more com-

plex than the star discrepancy one, since it has an addi-
tional parameter, which is the number of points to be placed
in the d-dimensional unit cube. Given the computational
intractability of star discrepancy evaluation, it is therefore
natural that not much empirical work has been done to ad-
dress this question.

Our algorithm, however, can be easily adjusted to com-
pute inverse star discrepancies, as explained in Sec. 3. We
use this approach to address Open Problem 42 in [22]. The
first subproblem asks to construct a point set X in 15 di-
mensions such that d∗∞(X) ≤ 0.25 and |X| ≤ 1528. By
an approach suggested by Hinrichs [17], it suffices to con-
struct an 8-dimensional point set X ′ of star discrepancy at
most 0.125 and size |X ′| ≤ 764. Using his lifting technique,
X ′ can be turned into a 15-dimensional set X of size 2|X ′|
and discrepancy at most 2d∗∞(X ′). We are thus interested
in the inverse star discrepancy problem with d = 8 and
ε = 0.125. By similar arguments (see [17] for the details),
we can solve the 15-dimensional problem also by finding a 4-
dimensional point configuration of star discrepancy at most
0.0136 or a 5-dimensional point configuration of discrepancy
at most 0.0575 with at most 764 points each. As we can see
from Table 6, our algorithm easily solves this 15-dimensional
problem. For d = 8, it outputs a point configuration of dis-

d n Results from [24,25] Optimized Halton
7* 343 0.129832 0.05192
7 2401 0.030518 0.01518
10* 121 0.2574323 0.1334
10 1331 0.093028 0.03251
11* 121 0.301048 0.1402
12 169 0.271837 0.1211
12 2197 0.096713 0.02857
15 289 0.256021 0.1083
15 4913 0.085855 0.02239
20 529 0.259366 0.09859
100 101 0.954159 0.5458

Table 5: Approximated discrepancy results for the
sequences presented in [24, 25]. Lines marked with
a star indicate that our final discrepancy measure is
exact.
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Figure 5: Best exact star discrepancy values in d = 4
to d = 6.

crepancy 0.1248 and size n = 104. This is much less than
the requested 764 size bound asked for in [17, 22]. Also the
5-dimensional version of the problem is solved easily; the
point configuration has only 172 instead of the requested
upper bound of 764 points. Only for the 4-dimensional one
the lifting approach of Hinrichs seems too weak to solve the
15-dimensional problem.

We see a similar behavior for the other two subproblems
in [22]: the original problems (find, (i), a point configuration
X in d = 30 of discrepancy d∗∞(X) ≤ 0.25 and size |X| ≤
3187 and, (ii), a configuration X ′ in d = 50 dimensions with
d∗∞(X ′) ≤ 0.25 and |X ′| ≤ 5517) can be solved easily for the
first two steps of the lifting technique (15 and 10 dimensions,
and 25 and 17 dimensions, respectively), but for the last
reported step (in 8 and 13 dimensions, respectively) we do
not find point configurations meeting the required bound.
It is therefore very likely that generalized Halton point sets
with such small discrepancy values do not exist.

Table 6 is to be read as follows. The original three sub-
problems of [22, Open Problem 42] are the ones in bold red
print. The expected (Exp. n) column presents the number
of points required by the problem and by Hinrichs’ method,
respectively. The bounds column shows the selected search
space for the bisection algorithm. The upper bounds were
selected from preliminary experiments with randomly scram-
bled Halton sequences. The lower bounds have been set so
that the maximum number of trials in the bisection search
is not too high. As mentioned above, it can be seen that for
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Figure 6: Best approximated star discrepancy values
in d = 10 to d = 20.

d ε Exp. n Bounds n d∗∞(X ′)
15 0.25 ≤ 1528
8 0.125 ≤ 746 [64,128] 104 0.1248
5 0.0575 ≤ 746 [128,256] 172 0.0573
4 0.0136 ≤ 746 [1044,1300] 1048 0.0135
30 0.25 ≤ 3187
15* 0.125 ≤ 1593 [152,280] 251 0.1245
10* 0.0575 ≤ 1593 [472,600] 537 0.0574
8* 0.0136 ≤ 1593 - > 3000 -
50 0.25 ≤ 5517
25* 0.125 ≤ 2758 [422,550] 513 0.1245
17* 0.0575 ≤ 2758 [1094,1350] 1239 0.0575
13* 0.0136 ≤ 2758 - > 5000 -

Table 6: Inverse discrepancy results for the three
problem instances. Final discrepancy of stared lines
are approximated.

all problems our algorithm finds a suitable sequence that an-
swers the open problems. We did not complete the computa-
tions for d = 8 and d = 13 and ε = 0.0136 since the bounds
for these instances are already much larger than what is re-
quested. The starred values in the table are computed by 50
individual runs of the TA-algorithm. Before officially declar-
ing [22, Open Problem 42] solved, the starred values need
to be re-affirmed by an exact algorithm (note that the run-
time of the DEM-algorithm would be several years on these
instances).

