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Abstract

We present a new algorithm for estimating the star discrepancy
of arbitrary point sets. Similar to the algorithm for discrepancy ap-
proximation of Winker and Fang [SIAM J. Numer. Anal. 34 (1997),
2028–2042] it is based on the optimization algorithm threshold ac-
cepting. Our improvements include, amongst others, a non-uniform
sampling strategy which is more suited for higher-dimensional inputs,
and rounding steps which transform axis-parallel boxes, on which the
discrepancy is to be tested, into critical test boxes. These critical test
boxes provably yield higher discrepancy values, and contain the box
that exhibits the maximum value of the local discrepancy. We provide
comprehensive experiments to test the new algorithm. Our randomized
algorithm computes the exact discrepancy frequently in all cases where
this can be checked (i.e., where the exact discrepancy of the point set
can be computed in feasible time). Most importantly, in higher dimen-
sion the new method behaves clearly better than all previously known
methods.

1 Introduction

Discrepancy theory analyzes the irregularity of point distributions and has
considerable theoretical and practical relevance. There are many different
discrepancy notions with a wide range of applications as in optimization,
combinatorics, pseudo random number generation, option pricing, computer
graphics, and other areas, see, e.g., the monographs [BC87, Cha00, DP10,
DT97, FW94, Lem09, Mat09, Nie92, NW10].

In particular for the important task of multivariate or infinite dimen-
sional numerical integration, which arises frequently in fields such as fi-
nance, statistics, physics or quantum chemistry, quasi-Monte Carlo algo-
rithms relying on low-discrepancy samples have extensively been studied in
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the last decades. For several classes of integrands the error of quasi-Monte
Carlo approximation can be expressed in terms of the discrepancy of the
set of sample points. This is put into a quantitative form by inequalities of
Koksma-Hlawka- or Zaremba-type, see, e.g., [DP10, Gne11, NW10] and the
literature mentioned therein. The essential point here is that a set of sample
points with small discrepancy results in a small integration error.

Of particular interest are the star discrepancy and the weighted star
discrepancy, which we define below. For theoretical and practical reasons
the weighted star discrepancy attracted more and more attention over the
last few years, see, e.g., [DLP05, HPS08, Joe06, SJ07]. In particular, it is
very promising for finance applications, see [Slo10].

Let X = (xi)ni=1 be a finite sequence in the d-dimensional (half-open)
unit cube [0, 1)d. For y = (y1, . . . , yd) ∈ [0, 1]d let A(y,X) be the number
of points of X lying in the d-dimensional half-open subinterval [0, y) :=
[0, y1) × · · · × [0, yd), and let Vy be the d-dimensional (Lebesgue) volume of
[0, y) . We call

d∗∞(X) := sup
y∈(0,1]d

∣

∣Vy − 1
nA(y,X)

∣

∣

the L∞-star discrepancy, or simply the star discrepancy of X.
For a subset u ⊆ {1, . . . , d} define Φu : [0, 1]d → [0, 1]|u|, y 7→ (yi)i∈u.

For a finite sequence of non-negative weights (γu)u⊆{1,...,d} the weighted star
discrepancy of X is defined by

d∗γ,∞(X) := sup
∅6=u⊆{1,...,d}

γud∗∞(Φu(X)).

Obviously, the star discrepancy is a special instance of the weighted star
discrepancy. Further important discrepancy measures are, e.g., the Lp-star
discrepancies

d∗p(X) :=

(

∫

[0,1]d

∣

∣

∣

∣

Vy −
1

n
A(y,X)

∣

∣

∣

∣

p

dy

)1/p

, 1 ≤ p < ∞,

and weighted versions thereof. In this article we focus on algorithms to
approximate the star discrepancy, but note that these can be used as bases
for algorithms to approximate the weighted star discrepancy.

In many applications it is of interest to measure the quality of certain sets
by calculating their (weighted or unweighted) star discrepancy, e.g., to test
whether successive pseudo random numbers are statistically independent
[Nie92], or whether given sample sets are suitable for multivariate numerical
integration of certain classes of integrands. As explained in [DGKP08], the
fast calculation or approximation of the (weighted) star discrepancy would
moreover allow efficient randomized semi-constructions of low-discrepancy
samples of moderate size (meaning at most polynomial in the dimension
d). Actually, there are derandomized algorithms known to construct such
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samples deterministically [DGKP08, DGW09, DGW10], but these exhibit
high running times. Therefore, efficient semi-constructions would be help-
ful to avoid the costly derandomization procedures. The critical step in
the semi-construction is the efficient calculation (or approximation) of the
discrepancy of a randomly chosen set.

The L2-star discrepancy of a given n-point set in dimension d can be
computed with the help of Warnock’s formula [War72] with O(dn2) arith-
metic operations. Heinrich and Frank provided an asymptotically faster
algorithm using O(n(log n)d−1) operations for fixed d [FH96, Hei96]. Simi-
larly efficient algorithms are not known for the star discrepancy (and thus
also not for the more general weighted star discrepancy). In fact it is known
that the problem of calculating the star discrepancy of arbitrary point sets
is an NP -hard problem [GSW09]. Furthermore, it was shown recently that
it is also a W [1]-hard problem with respect to the parameter d [GKWW11].
So it is not very surprising that all known algorithms for calculating the star
discrepancy or approximating it up to a user-specified error exhibit running
times exponential in d, see [DEM96, Gne08, Thi01a, Thi01b]. Let us have a
closer look at the problem: For a finite sequence X = (xi)ni=1 in [0, 1)d and
for j ∈ {1, . . . , d} we define

Γj(X) = {xi
j | i ∈ {1, ..., n}} and Γ̄j(X) = Γj(X) ∪ {1},

and the grids

Γ(X) = Γ1(X) × · · · × Γd(X) and Γ̄(X) = Γ̄1(X) × · · · × Γ̄d(X).

Then we obtain

d∗∞(X) = max

{

max
y∈Γ̄(X)

(

Vy −
1

n
A(y,X)

)

, max
y∈Γ(X)

(

1

n
Ā(y,X) − Vy

)}

,

(1)
where Ā(y,X) denotes the number of points of X lying in the closed d-
dimensional subinterval [0, y]. (For a proof see [GSW09] or [Nie72, Thm. 2].)
Thus, an enumeration algorithm would provide us with the exact value of
d∗∞(X). But since the cardinality of the grid Γ(X) for almost all X is nd,
such an algorithm would be infeasible for large values of n and d.

Since no efficient algorithm for the exact calculation or approximation
of the star discrepancy up to a user-specified error is likely to exist, other
authors tried to deal with this large scale integer programming problem by
using optimization heuristics. In [WF97], Winker and Fang used threshold
accepting to find lower bounds for the star discrepancy. Threshold accepting
[DS90] is a refined randomized local search algorithm based on a similar
idea as the simulated annealing algorithm [KGV83]. In [Thi01b], Thiémard
gave an integer linear programming formulation for the problem and used
techniques as cutting plane generation and branch and bound to tackle it

3



(cf. also [GSW09]). Quite recently, Shah proposed a genetic algorithm to
calculate lower bounds for the star discrepancy [Sha10].

Here in this paper we present a new randomized algorithm to approx-
imate the star discrepancy. As the algorithm of Winker and Fang ours is
based on threshold accepting but adds more problem specific knowledge to
it. The paper is organized as follows. In Section 2 we describe the algorithm
of Winker and Fang. In Section 3 we present a first version of our algorithm.
The most important difference to the algorithm of Winker and Fang is a new
non-uniform sampling strategy that takes into account the influence of the
dimension d and topological characteristics of the given point set. In Sec-
tion 4 we introduce the concept of critical test boxes. It are the critical test
boxes which lead to the largest discrepancy values, including the maximum
value. We present rounding procedures which transform given test boxes
into critical test boxes. With the help of these procedures and some other
modifications, our algorithm achieves even better results. However, this pre-
cision comes at at the cost of larger running times (roughly a factor two, see
Table 1). In Section 5 we analyze the new sampling strategy and the round-
ing procedures in more depth. We provide comprehensive numerical tests
in Section 6. The results indicate that our new algorithm is superior to all
other known methods, especially in higher dimensions. The appendix con-
tains some technical results necessary for our theoretical analyses in Section
5.

2 The Algorithm by Winker and Fang

2.1 Notation

In addition to the notation introduced above, we make use of the following
conventions.

For all positive integers m ∈ N we put [m] := {1, . . . ,m}. If r ∈ R, let
⌊r⌋ := max{n ∈ Z |n ≤ r}. For the purpose of readability we sometime
omit the ⌊.⌋ sign, i.e., we whenever we write r where an integer is required,
we implicitly mean ⌊r⌋.

For general x, y ∈ [0, 1]d we write x ≤ y if xj ≤ yj for all j ∈ [d] and,
equivalently, x < y if xj < yj for all j ∈ [d]. The characteristic function 1[0,x)

is defined on [0, 1]d by 1[0,x)(y) := 1 if y < x and 1[0,x)(y) := 0 otherwise.
We use corresponding conventions for the closed d-dimensional box [0, x].

For a given sequence X = (xi)ni=1 in the d-dimensional unit cube [0, 1)d,
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we define the following functions. For all y ∈ [0, 1]d we set

δ(y) := δ(y,X) := Vy − A(y,X) = Vy −
1

n

n
∑

k=1

1[0,y)(x
k) ,

δ̄(y) := δ̄(y,X) := Ā(y,X) − Vy =
1

n

n
∑

k=1

1[0,y](x
k) − Vy ,

and δ∗(y) := δ∗(y,X) := max
{

δ(y), δ̄(y)
}

. Then d∗∞(X) = maxy∈Γ̄(X) δ∗(y)
as discussed in the introduction.

2.2 The algorithm by Winker and Fang

Threshold accepting is an integer optimization heuristic introduced by Dueck
and Scheuer in [DS90]. Althöfer and Koschnik [AK91] showed that for suit-
ably chosen parameters, threshold accepting converges to a global optimum
if the number I of iterations tends to infinity. Winker and Fang [WF97]
applied threshold accepting to compute the star discrepancy of a given n-
point configuration. In the following, we give a short presentation of their
algorithm. A flow diagram of the algorithm can be found in [WF97].

Initialization: The heuristic starts with choosing uniformly at random
a starting point xc ∈ Γ̄(X) and calculating δ∗(xc) = max{δ(xc), δ(xc)}. Note
that throughout the description of the algorithm, xc denotes the currently
used search point.

Optimization: A number I of iterations is performed. In the t-th
iteration, the algorithm chooses a point xnb uniformly at random from a
given neighborhood N (xc) of xc and calculates δ∗(xnb). It then computes
∆δ∗ := δ∗(xnb) − δ∗(xc). If ∆δ∗ ≥ T for a given (non-positive) threshold
value T , then xc is being updated, i.e, the algorithm sets xc := xnb. With
the help of the non-positive threshold it shall be avoided to get stuck in a
bad local maximum xc of δ∗—“local” with respect to the underlying neigh-
borhood definition. The threshold value T changes during the run of the
algorithm and ends up at zero. This should enforce the algorithm to end up
at a local maximum of δ∗ which is reasonably close to d∗∞(X).

Neighborhood Structure: Let us first give the neighborhood defini-
tion used in [WF97]. For this purpose, let x ∈ Γ̄(X) be given. Let ℓ < n/2
be an integer and put k := 2ℓ + 1. We allow only a certain number of co-
ordinates to change by fixing a value mc ∈ [d] and choosing mc coordinates
j1, . . . , jmc ∈ [d] uniformly at random. For j ∈ {j1, . . . , jmc} we consider the
set of grid coordinates

Nk,j(x) :=
{

γ ∈ Γ̄j(X)
∣

∣

∣
max{1, φ−1

j (xj)−ℓ} ≤ φ−1
j (γ) ≤ min{|Γ̄j(X)|, φ−1

j (xj)+ℓ}
}

,

where φj : [|Γ̄j(X)|] → Γ̄j(X) is the ordering of the set Γ̄j(X), i.e., φj(r) <

φj(s) for r < s. The neighborhood N j1,...,jmc

k (x) of x of order k is the
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Cartesian product

N j1,...,jmc

k (x) := N̂k,1(x) × . . . × N̂k,d(x) , (2)

where N̂k,j(x) = Nk,j(x) for j ∈ {j1, . . . , jmc} and N̂k,j(x) = {xj} otherwise.

Clearly, |N j1,...,jmc

k (x)| ≤ (2ℓ+1)mc. We abbreviate Nmc
k (x) := N j1,...,jmc

k (x)
if j1, . . . , jmc are mc coordinates chosen uniformly at random.

Threshold values: Next, we explain how the threshold sequence is cho-
sen in [WF97]. The following procedure is executed prior to the algorithm
itself. Let I be the total number of iterations to be performed by the algo-
rithm and let k ≤ n and mc ≤ d be fixed. For each t ∈ [

√
I ], the procedure

computes a pair (yt, ỹt), where yt ∈ Γ̄(X) is chosen uniformly at random
and ỹt ∈ Nmc

k (yt), again chosen uniformly at random. It then calculates
the values T (t) := −|δ∗(yt) − δ∗(ỹt)|. When all values T (t), t = 1, . . . ,

√
I,

have been computed, the algorithm sorts them in increasing order. For a
given α ∈ (0.9, 1], the α

√
I values closest to zero are selected as threshold

sequence. The number J of iterations performed for each threshold value is
J = α−1

√
I.

3 A First Improved Algorithm – TA basic

Our first algorithm, TA basic, builds on the algorithm by Winker and Fang
as presented in the previous section. A preliminary but yet different version
of TA basic can be found in [Win07]. It has been used in [DGW10] to
provide lower bounds for the comparison of the star discrepancies of different
point sequences. In particular in higher dimensions it performed better than
any other method tested by the authors.

Recall that the algorithm by Winker and Fang employs a uniform prob-
ability distribution on Γ̄(X) and the neighborhoods Nmc

k (x) for all random
decisions.

Firstly, this is not appropriate for higher-dimensional inputs: In any
dimension d it is most likely that the discrepancy of a set X is caused by
test boxes with volume at least c, c some constant in (0, 1). Thus in higher
dimension d we expect the upper right corners of test boxes with large local
discrepancy to have coordinates at least c1/d. Thus it seems appropriate
for higher dimensional sets X to weight points in the grid Γ̄(X) with larger
coordinates more than points with small coordinates.

Secondly, a uniform probability distribution does not take into account
the topological characteristics of the point set X as, e.g., distances between
the points in the grid Γ̄(X): If there is a grid cell [x, y] in Γ̄(X) (i.e., x, y ∈
Γ̄(X) and φ−1

j (yj) = φ−1
j (xj)+1 for all j ∈ [d], where φj is again the ordering

of the set Γ̄j(X)) with large volume, we would expect that δ̄(x) or δ(y) are
also rather large.
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Thus, on the one hand, it seem better to consider a modified probability
measure on Γ̄(X) which accounts for the influence of the dimension and
the topological characteristics of X. On the other hand, if n and d are
large, we clearly cannot afford an elaborate precomputation of the modified
probability weights.

To cope with this, the non-uniform sampling strategy employed by
TA basic consists of two steps:

• A continuous sampling step, where we select a point in the whole d-
dimensional unit cube (or in a “continuous” neighborhood of xc) with
respect to a non-uniform (continuous) probability measure πd, which
is more concentrated in points with larger coordinates.

• A rounding step, where we round the selected point to the grid Γ̄(X).

In this way we address both the influence of the dimension and the topo-
logical characteristics of the point set X. This works without performing
any precomputation of probability weights on Γ̄(X) – the random genera-
tor used, the change of measure on [0, 1]d from the d-dimensional Lebesgue
measure to πd, and our rounding procedure do this implicitly! Theoretical
and experimental justifications for our non-uniform sampling strategy can
be found in Section 5 and Section 6.

3.1 Sampling of Neighbors

In the following, we present how we modify the probability distribution over
the neighborhood sets. Our non-uniform sampling strategy consists of the
following two steps.

Continuous Sampling Consider a point x ∈ Γ̄(X). For fixed mc ∈ [d]
let j1, . . . , jmc ∈ [d] be pairwise different coordinates. For j ∈ {j1, . . . , jmc}
let ϕj : [|Γ̄j(X)∪{0}|] → Γ̄j(X)∪{0} be the ordering of the set Γ̄j(X)∪{0}
(in particular ϕj(1) = 0). Let us now consider the real interval Ck,j(x) :=
[ξ(xj), η(xj)] with

ξ(xj) := ϕ
(

max{1, ϕ−1(xj) − ℓ}
)

and η(xj) := ϕ
(

min{|Γ̄j(X) ∪ {0}|, ϕ−1(xj) + ℓ}
)

.

Our new neighborhood Cj1,...,jmc

k (x) of x of order k is the Cartesian product

Cj1,...,jmc

k (x) := Ĉk,1(x) × . . . × Ĉk,d(x) , (3)

where Ĉk,j(x) = Ck,j(x) for j ∈ {j1, . . . , jmc} and Ĉk,j(x) = {xj} otherwise.

We abbreviate Cmc
k (x) := Cj1,...,jmc

k (x) if j1, . . . , jmc are mc coordinates cho-
sen uniformly at random.

Instead of endowing Cj1,...,jmc

k (x) with the Lebesgue measure on the non-
trivial components, we choose a different probability distribution which we
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describe in the following. First, let us consider the polynomial product
measure

πd( dx) = ⊗d
j=1f(xj)λ( dxj) with density function f : [0, 1] → R , r 7→ drd−1

on [0, 1]d; here λ = λ1 should denote the one-dimensional Lebesgue measure.
Notice that in dimension d = 1 we have π1 = λ. Picking a random point
y ∈ [0, 1]d with respect to the new probability measure πd can easily be
done in practice by sampling a point z ∈ [0, 1]d with respect to λd and then

putting y := (z
1/d
1 , . . . , z

1/d
d ).

We endow Cj1,...,jmc

k (x) with the probability distribution induced
by the polynomial product measure on the mc non-trivial components
Ck,j1(x), . . . , Ck,jmc(x). To be more explicit, we map each Ck,j(x), j ∈
{j1, . . . , jmc}, to the unit interval [0, 1] by

Ψj : Ck,j(x) → [0, 1], r 7→ rd − (ξ(xj))
d

(η(xj))d − (ξ(xj))d
.

Recall that ξ(xj) := minCk,j(x) and η(xj) := maxCk,j(x). The inverse
mapping Ψ−1

j is then given by

Ψ−1
j : [0, 1] → Ck,j , s 7→

(

(

(η(xj))
d − (ξ(xj))

d
)

s + (ξ(xj))
d
)1/d

.

If we want to sample a random point y ∈ Cj1,...,jmc

k (x), we randomly choose
scalars s1, . . . , smc in [0, 1] with respect to λ and put yji := Ψ−1

ji
(si) for

i = 1, . . . ,mc. For indices j /∈ {j1, . . . , jmc} we set yj := xj .
Rounding Procedure: We round the point y once up and once down

to the nearest points y+ and y− in Γ̄(X). More precisely, for all j ∈ [d], let
y+

j := min{xi
j ∈ Γ̄j(X) | yj ≤ xi

j}. If yj ≥ min Γ̄j(X) we set y−j := max{xi
j ∈

Γ̄j(X) | yj ≥ xi
j} and in case yj < min Γ̄j(X), we set y−j := maxΓj(X).

Obviously, A(y+,X) = A(y,X) and thus, δ(y+) = Vy+ − A(y+,X) ≥
Vy − A(y,X) = δ(y) . Similarly, if yj ≥ min Γj(X) for all j ∈ [d], we have
Ā(y−,X) = Ā(y,X). Hence, δ̄(y−) = Ā(y−,X) − Vy− ≥ Ā(y,X) − Vy =
δ̄(y) . If yj < min Γj(X) for at least one j ∈ [d] we have δ̄(y) ≤ 0 since
Ā(y,X) = 0. But we also have A(y,X) = 0 and thus δ∗(y) = δ(y) ≤ δ(y+) .
Putting everything together, we have shown that max{δ(y+), δ̄(y−)} ≥
δ∗(y) .

Since it is only of insignificant additional computational cost to also
compute δ̄(y−,−) where y−,−

j := y−j for all j ∈ [d] with yj ≥ min Γ̄j(X) and

y−,−
j := min Γ̄j(X) for j with yj < min Γ̄j(X), we also do that in case at

least one such j with yj < min Γ̄j(X) exists.
For sampling a neighbor xnb of xc the algorithm thus does the following.

First, it samples mc coordinates j1, . . . , jmc ∈ [d] uniformly at random.
Then it samples a point y ∈ Cj1,...,jmc

k (xc) as described above, computes the
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rounded grid points y+, y−, and y−,− and computes the discrepancy δ∗Γ(y) :=
max{δ(y+), δ̄(y−), δ̄(y−,−)} of the rounded grid points. The subscript Γ shall
indicate that we consider the rounded grid points. As in the algorithm by
Winker and Fang, TA basic updates xc if and only if ∆δ∗ = δ∗Γ(y)−δ∗(xc) ≥
T , where T denotes the current threshold. In this case we always update xc

with the best rounded test point, i.e., we update xc := y+ if δ∗Γ(y) = δ(y+),
xc := y− if δ∗Γ(y) = δ̄(y−), and xc := y−,− otherwise.

3.2 Sampling of the Starting Point

Similar to the probability distribution on the neighborhood sets, we sample
the starting point xc as follows. First, we sample a point x from [0, 1]d

according to πd. We then round x up and down to x+, x−, and x−,−,
respectively and again we set xc := x+ if δ∗Γ(x) = δ(x+), xc := x− if δ∗Γ(x) =
δ̄(x−), and we set xc := x−,− otherwise.

3.3 Computation of Threshold Sequence

The modified neighborhood sampling is also used for computing the sequence
of threshold values. If we want the algorithm to perform I iterations, we
compute the threshold sequence as follows. For each t ∈ [

√
I ] we sample

a pair (yt, ỹt), where yt ∈ Γ̄(X) is sampled as is the starting point and
ỹt ∈ Γ̄(X) is a neighbor of yt, sampled according to the procedure described
in Section 3.1. The thresholds −|δ∗(yt) − δ∗(ỹt)| are sorted in increasing
order and each threshold will be used for

√
I iterations of TA basic. Note

that by this choice, we are implicitly setting α := 1 in the notion of the
algorithm by Winker and Fang.

3.4 Choices of k and mc

Whereas Winker and Fang have little dependence of the parameter k = 2ℓ+1
on the size of the point set (see Section 6), we choose ℓ = ⌊n

8 ⌋, if n ≥ 100 and
ℓ = ⌊n

4 ⌋ otherwise. These settings showed reasonable performance in our
experiments. For the number of coordinates that we allow to change, the
mc value, we simply use mc = 2 throughout since a small value of mc got
the best results in [Win07] even for medium- and high-dimensional settings.

4 Further Improvements – Algorithm TA improved

In the following, we present further modifications which we applied to the ba-
sic algorithm TA basic. We call the new, enhanced algorithm TA improved.

The main improvements, which we describe in more detail below, are
the following. (i) A further reduction of the search space by introducing
new rounding procedures (“snapping”), (ii) shrinking neighborhoods and
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growing number of search directions, and (iii) separate optimization of δ
and δ̄ .