Figures 7 to 9 present the Pareto front of the final popu-
lations for the 8-, 15-, and 25-dimensional cases.2 It can be
seen that our method achieves a nice diversity in the found
point sets giving a broad range of candidates with different
trade-offs. The difference between the final front and the
reevaluated one can be explained by the fact that the opti-
mization algorithm takes advantage of the errors made by
the TA-algorithm. For example, the same sequence can ap-
pear multiple times during the evolution, most of the time
its approximated discrepancy will be very close to the true
one, but it takes only one bad evaluation (the approxima-
tion is lower than expected) for that point set to make its
way into the archive. Increasing the number of repetitions
of the TA-algorithm would prevent this from happening, but
it would also increase the running time of the optimization.

2Note here that the axis are switched, as the objective here
is to minimize, for a given maximal star discrepancy value,
the number of points n.
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Figure 7: 8 dimensional trade-offs between the num-
ber of points and the discrepancy found.
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Figure 8: 15 dimensional trade-off between the num-
ber of points and the discrepancy.

5. CONCLUSIONS
We have presented a new algorithm for computing low star

discrepancy point sets. As shown in Section 4, our results
outperform previous point configurations. Furthermore, our
algorithm can be easily adapted to compute upper bounds
for the inverse discrepancy. The point sets are available on-
line at [8]. We are confident that our algorithm and the
generated point sets will be useful in a broad range of ap-
plications. Most notably, our point sets can ensure a better
approximation errors in quasi-Monte Carlo numerical inte-
gration and in experimental design.

It would be interesting to study whether our results can
be further improved by resorting to other point sets, such as
(scrambled) Sobol or Faure configurations.

Another interesting research direction concerns the eval-
uation of star discrepancy values. As exhibited above, this
is a provably difficult task. Still we have seen that the TA-
algorithm from [13] provides an accurate estimate wherever
this can be checked. Is it possible to design similar heuristics
for computing reasonable upper bounds for the star discrep-
ancy of a given point set?
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[22] E. Novak and H. Woźniakowski. Tractability of
Multivariate Problems. Vol. 2, Standard Information
for Functionals. EMS Tracts in Mathematics.
European Mathematical Society, 2010.

[23] S. Tezuka. Uniform Random Number : Theory and
practice. The Kluwer International Series in
Engineering and Computer Science. 315. Kluwer
Academic Publishers, 1995.

[24] E. Thiémard. An algorithm to compute bounds for the
star discrepancy. J. Complexity, 17:850–880, 2001.

[25] E. Thiémard. Optimal volume subintervals with k
points and star discrepancy via integer programming.
Math. Meth. Oper. Res., 54:21–45, 2001.

[26] J. G. van der Corput. Verteilungsfunktionen. In
Akademie van Wetenschappen, volume 38, pages
813–821. KNAW, 1935.

[27] M. Wahlström. Implementations of the DEM- and the
TA-algorithm. Available at
http://www.mpi-inf.mpg.de/˜wahl/.

http://qrand.gel.ulaval.ca
http://www.mpi-inf.mpg.de/~winzen/publications.html
http://www.mpi-inf.mpg.de/~winzen/publications.html
http://users.minet.uni-jena.de/~hinrichs/publicat.html
http://users.minet.uni-jena.de/~hinrichs/publicat.html
http://www.mpi-inf.mpg.de/~wahl/

	Introduction
	Scope and Previous Related Work
	Structure of the Paper

	Star Discrepancies
	Computation of Star Discrepancies
	Low Star Discrepancy Point Sets

	Algorithm
	Representation
	Variations
	Fitness Evaluation
	Selection

	Results
	Experimental Setup
	Low Discrepancy Point Sets
	Inverse Star Discrepancy

	Conclusions
	References