4.1 Further Reduction of the Search Space

We mentioned that for calculating the star discrepancy it is sufficient to test
just the points y ∈ Γ̄(X) and to calculate δ∗(y), cf. equation (1). Therefore
Γ̄(X) has been the search space we have considered so far. But it is possible
to reduce the cardinality of the search space even further.

We obtain the reduction of the search space via a rounding procedure
which we call snapping. As this is an important element in the modified
algorithm, we now discuss the underlying concept of critical points (or test
boxes). For y ∈ [0, 1]d we define

Sj(y) :=

j−1
∏

i=1

[0, yi) × {yj} ×
d
∏

k=j+1

[0, yk) , j = 1, . . . , d .

We say that Sj(y) is a δ(X)-critical surface if Sj(y) ∩ {x1, . . . , xn} 6= ∅ or
yj = 1. We call y a δ(X)-critical point if for all j ∈ [d] the surfaces Sj(y)
are critical. Let C denote the set of δ(X)-critical points in [0, 1]d.

Let S̄j(y) be the closure of Sj(y), i.e.,

S̄j(y) :=

j−1
∏

i=1

[0, yi] × {yj} ×
d
∏

k=j+1

[0, yk] , j = 1, . . . , d .

We say S̄j(y) is a δ̄(X)-critical surface if S̄j(y)∩ {x1, . . . , xn} 6= ∅. If for all
j ∈ [d] the surfaces S̄j(y) are δ̄(X)-critical, then we call y a δ̄(X)-critical
point. Let C̄ denote the set of δ̄(X)-critical points in [0, 1]d.

We call y a δ∗(X)-critical point if y ∈ C∗ := C ∪ C̄.
For j ∈ [d] let νj := |Γ̄j(X)|, and let again φj : [νj ] → Γ̄j(X) denote the

ordering of Γ̄j(X). Let Φ : [ν1] × · · · × [νd] → Γ̄(X) be the mapping with
components φj , j = 1, . . . , d. We say that a multi-index (i1, . . . , id) ∈ [n+1]d

is a δ(X)-critical multi-index if Φ(i1, . . . , id) is a δ(X)-critical point. We use
similar definitions in cases where we deal with δ̄(X) or δ∗(X).

Lemma 4.1. Let X = {x1, . . . , xn} be a n-point configuration in [0, 1)d. Let
C = C(X), C̄ = C̄(X), and C∗ = C∗(X) be as defined above. Then C, C̄ and
C∗ are non-empty subsets of Γ̄(X). Furthermore,

sup
y∈[0,1]d

δ(y) = max
y∈C

δ(y) , sup
y∈[0,1]d

δ̄(y) = max
y∈C̄

δ̄(y) and sup
y∈[0,1]d

δ∗(y) = max
y∈C∗

δ∗(y).

Proof. The set C is not empty, since it contains the point (1, . . . , 1). Let
y ∈ C. By definition, we find for all j ∈ [d] an index σ(j) ∈ [n] with

yj = x
σ(j)
j or we have yj = 1. Therefore y ∈ Γ̄(X). Let z ∈ [0, 1]d \ C.

10



Since δ(z) = 0 if zj = 0 for any index j, we may assume zj > 0 for all
j. As z /∈ C there exists a j ∈ [d] where Sj(z) is not δ(X)-critical. In
particular, we have zj < 1. Let now τ ∈ Γ̄j(X) be the smallest value with
zj < τ . Then the point ẑ := (z1, . . . , zj−1, τ, zj+1, . . . , zd) fulfills Vẑ > Vz.
Furthermore, the sets [0, ẑ) \ [0, z) and X are disjoint. So [0, ẑ) and [0, z)
contain the same points of X. In particular we have A(ẑ,X) = A(z,X) and
thus, δ(ẑ) > δ(z). This argument verifies supy∈[0,1]d δ(y) = maxy∈C δ(y).
The remaining statements of Lemma 4.1 can be proven with similar simple
arguments.

We now describe how to use this concept in our algorithm. Let us
first describe how we sample a neighbor xnb of a given point xc. The
procedure starts exactly as described in Section 3.1. That is, we first
sample mc coordinates j1, . . . , jmc ∈ [d] uniformly at random. Next, we
sample y ∈ Cj1,...,jmc

k (xc) according to the probability distribution induced
by the polynomial product measure πd on the non-trivial components of
Cj1,...,jmc

k (xc), cf. Section 3.1. Again we round y up and down to the near-
est grid points y+, y− and y−,−, respectively. We then apply the following
snapping procedures1.

Snapping down. We aim at finding a δ̄(X)-critical point y−,sn ≤ y−

such that the closed box [0, y−,sn
j ]dj=1 contains exactly the same points of X

as the box [0, y−j ]dj=1. We achieve this by simply setting for all j ∈ [d]

y−,sn
j := max{xi

j | i ∈ [n], xi ∈ [0, y−]} .

From the algorithmic perspective, we initialize y−,sn := (0, . . . , 0) and check
for each index i ∈ [n] whether xi ∈ [0, y−]. If so, we check for all j ∈ [d]
whether xi

j ≤ y−,sn
j and update y−,sn

j := xi
j otherwise.

Snapping up2. Whereas snapping down was an easy task to do, the
same is not true for snapping up, i.e., rounding a point to a δ(X)-critical
one. More precisely, given a point y+, there are multiple δ(X)-critical points
y+,sn ≥ y+ such that the open box created by y+,sn contains only those
points which are also contained in [0, y+).

Given that we want to perform only one snapping up procedure per
iteration, we use the following random version of snapping upwards. In
the beginning, we initialize y+,sn := (1, . . . , 1). Furthermore, we pick a
permutation σ of [d] uniformly at random from the set Sd of all permutations
of set [d]. For each point x ∈ {xi | i ∈ [n]} we now do the following. If
x ∈ [0, y+) or xj ≥ y+,sn

j for at least one j ∈ [d], we do nothing. Otherwise

1The snapping procedure is the same for y− and y−,−. Therefore, we describe it for
y− only.

2Being aware that “snapping up” is an oxymoron, we still use this notation as it eases
readability in what follows.
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we update y+,sn
σ(j) := xσ(j) for the smallest j ∈ [d] with xσ(j) ≥ y+

σ(j). After

this update, x is no longer inside the open box generated by y+,sn.
Note that snapping up is subject to randomness as the δ(X)-critical

point obtained by our snapping procedure can be different for different per-
mutations σ ∈ Sd.

The complexity of both snapping procedures is of order O(nd). In our
experiments, the snapping procedures caused a delay in the (wall clock)
running time by a factor of approximately two, if compared to the running
time of TA basic. It is not difficult to verify the following.

Lemma 4.2. Let X be a given n-point sequence in [0, 1)d For all y ∈ [0, 1]d,
the point y+,sn, computed as described above, is δ(X)-critical and both y−,sn

and y−,−,sn are δ̄(X)-critical.

In the run of the algorithm we now do the following. Given that we
start in some grid point xc, we sample y ∈ Cmc

k (xc) and we round y to the
closest grid points y+, y−, y−,− ∈ Γ̄(X) as described in Section 3.1. Next we
compute the δ(X)-critical point y+,sn, the δ̄(X)-critical point y−,sn, and, if
y− 6= y−,−, we also compute the δ̄(X)-critical point y−,−,sn. We decide to
update xc if ∆δ∗ = δ∗,sn(y)−δ∗,sn(xc) ≥ T , where T is the current threshold,
δ∗,sn(y) := max{δ(y+,sn), δ̄(y−,sn), δ̄(y−,−,sn)}, and δ∗,sn(xc) is the values as
was computed in the iteration where xc was updated last. Note that we
do not update xc with any of the critical points y+,sn, y−,sn, or y−,−,sn

but only replace xc with the simple rounded grid points y+, y−, or y−,−,
respectively. More precisely, we update xc := y+ if δ∗,sn(y) = δ(y+,sn),
xc := y− if δ∗,sn(y) = δ̄(y−,sn), and xc := y−,−, otherwise.

4.1.1 Further Variants of the Algorithm

We do not update xc with the critical points, since our experiments showed
that the performance of the algorithm can be significantly improved by
updating with the (simply) rounded, not necessarily critical points. This
seems to allow the algorithm more flexibility and prevents it from getting
stuck in a local optimum too early.

We also tested a variant of the algorithm where we only update
the best-so-far solution with δ∗,sn(y) := max{δ(y+,sn), δ̄(y−,sn), δ̄(y−,−,sn)}
but where all other decisions are only based on the value δ∗Γ(y) :=
max{δ(y+), δ̄(y−), δ̄(y−,−)}. That is, this algorithm does exactly the same
as TA basic but in addition computes the δ(X)- and δ̄(X)-critical points and
stores the largest values of δ∗,sn. Clearly, the performance (up to random
noise) is better than the one of TA basic at the cost of a higher running-
time. However, it did not perform as well as the one described above where
the decision of whether or not to update a point also depends on the δ(X)-
and δ̄(X)-critical δ∗,sn-values.
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4.1.2 Computation of the Starting Point and the Threshold Se-
quence

When computing the starting point xc we first sample a random point x
from [0, 1]d according to πd (see Section 3.1) and compute x+ and x−, and, if
applicable, x−,−. We also compute the δ(X)- and δ̄(X)-critical points x+,sn,
x−,sn, and x−,−,sn and set δ∗,sn(x) := max{δ(x+,sn), δ̄(x−,sn), δ̄(x−,−,sn)}.
We put xc := x+ if δ∗,sn(x) = δ(x+,sn), xc := x− if δ∗,sn(x) = δ̄(x−,sn), and
xc := x−,−, otherwise.

For computing the threshold sequence, we also use the δ(X)- and δ̄(X)-
critical δ∗,sn-values. That is, for t = 1, . . . ,

√
I we compute t-th pair

(yt, ỹt) by first sampling a random starting point yt as described above
(i.e., yt ∈ {x+, x−, x−,−} for some x sampled from [0, 1]d according to πd

and yt = x+ if δ∗,sn(x) = δ(x+,sn), yt = x− if δ∗,sn(x) = δ̄(x−,sn), and
yt = x−,− otherwise). We then compute a neighbor ỹt ∈ Cmc

k (yt) and
the maximum of the discrepancy of the δ(X)- and δ̄(X)-critical points
δ∗,sn(ỹt) := max{δ(ỹt,+,sn), δ̄(ỹt,−,sn), δ̄(ỹt,−,−,sn)}. Finally, we sort the
threshold values T (t) := −|δ∗,sn(yt) − δ∗,sn(ỹt)|, t = 1, . . . ,

√
I in increas-

ing order. This will be our threshold sequence.

4.2 Shrinking Neighborhoods and Growing Number of

Search Directions

We add the concept of shrinking neighborhoods, i.e., we consider neighbor-
hoods that decrease in size during the run of the algorithm. The intuition
here is the following. In the beginning, we want the algorithm to make large
jumps. This allows it to explore different regions of the search space. How-
ever, towards the end of the algorithm we want it to become more local,
allowing it to explore large parts of the local neighborhood. We implement
this idea by iteratively shrinking the k-value. At the same time, we increase
the mc-value, letting the algorithm explore the local neighborhood more
thoroughly.

More precisely, we do the following. In the beginning we set ℓ := (n −
1)/2 and mc := 2. That is, the algorithm is only allowed to change few
coordinates of the current search point but at the same time it can make
large jumps in these directions. Recall that k = 2ℓ + 1. In the t-th iteration
(out of a total number of I iterations) we then update

ℓ :=
n − 1

2
· I − t

I
+

t

I
and mc := 2 +

t

I
(d − 2) .

For the computation of the threshold sequence, we equivalently scale k
and mc by initializing ℓ := (n − 1)/2 and mc := 2 and then setting for the
computation of the t-th pair (yt, ỹt)

ℓ :=
n − 1

2
·
√

I − t√
I

+
t√
I

and mc := 2 +
t√
I
(d − 2) .
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Recall that we compute a total number of
√

I threshold values.

4.3 Seperate Optimization of δ and δ̄

Our last modification is based on the intuition that the star discrepancy is
either obtained by an open, subproportionally filled box (i.e., there exists
a y ∈ Γ̄(X) such that d∗∞(X) = δ(y)), in which case one might assume
that there are many points ỹ with large δ(ỹ)-values. Alternatively, if the
discrepancy is obtained by a closed, overproportionally filled box (i.e., there
exists a y ∈ Γ̄(X) such that d∗∞(X) = δ̄(y)), we assume that there are
multiple such points ỹ with large δ̄(ỹ)-values. This intuition triggered us to
test also the following split variant of the algorithm.

In the δ-version of the algorithm, we only consider open test boxes.
That is, whenever we want to sample a random starting point [a random
neighbor], we proceed exactly as described in Section 4.1 but instead of
computing both y+ and y− (and, potentially y−,−) as well as the δ(X)- and
δ̄(X)-critical points y+,sn, y−,sn, and y−,−,sn in the notation of Section 4.1,
we only compute y+ [and y+,sn], and we initialize xc := y+ [we update
xc := y+ if and only if ∆δ = δ(y+,sn) − δ

(

(xc)+,sn
)

≥ T , where T again
denotes the current threshold].

The δ̄-version is symmetric. We compute both y− and y−,− as well
as the δ̄(X)-critical points y−,sn and y−,−,sn, and we initialize xc := y−

or xc := y−,− [we update xc := y− or xc := y−,− if and only if ∆δ̄ =
max{δ̄(y−,sn), δ̄(y−,−,sn)} − δ̄

(

(xc)−,sn
)

≥ T ].
Note that only δ-values (or δ̄-values, respectively) are considered for the

computation of the threshold sequence as well.
The algorithm now is the following. We perform I iterations of the δ-

version of the algorithm and I iterations of the δ̄-version. The algorithm
then outputs the maximum value obtained in either one of the two versions.

It should be noted that a large proportion of the computational cost of
TA improved lies in the snapping procedures. Thus, running I iterations
of the δ-version followed by I iterations of the δ̄-version has a comparable
running time to running I iterations of an algorithm of the “mixed” form
where we snap each point up and down to the δ(X)- and δ̄(X)-critical grid
points. Furthermore, as most modern CPUs are multicore and able to run
several programs in parallel, the actual wall-clock cost of switching from
TA basic to the split version of TA improved may be smaller still.

Algorithm 1 summarizes TA improved. Note that δ̄(n, d,X, I) is the
equivalent of Algorithm 2 where we replace δ by δ̄, x+ by x− etc. The
same is true for Subroutine Thresholds(n, d,X,

√
I, δ̄) for computing the

threshold sequence for the δ̄-version.
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Algorithm 1: The algorithm TA improved for computing lower
bounds of the star discrepancy d∗∞(X).

Input:1

Problem instance: n ∈ N, d ∈ N, sequence X = (xi)ni=1 in [0, 1)d.2

Number of iterations I.3

Computation of a lower bound for d∗∞(X):4

δ := δ(n, d,X, I) /* Output of I iterations of the δ-version.*/5

δ̄ := δ̄(n, d,X, I) /* Output of I iterations of the δ̄-version.*/6

Output: δ∗ := max{δ, δ̄}.7

Algorithm 2: The δ-version δ(n, d,X, I).

Initialization:1

TS = (T (i))
√

I
i=1 := Thresholds(n, d,X,

√
I, δ) /*Compute the2

threshold sequence of length
√

I.*/
Sample the starting point: pick x ∈ [0, 1)d with respect to πd and3

round x up to the nearest grid point x+. Compute the
δ(X)-critical point x+,sn and δ(x+,sn).
Initialize xc := x+, global := δ(x+,sn), current := δ(x+,sn),4

ℓ := ⌊n−1
2 ⌋, and mc := 2.

for i = 1, . . . ,
√

I do5

Update threshold value T := T (i). for6

t = (i − 1)
√

I + 1, . . . , (i − 1)
√

I +
√

I do

Update ℓ := ⌊n−1
2 · I−t

I + t
I ⌋ and mc := 2 + ⌊ t

I ⌋(d − 2).7

Sample y ∈ Cmc
k (xc) as described in Section 3.1.8

Round y up to the nearest grid point y+ ∈ Γ̄(X) and compute9

the δ(X)-critical point y+,sn as well as δ(y+,sn).
if δ(y+,sn) > global then update global := δ(y+,sn).10

if ∆δ := δ(y+,sn) − current ≥ T then update xc := y+ and11

current := δ(y+,sn).

5 Theoretical Analysis

From our main innovations, namely the non-uniform sampling strategy and
the rounding procedures “snapping up” and “snapping down”, we already
analyzed the snapping procedures and proved that they enlarge the quality
of our estimates. The analysis of the non-uniform sampling strategy is much
more complicated. One reason is that our sampling strategy strongly inter-
acts with the search heuristic threshold accepting. That is why we confine
ourselves to the analysis of the pure non-uniform sampling strategy without
considering threshold accepting.
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Algorithm 3: Subroutine Thresholds(n, d,X,
√

I, δ) for computing
the threshold sequence.

Initialization:1

Initialize ℓ := ⌊n−1
2 ⌋, and mc := 2.2

for t = 1, . . . ,
√

I do3

Update ℓ := ⌊n−1
2 ·

√
I−t√
I

+ t√
I
⌋ and mc := 2 + ⌊t/

√
I⌋(d − 2).4

Sample a random point: pick x ∈ [0, 1)d with respect to πd and5

round x up to the nearest grid point x+. Compute the
δ(X)-critical point x+,sn and δ(x+,sn).
Sample y ∈ Cmc

k (x+) as described in Section 3.1.6

Round y up to the nearest grid point y+ ∈ Γ̄(X) and compute the7

δ(X)-critical point y+,sn as well as δ(y+,sn).
T̃ (i) := −|δ(y+,sn) − δ(x+,sn)|.8

Sort thresholds in increasing order to obtain threshold sequence9

(T (i))ni=1 with T (i) ≤ T (i + 1) for all i ∈ [n − 1].

In Section 5.1 we prove that sampling in the d-dimensional unit cube
with respect to the probability measure πd instead of λd leads to superior
discrepancy estimates. (More precisely, we restrict our analysis for technical
reasons to the objective function δ.) In Section 5.2 we verify that for d = 1
sampling with respect to the probability distribution induced on Γ̄(X) by
sampling with respect to πd in [0, 1]d and then rounding to the grid Γ̄(X)
leads to better discrepancy estimates than the uniform distribution on Γ̄(X).
We comment also on the case d ≥ 2. In Section 5.3 we prove that for
random point sets X the probability of x ∈ Γ̄(X) beeing a critical point
is essentially an increasing function of the position of its coordinates xj in
the ordered sets Γ̄j(X), j = 1, . . . , d. Recall that critical points yield higher
values of the local discrepancy function δ∗ and include the point that leads
to its maximum value. Thus the analysis in Section 5.3 serves as another
justification of choosing a probability measure on the neighborhoods which
weights points with larger coordinates stronger than points with smaller
coordinates.

5.1 Analysis of Random Sampling with Respect to λd and πd

Here we want to show that sampling in the d-dimensional unit cube with
respect to the non-uniform probability measure πd leads to superior results
than sampling with respect to the Lebesgue measure λd.

Before we start with the theoretical analysis, let us give a strong indi-
cation that our non-uniform sampling strategy is much more appropriate
in higher dimension than a uniform sampling strategy. In [WF97] Winker
and Fang chose in each of the dimensions d = 4, 5, 6 in a random manner 10

16



lattice points sets, cf. also our Section 6. They calculated the discrepancy of
these sets exactly. If ηd denotes the average value of the coordinates of the
points y with δ∗(y) = supz∈[0,1]d δ∗(z), we get η4 = 0.799743, η5 = 0.840825,
and η6 = 0.873523. The expected coordinate value µd of a point x, randomly
sampled from [0, 1)d with respect to the measure πd, is µd = d/(d + 1). So
we get µ4 = 0.8, µ5 = 0.83̄, and µ6 = 0.857143. Note that for using λd

instead of πd the expected coordinate value is only 0.5 for all dimensions.

5.1.1 Random Sampling in the Unit Cube with Respect to λd

We analyze the setting, where we sample in [0, 1]d with respect to λd to
maximize the objective function δ. A similar analysis for δ is technically
more involved than the proof of Proposition 5.1. Furthermore, it leads to
a less clear and also worse result. We comment on this at the end of this
subsection.

Proposition 5.1. Let ε ∈ (0, 1), let n, d ∈ N, and let X = (xi)ni=1 be a
sequence in [0, 1)d. Let x∗ = x∗(X) ∈ [0, 1]d satisfy δ(x∗) = supx∈[0,1]d δ(x).

Let us assume that Vx∗ ≥ ε. Consider a random point r ∈ [0, 1]d, sampled
with respect to the probability measure λd. If P λ

ε = P λ
ε (X) denotes the

probability of the event {r ∈ [0, 1]d | δ(x∗) − δ(r) ≤ ε}, then

P λ
ε ≥ 1

d!

εd

V d−1
x∗

≥ εd

d!
. (4)

This lower bound is sharp in the sense that there exist sequences of point
configurations {X(k)} such that limk→∞ d! ε−dP λ

ε (X(k)) converges to 1 as ε
tends to zero.

Let additionally ǫ ∈ (0, 1) and R ∈ N. Consider random points
r1, . . . , rR ∈ [0, 1]d, sampled independently with respect to λd, and put
δR := maxR

i=1 δ(ri). If

R ≥ | ln(ǫ)|
∣

∣

∣
ln
(

1 − εd

d!

)
∣

∣

∣

−1
, (5)

then δ(x∗) − δR ≤ ε with probability at least 1 − ǫ.

Notice, that the case Vx∗ < ε left out in Proposition 5.1 is less im-
portant for us, since our main goal is to find a good lower bound for the
star-discrepancy d∗∞(X). Indeed, the approximation of d∗∞(X) up to an ad-
missible error ε is a trivial task if d∗∞(X) ≤ ε. If d∗∞(X) > ε, then Vx∗ < ε
implies δ(x∗) < d∗∞(X), and the function δ̄ plays the significant role.

Proof. For x ≤ x∗ we get

δ(x) = Vx − 1

n

n
∑

i=1

1[0,x)(x
i) ≥ δ(x∗) − (Vx∗ − Vx) .

17



Therefore the Lebesgue measure of the set

Aε(x
∗) := {x ∈ [0, 1]d |x ≤ x∗, Vx∗ − Vx ≤ ε} (6)

is a lower bound for P λ
ε . Due to Proposition A.2, we have for d ≥ 2

λd(Aε(x
∗)) =

1

d!

εd

V d−1
x∗

∞
∑

k=0

bk(d)
( ε

Vx∗

)k
,

with positive coefficients bk(d). In particular, we have b0(d) = 1. Thus,

λd(Aε(x
∗)) ≥ 1

d!

εd

V d−1
x∗

≥ εd

d!
, (7)

and this estimate is obviously also true for d = 1. Let us now consider for
sufficiently large k ∈ N point configurations X(k) = (x(k),i)ni=1, where

x
(k),1
1 = . . . = x

(k),n
1 = k/(k + 1) > ε (8)

and x
(k),i
j < k/(k + 1) − ε for all i ∈ [n], j > 1. Then obviously x∗(X(k)) =

(k/(k+1), 1, . . . , 1), and it is easy to see that P λ
ε (X(k)) = λd(Aε(x

∗)). From
Proposition A.2 we get

λd(Aε(x
∗)) =

(

k + 1

k

)d−1 εd

d!

(

1 + O

(

k + 1

k
ε

))

.

This proves that estimate (4) is sharp. Notice that we assumed (8) only for
simplicity. Since δ(x∗(X)) is continuous in X, we can find for fixed k an
open set of point configurations doing essentially the same job as X(k).

Assume now δ(x∗) − δR > ε, i.e., δ(x∗) − δ(ri) > ε for all i ≤ R. The
probability of this event is at maximum (1 − εd/d!)R. This probability is
bounded from above by ǫ if R satisfies (5).

For d ≥ 1 and ε ≤ 1/2 we have
∣

∣ ln(1 − εd/d!)
∣

∣

−1 ∼ d! ε−d . In this
case we can only assure that δR is an ε-approximation of supx∈[0,1]d δ(x)
with a certain probability if the number R of randomly sampled points is
super-exponential in d.

Let us end this section with some comments on the setting where we
are only interested in maximizing δ̄. If for given ε > 0, X ∈ [0, 1)nd the
maximum of δ̄ is achieved in x̄ = x̄(X) ∈ [0, 1]d, and if we want to know the
probability of the event {r ∈ [0, 1]d | δ̄(x̄) − δ̄(r) ≤ ε}, there seems to be no
alternative to estimating λd(U(x̄)), where

U(x̄) := {r ∈ [0, 1]d | x̄ ≤ r , Vr − Vx̄ ≤ ε} .

It is easy to see that λd(U(x̄(X))) approaches zero if one of the coordinates
of x̄ tends to 1 – regardless of ε and Vx̄. We omit a tedious error analysis to
cover the δ̄-setting.
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5.1.2 Random Sampling in the Unit Cube with Respect to πd

Similarly as in the preceding section, we analyze here the setting where, in
order to maximize δ, we sample in [0, 1]d with respect to πd.

Proposition 5.2. Let ε, d, n,X = (xi)ni=1 and x∗ as in Proposition 5.1.
Again assume Vx∗ ≥ ε. Consider a random point r ∈ [0, 1]d, sampled with
respect to the probability measure πd. If P π

ε = P π
ε (X) denotes the probability

of the event {r ∈ [0, 1]d | δ(x∗)− δ(r) ≤ ε}, then P π
ε ≥ εd. This lower bound

is sharp, since there exists a point configuration X such that P π
ε (X) = εd.

Let additionally ǫ ∈ (0, 1) and R ∈ N. Consider random points
r1, . . . , rR ∈ [0, 1]d, sampled independently with respect to πd, and put
δR := maxR

i=1 δ(ri). If

R ≥ | ln(ǫ)|| ln(1 − εd)|−1 , (9)

then δ(x∗) − δR ≤ ε with probability at least 1 − ǫ.

Proof. Clearly P π
ε ≥ πd(Aε(x

∗)), where Aε(x
∗) is defined as in (6). Due

to Proposition A.5 we have πd(Aε(x
∗)) ≥ εd. Let us now consider the

point configuration X, where x1
1 = . . . = xn

1 = ε and xi
j < ε for all i ∈

[n], j > 1. Furthermore, at least an ε−1-fraction of the points should be
equal to (ε, 0, . . . , 0). Then obviously x∗(X) = (ε, 1, . . . , 1) and P λ

ε (X) =
πd(Aε(x

∗)) = εd.
Let us now assume that δ(x∗) − δR > ε, i.e., δ(x∗) − δ(ri) > ε for all

i ≤ R. This happens with probability not larger than (1 − εd)R. Therefore
we have (1 − εd)R ≤ ǫ if R satisfies (9).

If d ≥ 1 and ε ≤ 1/2, then | ln(1−εd)|−1 ∼ ε−d. Here the number of iter-
ations R ensuring with a certain probability that δR is an ε-approximation
of sup{δ(x) |x ∈ [0, 1]d} is still exponential in d, but at least not super-
exponential as in the previous section.

Altogether we see that a simple sampling algorithm relying on the prob-
abilistic measure πd rather than on λd is more likely to find larger values of
δ.

5.2 Analysis of Rounding to the Coordinate Grid

As described in Sections 3.1 and 3.2, our non-uniform sampling strategy
on the grids Γ̄(X) and Γ(X) for the objective functions δ and δ̄ consists of
sampling in [0, 1]d with respect to πd and then rounding the sampled point
y up and down to grid points y+ and y−, respectively. This induces dis-
crete probability distributions wu = (wu(z))z∈Γ̄(X) and wl = (wl(z))z∈Γ(X)

on Γ̄(X) and Γ(X), respectively. If we use additionally the rounding pro-
cedures “snapping up” and “snapping down”, as described in Section 4.1,
this will lead to modified probabilistic distributions wsn

u = (wsn
u (z))z∈Γ̄(X)
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and wsn
l = (wsn

l (z))z∈Γ(X) on Γ̄(X) and Γ(X), respectively. In dimension
d = 1 the probability distributions wu and wsn

u as well as wl and wsn
l are

equal, since every test box is a critical one. Essentially we prove in the
next section that in the one-dimensional case sampling with respect to the
probability distributions wu = wsn

u [wl = wsn
l ] leads to larger values of δ [δ̄]

than sampling with respect to the uniform distribution on Γ̄(X) [Γ(X)].

5.2.1 Analysis of the 1-Dimensional Situation

Recall that in the 1-dimensional case π = π1 coincides with λ = λ1.
To analyze the 1-dimensional situation, let X := (xi)ni=1 be the given

point configuration in [0, 1). Without loss of generality we assume that
0 ≤ x1 < · · · < xn < 1. Since δ∗(1) = 0 we do not need to consider the
whole grid Γ̄(X) but can restrict ourselves to the set Γ(X) = {x1, . . . , xn}.
For the same reason, let us set y+ := x1 if y > xn (recall that, following the
description given in Section 3.1, we set y− := xn for y < x1 anyhow).

As discussed above, we take points randomly from Γ(X), but instead of
using equal probability weights on Γ(X), we use the probability distributions
wu = wsn

u and wl = wsn
l on Γ(X) to maximize our objective functions δ

and δ̄, respectively. If we put x0 := xn − 1 and xn+1 := x1 + 1, then the
corresponding probability weights for δ and δ̄ are given by wl(x

i) := xi−xi−1

and wu(xi) := xi+1 − xi, respectively.
In the next lemma we will prove the following statements rigorously: If

one wants to sample a point τ ∈ Γ(X) with δ(τ) as large as possible or if
one wants to enlarge the chances to sample the point τ where δ takes its
maximum, its preferable to use the weights wl instead of the equal weights
1/n on Γ(X). Similarly, it is preferable to employ the weights wu(xi), i =
1, . . . , n, instead of equal weights if one wants to increase the expectation of
δ̄ or the chances of sampling the maximum of δ̄.

Lemma 5.3. Let d = 1 and τ , τ̄ ∈ Γ(X) with δ(τ) = supz∈[0,1] δ(z) and

δ̄(τ̄) = supz∈[0,1] δ̄(z). Then we have wl(τ) ≥ 1/n and wu(τ̄) ≥ 1/n.
Furthermore, let E, El, and Eu denote the expectations with respect to

the uniform weights {1/n}, the weights {wl(x
i)}, and the weights {wu(xi)}

on the probability space Γ(X), respectively. Then El(δ) ≥ E(δ) and Eu(δ̄) ≥
E(δ̄).

Proof. Let ν ∈ [n] with τ = xν . Assume first wl(x
ν) < 1/n, i.e., xν −xν−1 <

1/n. If ν > 1, then

δ(xν−1) = xν−1 − ν − 2

n
> xν − ν − 1

n
= δ(xν) .

If ν = 1, then however

δ(xn) = xn − n − 1

n
= x0 +

1

n
> x1 = δ(xν) .
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So both cases result in a contradiction.
We prove now El(δ) ≥ E(δ) by induction over the cardinality n of X.

For n = 1 we trivially have El(δ) = x1 = E(δ).
Therefore, let the statement be true for n and consider an ordered set

Γ(X) := {x1, . . . , xn+1}. Let δ achieve its maximum in xν ∈ Γ(X). We
already proved that wl(x

ν) = xν − xν−1 ≥ 1/(n + 1) holds. With the
notation

x̃i := xi if 1 ≤ i < ν, x̃i := xi+1 − 1

n + 1
if i ≥ ν,

and

x̂i :=
n + 1

n
x̃i , i = 1, . . . , n , and x̂0 := x̂n − 1 ,

we get

El(δ) =

n+1
∑

i=1

wl(x
i)δ(xi) =

δ(xν)

n + 1
+
(

wl(x
ν) − 1

n + 1

)

δ(xν) +

n+1
∑

i=1
i6=ν

wl(x
i)δ(xi)

≥ δ(xν)

n + 1
+
(

wl(x
ν+1) + wl(x

ν) − 1

n + 1

)

δ(xν+1) +

n+1
∑

i=1
i/∈{ν,ν+1}

wl(x
i)δ(xi)

=
δ(xν)

n + 1
+
(

x̃1 − x̃n +
n

n + 1

)

x̃1 +
n
∑

i=2

(x̃i − x̃i−1)
(

x̃i − i − 1

n + 1

)

=
δ(xν)

n + 1
+
( n

n + 1

)2
n
∑

i=1

(x̂i − x̂i−1)
(

x̂i − i − 1

n

)

.

On the other hand we have

E(δ) =

n+1
∑

i=1

1

n + 1
δ(xi) =

δ(xν)

n + 1
+

n
∑

i=1

1

n + 1

(

x̃i − i − 1

n + 1

)

=
δ(xν)

n + 1
+
( n

n + 1

)2
n
∑

i=1

1

n

(

x̂i − i − 1

n

)

.

These calculations and our induction hypothesis, applied to {x̂1, . . . , x̂n},
lead to El(δ) ≥ E(δ). For µ ∈ [n] with τ̄ = xµ the inequalities wu(xµ) ≥ 1/n
and Eu(δ̄) ≥ E(δ̄) can be proved in a similar manner.

5.2.2 Analysis of Higher Dimensional Situations d ≥ 2

If we turn to the situation in dimension d ≥ 2, we first face a technical
difference: For many sequences X the supremum supx∈[0,1]d δ(x) will be

achieved by some x ∈ Γ̄(X) with xj = 1 /∈ {x1
j , . . . , x

n
j } for at least one
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x1 x2 x3

x4

x5

γ

Figure 1: δ takes its maximum in x3, but wl(x
3) < 1/36

j ∈ [d]. Therefore, we typically have to consider the whole grid Γ̄(X) if we
want to maximize δ.

Let us now have a look at the weight functions wl, wu induced by our
algorithms in dimension d ≥ 2. Actually, here we only consider the simpler
Lebesgue measure λd, but it is obvious how to modify the definitions and
arguments below to cover the πd-setting.

For all j ∈ [d] let νj := |Γ̄j(X)|. As in Section 2.2 let φj : [νj ] → Γ̄j(X) be
the ordering of the set Γ̄j(X). Set φj(0) := 0. For y = (φ1(i1), . . . , φd(id)) ∈
Γ̄(X), i1, . . . , id ∈ [νj ], we define the weight wl(φ) by

wl(y) :=
d
∏

j=1

(

φj(ij) − φj(ij − 1)
)

.

For the definition of the weights wu(y) let φ̃j(i) = φj(i) for i ∈ [νj−1] and let
φ̃j(νj) := φj(1)+1. For ỹ = (φ̃1(i1), . . . , φ̃d(id)) ∈ Γ(X), i1, . . . , id ∈ [νj −1],
let

wu(y) :=

d
∏

j=1

(

φ̃j(ij + 1) − φ̃j(ij)
)

.

Let y ∈ Γ̄(X) and ỹ ∈ Γ(X). Then the weights wl(y) and wu(ỹ) are ob-
viously the probabilities that after sampling a point z in [0, 1]d with respect
to λd, we end up with z+ = y and z− = ỹ, respectively.

The simple examples in Figures 1 and 2 with d = 2 and n = 5 illustrate
that we cannot prove the extension of the weight inequalities from Lemma
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x1 x2

x3

x4

x5γ

Figure 2: δ̄ takes its maximum in x2, but wu(x2) < 1/36

5.3 in d ≥ 2. More precisely: If τ ∈ Γ̄(X) and τ̄ ∈ Γ(X) are points with
δ(τ) = supy∈[0,1]d δ(y) and δ̄(τ̄ ) = supy∈[0,1]d δ̄(y), then in general we do not
have

wl(τ) ≥
d
∏

j=1

1

νj
and wu(τ̄) ≥

d
∏

j=1

1

νj − 1
, (10)

even wl(τ) or wu(τ̄) ≥ (n+1)−d need not to be satisfied. Notice that for fixed
d and n the sets of counterexamples to each of the inequalities in (10) have
strictly positive measure. Indeed, the suprema of δ and δ̄ are continuous in
X, and the weights wl, wu are continuous in X as long as for each j ∈ [d]
all coordinates x1

j , . . . , x
n
j are distinct. But it is, e.g., easy to rearrange the

counterexamples in Figure 1 and 2 slightly such that these constraints are
satisfied.

But notice also that in both figures the grid point γ provides a good
approximation of the actual maximum of δ and δ̄, and γ has a rather large
weight wl and wu, respectively. Furthermore, the point sets in Figure 1 and 2
are quite artificial and also far away from being well-distributed. For random
or low-discrepancy sets these probability weights can still be very useful –
this is also confirmed by our numerical experiments, see Section 6. Moreover,
the invalidity of (10) does not necessarily mean that the expectations E(δ)
and E(δ̄) are larger than El(δ) and Eu(δ̄), respectively.

Actually, if we use additionally the procedures “snapping up” and “snap-
ping down” and look at the induced probability distribution wsn

l and wsn
u ,

respectively, then x3 has the maximum weights wsn
l of all critical points in
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Figure 1, and x2 has the maximum weight wsn
u of all critical points in Figure

2. Thus adding the snapping procedures can change the situation decisively.
Additional theoretical results in this direction would be interesting.

5.3 The Chances of a Grid Point Beeing a Critical Point

If X = (x1, . . . , xn) is a sequence in [0, 1)d which has been chosen randomly
with respect to the Lebesgue measure and if x ∈ Γ̄(X), then the larger the
components of x, the higher is the probability of x being a δ(X)-critical
point. The same holds for x̃ ∈ Γ(X) and δ̄(X), respectively.

Proposition 5.4. Consider [0, 1)nd as a probability space endowed with
the probability measure λnd. Let ι := (i1, . . . , id) ∈ [n + 1]d. If k indices
iν(1), . . . , iν(k) of the ij , j = 1, . . . , d, are at most n and the remaining d− k
of them are equal to n + 1, then for uniformly distributed random variable
X in [0, 1)nd the multi-index ι is δ(X)-critical with probability

(

(n − k)!

n!

)k−1 k
∏

j=1

( k−1
∏

ℓ=1

max{iν(j) − ℓ, 0}
)

.

Proof. Let Φ = (φ1, . . . , φd) be as in Section 4.1. Since the event that for
all coordinates j ∈ [d] we have |Γ̄j(X)| = n + 1 holds with probability 1, we
restrict ourselves to this situation.

Without loss of generality, we may assume that i1, . . . , ik ≤ n and ik+1 =
. . . = id = n + 1. Obviously, Sk+1(Φ(ι)), . . . , Sd(Φ(ι)) are δ-critical surfaces,
since φk+1(n + 1) = . . . = φd(n + 1) = 1. For i = 1, . . . , k let σi = σi(X) :
[n] → [n] be the permutation with

x
σi(1)
i < x

σi(2)
i < · · · < x

σi(n)
i < 1 .

Clearly, Φ(ι)j = φj(ij) = x
σj(ij)
j for all j ∈ [k]. Since Si(x) ∩ Sj(x) = ∅ for

all i 6= j and all x ∈ [0, 1]d, the surfaces S1(Φ(ι)), . . . , Sk(Φ(ι)) can only be
δ(X)-critical if |{σ1(i1), . . . , σk(ik)}| = k. More precisely, ι is a δ(X)-critical
multi-index if and only if the condition

∀j ∈ [k]∀l ∈ [k] \ {j} : x
σj(ij)
l < Φ(ι)l = x

σl(il)
l

holds. This is equivalent to the k conditions

σ−1
1 (σ2(i2)) , σ−1

1 (σ3(i3)) ,. . . , σ−1
1 (σk(ik)) < i1 ,

σ−1
2 (σ1(i1)) , σ−1

2 (σ3(i3)) ,. . . , σ−1
2 (σk(ik)) < i2 ,

...
...

...
...

...

σ−1
k (σ1(i1)) , σ−1

k (σ2(i2)) ,. . . ,σ−1
k (σk−1(ik−1)) < ik .

(11)

Since all the components xi
j , i ∈ [n], j ∈ [d], of X are independent ran-

dom variables, we have that for a fixed index ν ∈ [d] each permutation
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τ : [n] → [n] is equally likely to fulfill σν(X) = τ . Thus, the probability of
ι being a δ(X)-critical index is just the number of k-tuples (σ1, . . . , σk) of
permutations fulfilling (11), divided by (n!)k.

For given pairwise distinct values σ1(i1), . . . , σk(ik) the j-th condition of
(11) is satisfied by ((ij − 1) . . . (ij − (k− 1)))(n− k)! permutations σj . Since
all k conditions in (11) can be solved independently of each other, it is now
easy to deduce the statement of the Proposition.

To state the corresponding proposition for δ̄, we have to introduce Stir-
ling numbers of second kind S(d, k). For k ∈ N, k ≤ d let S(d, k) denote the
number of partitions of [d] into k non-empty subsets. A closed formula for
S(d, k) is

S(d, k) =

k
∑

j=0

(−1)j (k − j)d

j! (k − j)!
.

This formula and other useful identities can, e.g., be found in [Rio58].

Proposition 5.5. Let X be a uniformly distributed random variable in
[0, 1)nd. Let ι = (i1, . . . , id) ∈ [n]d. Then ι is a δ̄(X)-critical multi-index
with probability

d
∑

k=1

S(d, k)

(

(n − k)!

n!

)d−1 d
∏

j=1

( k−1
∏

ν=1

(ij − ν)

)

.

Proof. We just need to consider the case where the almost-sure event
|Γj(X)| = n for all j ∈ [d] holds. For j = 1, . . . , d let σj := σj(X) : [n] → [n]
be the permutation with

x
σj(1)
j < x

σj(2)
j < · · · < x

σj(n)
j < 1 .

Then Φ(ι)j = φj(ij) = x
σj(ij)
j for all j ∈ [d]. It is easy to see that the surface

S̄j(Φ(ι)) is δ̄(X)-critical if and only if the condition

∀j ∈ [d]∀l ∈ [d] \ {j} : x
σj(ij)
l ≤ Φ(ι)l = x

σl(il)
l

is satisfied. This can be rewritten as

σ−1
1 (σ2(i2)) , σ−1

1 (σ3(i3)) ,. . . , σ−1
1 (σd(id)) ≤ i1 ,

σ−1
2 (σ1(i1)) , σ−1

2 (σ3(i3)) ,. . . , σ−1
2 (σd(id)) ≤ i2 ,

...
...

...
...

...

σ−1
d (σ1(i1)) , σ−1

d (σ2(i2)) ,. . . ,σ−1
d (σd−1(id−1))≤ id .

(12)

If |{σ1(i1), . . . , σd(id)}| = k, then there exist

S(d, k)n!
(

(n − k)!
)d−1

d
∏

j=1

k−1
∏

ν=1

(ij − ν)
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permutations satisfying (12). With this observation and the fact that all
components xi

j, i ∈ [n], j ∈ [d], of X are stochastically independent, it is
now easy to deduce the statement of Proposition 5.5.

6 Experimental Results

We now present the experimental evaluations of the algorithms. We will
compare our basic and improved algorithms, TA basic and TA improved,
against the algorithm of Winker and Fang [WF97], and also give a brief
comparison against the genetic algorithm of Shah [Sha10] and the integer
programming-based algorithm of Thiémard [Thi01b].

6.1 Experimental Setup

We divide our experiments into a thorough comparison against the algorithm
of Winker and Fang [WF97], given in Section 6.3, and more brief compar-
isons against the algorithms of Shah [Sha10] and Thiémard [Thi01b], in Sec-
tions 6.4 and 6.5, respectively. The algorithms TA basic and TA improved,
as well as the algorithm of Winker and Fang [WF97], were implemented
by the authors in the C programming language, based on the code used
in [Win07]. All implementations were done with equal care. In the case of
Winker and Fang [WF97], while we did have access to the original Fortran
source code (thanks to P. Winker), due to lack of compatible libraries we
could not use it, and were forced to do a re-implementation.

For the integer programming-based algorithm of Thiémard [Thi01b],
E. Thiémard has kindly provided us use of the source code. This source
code was modified only as far as necessary for compatibility with newer
software versions – specifically, we use version 11 of the CPLEX integer
programming package, while the code of Thiémard was written for an older
version. Finally, Shah has provided us with the application used in the ex-
periments of [Sha10], but as this application is hard-coded to use certain
types of point sets only, we restrict ourselves to comparing with the exper-
imental data published in [Sha10]. Random numbers were generated using
the Gnu C library pseudorandom number generator.

The instances used in the experiments are described in Section 6.2. For
some instances, we are able to compute the exact discrepancy values either
using an implementation of the algorithm of Dobkin et al. [DEM96], avail-
able from the third author’s homepage3, or via the integer programming-
based algorithm of Thiémard [Thi01b]. These algorithms both have far
better time dependency than that of Bundschuh and Zhu [BZ93], allowing
us to report exact data for larger instances than previously done. For those

3Found at http://www.mpi-inf.mpg.de/~wahl/.
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instances where this is too costly, we report instead the largest discrep-
ancy value found by any algorithm in any trial; these imprecise values are
marked by a star. Note that this includes some trials with other (more time-
consuming) parameter settings than those of our published experiments;
thus sometimes, none of the reported algorithms are able to match the ap-
proximate max value.

Throughout, for our algorithms and for the Winker and Fang algo-
rithm, we estimate the expected outcome of running 10 independent tri-
als of 100,000 iterations each and returning the largest discrepancy value
found, and call this the best-of-10 value. The estimation is computed from
a basis of 100 independent trials, as suggested by Johnson [Joh02], which
strongly decreases irregularities due to randomness compared to the method
of taking 10 independent best-of-10 values and averaging these. The com-
parisons are based on a fix number of iterations, rather than equal running
times, as the point of this paper is to compare the strengths of the involved
concepts and ideas, rather than implementation tweaks. For this purpose,
using a re-implementation rather than the original algorithm of Winker and
Fang [WF97] has the advantage that all algorithms compared use the same
code base, compiler, and libraries, including the choice of pseudo-random
number generator. This further removes differences that are not interesting
to us.

6.2 Instances

Our point sets are of four types: Halton sequences [Hal60], Faure se-
quences [Fau82], Sobol’ point sets [Sob67], and so-called Good Lattice Points
(GLP), described below. The Halton sequences and GLPs were generated
by programs written by the authors, the Faure sequences by a program of
John Burkardt [Bur], and the Sobol’ sequences using the data and code of
Stephen Joe and Frances Kuo [JK08, Kuo10].

Winker and Fang tested their algorithm for several point sets in dimen-
sion d = 4, 5, . . . , 11, which were constructed in the following manner: Let
(n, h1, . . . , hd) ∈ N

d+1 with 0 < h1 < h2 < · · · < hd < n, where at least
one hi is relatively prime with n, i.e., their greatest common divisor is one.
Then the points x1, . . . , xn ∈ [0, 1)d are given by

xi
j :=

{2ihj − 1

2n

}

, i ∈ [n], j ∈ [d] ,

where {x} denotes the fractional part of x ∈ R, i.e., {x} = x− ⌊x⌋. Winker
and Fang call {x1, . . . , xn} a good lattice point (GLP) set4 of the generating
vector (n, h1, . . . , hd). It is known that for any d ≥ 2 and n ≥ 2 there
exists a generating vector such that the corresponding GLP set exhibits

4Other authors call it GLP set if it additionally exhibits a small discrepancy.
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Smaller instance Larger instance
Algorithm d = 10, n = 100 d = 20, n = 1000

TA basic 0.78s 9.34s
TA improved, δ only 1.22s 10.94s
TA improved, δ̄ only 0.85s 9.11s
TA improved, mixed form 1.87s 20.37s
Winker & Fang 0.61s 7.2s

Table 1: Running times for the considered algorithms. All algorithms executed one trial
of 100,000 iterations. The inputs are two randomly generated point sets.

asymptotically a discrepancy of O(log(n)d/n), where the implicit constant
of the big-O-notation depends solely on d, see, e.g., [Nie92, Sect. 5.2].

Winker and Fang considered two series of examples to test their al-
gorithm: First, they (randomly) generated in each dimension d = 4, 5, 6
ten GLP n-point sets, where n ∈ {50, 51, . . . , 500} for d = 4, n ∈
{50, 51, . . . , 250} for d = 5 and n ∈ {25, 26, . . . , 100} for d = 6. For each
GLP set the exact discrepancy was calculated with an implementation of
the algorithm of Bundschuh and Zhu [BZ93].

Secondly, they considered six GLP sets in dimension d = 6, 7, . . . , 11
with cardinality between 2129 and 4661 points and performed 20 trials with
200, 000 iterations for each of the six sets. Solving these instances exactly
is mostly intractable, even with the algorithm of Dobkin et al. [DEM96].
Therefore, with the exception of the smallest instance, it cannot be said if
the results of this second series of examples are good approximations of the
real discrepancy of the GLP sets under consideration or not.

6.3 Comparisons against the Algorithm by Winker and Fang

To begin the comparisons, an indication of the running times of the al-
gorithms is given in Table 1. As can be seen from the table, TA basic

takes slightly more time than our implementation of Winker and Fang, and
TA improved takes between two and three times as long, mainly due to the
snapping procedures. For TA improved, we report the separate times for δ
and δ̄ optimization, as well as the time required for a mixed optimization of
both (as is done in TA basic). As can be seen, the overhead due to splitting
is negligible to non-existent.

The parameter settings for our implementation of the algorithm by
Winker and Fang are as follows. Since our experiments did not reveal a
strong influence of the choice of α on the quality of the algorithm, we fix
α := 0.995 for our experiments. Winker and Fang do not explicitly give
a rule how one should choose k and mc. For the small-dimensional data
(Table 2), we use the settings of [WF97]. For the other tests, we use mc = 3
if d ≤ 12 and mc = 4 otherwise, and k = 41 if n ≤ 500 and k = 301 other-
wise. This seems to be in line with the choices of Winker and Fang for the
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TA basic TA improved Winker & Fang
Class d n d∗

∞(·) Hits Best-of-10 Hits Best-of-10 Hits Best-of-10

4.145 4 145 0.0731 99 0.0731 100 0.0731 7 0.0729
4.255 4 255 0.1093 98 0.1093 100 0.1093 35 0.1093
4.312 4 312 0.0617 100 0.0617 100 0.0617 19 0.0616
4.376 4 376 0.0753 30 0.0753 79 0.0753 0 0.0742
4.388 4 388 0.1297 58 0.1297 100 0.1297 0 0.1284
4.443 4 443 0.0242 38 0.0242 90 0.0242 0 0.0224
4.448 4 448 0.0548 47 0.0548 100 0.0546 0 0.0538
4.451 4 451 0.0270 0 0.0265 8 0.0270 0 0.0252
4.471 4 471 0.0286 39 0.0286 99 0.0286 0 0.0276
4.487 4 487 0.0413 24 0.0413 93 0.0413 0 0.0396

5.102 5 102 0.1216 100 0.1216 100 0.1216 2 0.1193
5.122 5 122 0.0860 8 0.0854 58 0.0860 0 0.0826
5.147 5 147 0.1456 100 0.1456 100 0.1456 0 0.1418
5.153 5 153 0.1075 100 0.1075 100 0.1075 1 0.1041
5.169 5 169 0.0755 15 0.0752 98 0.0755 0 0.0691
5.170 5 170 0.0860 81 0.0860 100 0.0860 0 0.0789
5.195 5 195 0.1574 100 0.1574 100 0.1574 0 0.1533
5.203 5 203 0.1675 100 0.1675 100 0.1675 0 0.1639
5.235 5 235 0.0786 88 0.0786 100 0.0786 0 0.0706
5.236 5 236 0.0582 7 0.0578 74 0.0582 0 0.0541

6.28 6 28 0.5360 100 0.5360 33 0.5358 100 0.5360
6.29 6 29 0.2532 100 0.2532 100 0.2532 12 0.2527
6.35 6 35 0.3431 0 0.2859 96 0.3431 54 0.3431
6.50 6 50 0.3148 4 0.3118 100 0.3148 59 0.3148
6.61 6 61 0.1937 84 0.1937 100 0.1937 1 0.1872
6.73 6 73 0.1485 28 0.1485 95 0.1485 0 0.1391
6.81 6 81 0.25 24 0.2500 100 0.25 0 0.2440
6.88 6 88 0.2658 100 0.2658 100 0.2658 3 0.2608
6.90 6 90 0.1992 100 0.1992 100 0.1992 23 0.1990
6.92 6 92 0.1635 100 0.1635 100 0.1635 5 0.1630

6.2129 6 2129 0.0254 0 0.0241 13 0.0254 0 0.0217
7.3997 7 3997 0.0254∗ 0 0.0222 15 0.0254 0 0.0218
8.3997 8 3997 0.0254∗ 0 0.0235 10 0.0254 0 0.0217
9.3997 9 3997 0.0387∗ 0 0.0366 0 0.0375 0 0.0354
10.4661 10 4661 0.0272∗ 0 0.0264 40 0.0272 0 0.0230
11.4661 11 4661 0.0283∗ 0 0.0275 3 0.0280 0 0.0235

Table 2: Data for GLP sets used by Winker and Fang [WF97]. Discrepancy values
marked with a star are lower bounds only (i.e., largest discrepancy found over all executions
of algorithm variants). All data is computed using 100 trials of 100, 000 iterations; reported
is the average value of best-of-10 calls, and number of times (out of 100) that the optimum
(or a value matching the largest known value) was found. The data for Winker and Fang
is for our re-implementation of the algorithm; the original results for the same instances
can be found in [WF97].

29



sizes used.
Table 2 shows the data for the GLP sets used by Winker and Fang

in [WF97]. Although the last group of point sets are quite large, note that
this data is mostly of modest dimension. As can be seen, for these sizes,
all algorithms behave reasonably, with both of our algorithms generally out-
performing our implementation of Winker and Fang, and with TA improved

showing much higher precision than TA basic.
We note that our re-implementation of the Winker and Fang algorithm

gives notably worse results than what was reported in [WF97] for the same
instances. For the larger instances (i.e., with thousands of points), 200,000
iterations are used in [WF97] while we use 100,000 iterations throughout,
but there is also a clear difference for the smaller settings. Adjusting the pa-
rameters of our implementation to match those used in [WF97] has not been
found to compensate for this. After significant experimentation, the best hy-
pothesis we can provide is that there might be a difference in the behavior
of the pseudo-random number generators used (in particular, as [WF97]
uses a random number library we do not have access to). Still, even com-
pared to the results reported in [WF97], our algorithms, and TA improved

in particular, still fare well.
Table 3 shows the new data, for larger-scale instances. A few new trends

are noticeable, in particular for the higher-dimensional data. Here, the
algorithm of Winker and Fang seems to deteriorate, and there is also a larger
difference emerging between TA basic and TA improved, in particular for
the Sobol’ sets. However, as can be seen for the 2048-point, 20-dimensional
Sobol’ set, it does happen that the lower bound is quite imprecise. (The
value of 0.0724 for this point set was discovered only a handful of times over
nearly 5000 trials of algorithm variants and settings.)

The highest-dimensional sets (d = 50) illustrate the deterioration of
Winker and Fang with increasing dimension; for many of the settings, the
largest error this algorithm finds is exactly 1/n (due to the zero-volume box
containing the origin with one point).

6.4 Comparisons with the Algorithm by Shah

Table 4 lists the point sets used by Shah [Sha10]. The Faure sets here are
somewhat nonstandard in that they exclude the origin, i.e., they consist of
points 2 through n + 1 of the Faure sequence, where the order of the points
is as produced by the program of Burkhardt [Bur].

Some very small point sets were omitted, as every reported algorithm
would find the optimum every time. For all but one of the point sets, the
exact discrepancy could be computed; the remaining instance is the first 500
points of the 10-dimensional Faure sequence.

Most of the sets seem too easy to really test the algorithms, i.e., all
variants frequently find essentially optimal points. The one exception is the
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d∗
∞(·) TA basic TA improved Winker & Fang

Name d n found Hits Best-of-10 Hits Best-of-10 Hits Best-of-10

Sobol’ 7 256 0.0883 1 0.0804 78 0.0883 0 0.0819
Sobol’ 7 512 0.0452 1 0.0440 17 0.0451 0 0.0395
Sobol’ 8 128 0.1202 0 0.1198 98 0.1202 0 0.1102
Sobol’ 9 128 0.1372 8 0.1367 100 0.1372 0 0.1254
Sobol’ 10 128 0.1787 36 0.1787 100 0.1787 0 0.1606
Sobol’ 11 128 0.1811 14 0.1811 97 0.1811 0 0.1563
Sobol’ 12 128 0.1885 1 0.1873 82 0.1885 0 0.1689
Sobol’ 12 256 0.1110∗ 2 0.1108 41 0.1110 0 0.0908

Faure 7 343 0.1298 21 0.1297 100 0.1298 0 0.1143
Faure 8 121 0.1702 99 0.1702 100 0.1702 0 0.1573
Faure 9 121 0.2121 98 0.2121 100 0.2121 0 0.1959
Faure 10 121 0.2574 95 0.2574 100 0.2574 0 0.2356
Faure 11 121 0.3010 100 0.3010 100 0.3010 0 0.2632
Faure 12 169 0.2718 73 0.2718 100 0.2718 0 0.1708

GLP 6 343 0.0870 1 0.0869 36 0.0870 0 0.0778
GLP 7 343 0.0888 3 0.0883 28 0.0888 0 0.0791
GLP 8 113 0.1422 6 0.1399 95 0.1422 0 0.1303
GLP 9 113 0.1641 98 0.1641 100 0.1641 0 0.1490
GLP 10 113 0.1871 1 0.1862 94 0.1871 0 0.1744

Sobol’ 20 128 0.2616∗ 0 0.2576 51 0.2616 0 0.0497
Sobol’ 20 256 0.1856∗ 13 0.1854 49 0.1856 0 0.0980
Sobol’ 20 512 0.1336∗ 0 0.1080 86 0.1336 0 0.0635
Sobol’ 20 1024 0.1349∗ 0 0.0951 0 0.1330 0 0.0560
Sobol’ 20 2048 0.0724∗ 0 0.0465 0 0.0505 0 0.0370
Faure 20 529 0.2615∗ 0 0.2587 98 0.2615 0 0.0275
Faure 20 1500 0.0740∗ 0 0.0733 14 0.0740 0 0.0347
GLP 20 149 0.2581∗ 1 0.2548 65 0.2581 0 0.0837
GLP 20 227 0.1902∗ 0 0.1897 1 0.1899 0 0.0601
GLP 20 457 0.1298∗ 0 0.1220 3 0.1272 0 0.0519
GLP 20 911 0.1013∗ 0 0.0975 8 0.1013 0 0.0315
GLP 20 1619 0.0844∗ 0 0.0809 2 0.0844 0 0.0299

Sobol’ 50 2000 0.1030∗ 0 0.0952 0 0.1024 0 0.0005
Sobol’ 50 4000 0.0677∗ 0 0.0597 0 0.0665 0 0.00025
Faure 50 2000 0.3112∗ 0 0.2868 100 0.3112 0 0.0123
Faure 50 4000 0.1979∗ 0 0.1912 0 0.1978 0 0.0059
GLP 50 2000 0.1465∗ 0 0.1317 0 0.1450 0 0.0005
GLP 50 4000 0.1205∗ 0 0.1053 0 0.1201 0 0.0003

Table 3: New instance comparisons. Discrepancy values marked with a star are lower
bounds only (i.e., largest discrepancy found over all executions of algorithm variants). All
data is computed using 100 trials of 100, 000 iterations; reported is the average value of
best-of-10 calls, and number of times (out of 100) that the optimum (or a value matching
the largest known value) was found.
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TA basic TA improved Shah
Class d n d∗

∞(·) Hits Best-of-10 Hits Best-of-10 Hits Best Found

Halton 5 50 0.1886 100 0.1886 100 0.1886 81 0.1886
Halton 7 50 0.2678 100 0.2678 100 0.2678 22 0.2678
Halton 7 100 0.1714 9 0.1710 100 0.1714 13 0.1714

Halton 7 1000 0.0430 0 0.0424 81 0.0430 8(1) 0.0430(1)

Faure 10 50 0.4680 100 0.4680 100 0.4680 97 0.4680
Faure 10 100 0.2483 52 0.2483 100 0.2483 28 0.2483

Faure 10 500 0.0717∗ 2 0.0701 100 0.0717 0(1) 0.0689(1)

Table 4: Comparison against point sets used by Shah. Reporting average value of best-
of-10 calls, and number of times (out of 100) that the optimum was found; for Shah,
reporting highest value found, and number of times (out of 100) this value was produced.
The discrepancy value marked with a star is lower bound only (i.e., largest value found by
any algorithm). Values marked (1) are recomputed using the same settings as in [Sha10].

TA improved Thiémard: Initial Same time, Same result,
Instance Time Result Time Result result time

Faure-12-169 25s 0.2718 1s 0.2718 0.2718 1s
Sobol’-12-128 20s 0.1885 1s 0.1463 0.1463 453s (7.6m)
Sobol’-12-256 35s 0.1110 3s 0.0872 0.0873 1.6 days
Faure-20-1500 280s (4.7m) 0.0740 422s (7m) 0.0732 None > 4 days
GLP-20-1619 310s (5.2m) 0.0844 564s (9.4m) 0.0572 None > 5 days
Sobol’-50-4000 2600s (42m) 0.0665 32751s (9h) 0.0743 None 32751s (9h)
GLP-50-4000 2500s (42m) 0.1201 31046s (8.6h) 0.0301 None > 5 days

Table 5: Comparison against the integer programming-based algorithm of
Thiémard [Thi01b]. The values for TA improved represent the time and av-
erage result of a best-of-10 computation with 100, 000 iterations per trial.
The middle pair of columns give the time required for [Thi01b] to re-
turn a first output, and the value of this output; the last two columns
report the lower bound reached by [Thi01b] if allocated the same time that
TA improved needs for completion, and the time required by [Thi01b] to
match the result of TA improved.

last item, which shows a clear advantage for our algorithms. We also find
(again) that TA improved has a better precision than the other algorithms.

6.5 Comparisons with the Algorithms by Thiémard

Finally, we give a quick comparison against the integer programming-based
algorithm of Thiémard [Thi01b]. Since [Thi01b] has the feature that running
it for a longer time produces gradually stronger bounds, we report three
different checkpoint values; see Table 5 for details. The results are somewhat
irregular; however, [Thi01b] may require a lot of time to report a first value,
and frequently will not improve significantly on this initial lower bound
except after very large amounts of computation time (for example, for the 12-
dimensional, 256-point Sobol’ set, the value 0.0872 is discovered in seconds,
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while the first real improvement takes over an hour to produce).
Thiémard also constructed a second algorithm for discrepancy esti-

mation, based on delta-covers [Thi01a]; this is freely downloadable from
Thiémard’s homepage. Its prime feature is that it provides upper bounds
with a non-trivial running time guarantee. The lower bounds that it
produces are not as helpful as the upper bounds, e.g., it was reported
in [DGW10] and [Sha10] that the lower bounds from the preliminary version
of TA basic [Win07] and the genetic algorithm of Shah [Sha10] are better.
Thus we omit this kind of comparison here.

7 Conclusion

Our numerical experiments clearly indicate that the improvements made
from the algorithm of Winker and Fang in TA basic and TA improved

greatly increases the quality of the lower bounds, in particular for the dif-
ficult higher-dimensional problem instances. Nevertheless, we do not fully
understand the behavior of different algorithm variants with regards to snap-
ping. In particular, one might well have expected the variant described in
Section 4.1.1 to do better than the one of Section 4.1 that we currently use.
It is still possible that a judicious application of the “snap-move” variant of
Section 4.1.1, perhaps only in certain situations, can improve the behavior
further.

Still, all in all, we conclude that the algorithms TA basic and
TA improved presented in the current work represent significant improve-
ments over previous lower-bound heuristics for computing the star discrep-
ancy, and to the best of our knowledge, make up the best performing star
discrepancy estimation algorithms available.
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A Calculation of λ
d(Aε(z)) and π

d(Aε(z))

Lemma A.1. Let ε ∈ (0, 1], and let z ∈ [0, 1]d with Vz ≥ ε. Then

λd(Aε(z)) = Vz − (Vz − ε)

d−1
∑

k=0

(− ln(1 − ε/Vz))
k

k!
. (13)

Proof. Let Vz ≥ ε. Then we have

λd(Aε(z)) =

∫ z1

α1

...

∫ zd

αd

dζd... dζ1 ,

where

α1 =
Vz − ε

z2z3...zd
, α2 =

Vz − ε

ζ1z3...zd
, ..., αd =

Vz − ε

ζ1ζ2...ζd−1
.

We prove formula (13) by induction over the dimension d. If d = 1, then
clearly λ(Aε(z)) = ε. Let now d ≥ 2. We denote by z̃ the (d−1)-dimensional
vector (z2, ..., zd) and by ε̃ the term (ε+(ζ1−z1)Vz̃)/ζ1. Furthermore we de-
fine for i ∈ [d−1] the lower integration limit α̃i = (Vz̃−ε̃)/(ζ2...ζi z̃i+1...z̃d−1).
Note that α̃i = αi+1. Then, by our induction hypothesis,

λd(Aε(z)) =

∫ z1

α1

∫ z̃1

α̃1

...

∫ z̃d−1

α̃d−1

dζd... dζ2 dζ1

=

∫ z1

α1

(

Vz̃ − (Vz̃ − ε̃)

d−2
∑

k=0

(− ln(1 − ε̃/Vz̃))
k

k!

)

dζ1

= Vz − (Vz − ε) − (Vz − ε)

[

d−1
∑

k=1

1

k!
ln
( Vz̃

Vz − ε
ζ1

)k
]z1

ζ1=α1

= Vz − (Vz − ε)

d−1
∑

k=0

(− ln(1 − ε/Vz))
k

k!
.

Proposition A.2. Let d ≥ 2. For z ∈ [0, 1]d with Vz > ε, we obtain

λd(Aε(z)) =
1

d!

εd

V d−1
z

∞
∑

k=0

bk(d)
( ε

Vz

)k

with positive coefficients

bk(2) =
2

(k + 1)(k + 2)
, bk(3) =

6

(k + 2)(k + 3)

k
∑

ν=0

1

ν + 1
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and

bk(d) =
d!

(k + d − 1)(k + d)

k
∑

k1=0

...

kd−3
∑

kd−2=0

d−2
∏

j=1

1

kj + d − j − 1
for d ≥ 4.

The power series converges for each ǫ > 0 uniformly and absolutely for all
Vz ∈ [ε + ǫ, 1]. Furthermore, we have b0(d) = 1, b1(d) = d(d − 1)/2(d + 1),
and for all k the inequality bk(d) ≤ dk/2k−1 is satisfied.

Proof. To prove the power series expansion, we consider the function

R(x, d) = 1 − (1 − x)

d−1
∑

k=0

(− ln(1 − x))k

k!
for x ∈ [0, 1).

Due to Lemma A.1 we have λd(Aε(z)) = VzR(ε/Vz , d). Since ∂xR(x, d) =
(− ln(1 − x))d−1/(d − 1)!, it suffices to prove the following statement by
induction over d:

(− ln(1 − x))d−1

(d − 1)!
=

1

d!

∞
∑

k=0

(k + d)bk(d)xk+d−1 , (14)

where the power series converges for each ǫ > 0 uniformly and absolutely on
[0, 1 − ǫ]. Let first d = 2. Then

− ln(1 − x) =

∞
∑

k=1

xk

k
=

1

2!

∞
∑

k=0

(k + 2)bk(2)xk+1 ,

and the required convergence of the power series is obviously given. Now let
d ≥ 3. Our induction hypothesis yields

∂x
(− ln(1 − x))d−1

(d − 1)!
=

1

1 − x

(− ln(1 − x))d−2

(d − 2)!

=

( ∞
∑

ν=0

xν

)(

1

(d − 1)!

∞
∑

µ=0

(µ + d − 1)bµ(d − 1)xµ+d−2

)

=
1

d!

∞
∑

k=0

(

d

k
∑

µ=0

(µ + d − 1)bµ(d − 1)

)

xk+d−2 ,

where the last power series converges as claimed above. Now

d
k
∑

µ=0

(µ + d − 1)bµ(d − 1) =
k
∑

µ=0

d!

(µ + d − 2)

µ
∑

µ1=0

...

µd−4
∑

µd−3=0

d−3
∏

j=2

1

µj + d − 2 − j

= d!

k
∑

ν1=0

ν1
∑

ν2=0

...

νd−3
∑

νd−2=0

d−2
∏

j=1

1

νj + d − j − 1

= (k + d)(k + d − 1)bk(d) .
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After integration we get (14).
Furthermore, it is easily seen that b0(d) = 1 and b1(d) = d(d−1)/2(d+1).

To complete the proof, we verify bk(d) ≤ dk/2k−1 for k ≥ 2. The inequality
is obviously true in dimension d = 2. Hence let d ≥ 3. From the identity

k
∑

ν1=0

...

νd−3
∑

νd−2=0

1 =

(

k + d − 2

k

)

we obtain

k
∑

ν1=0

ν1
∑

ν2=0

...

νd−3
∑

νd−2=0

d−2
∏

j=1

1

νj + d − 1 − j
≤ 1

(d − 2)!

(

k + d − 2

k

)

,

which leads to

bk(d) ≤ d(d − 1)

(k + d)(k + d − 1)

(k + d − 2)...(1 + d − 2)

k...1

≤ d(d − 1)

(k + d)(k + d − 1)

(d

2

)k−1
(d − 1) ≤ dk

2k−1
.

Corollary A.3. Let z ∈ [0, 1]d. If Vz ≥ dε, then

λd(Aε(z)) ≤ 5

2 d!

εd

V d−1
z

. (15)

We now consider the polynomial product measure πd.

Lemma A.4. Let ε ∈ (0, 1], and let z ∈ [0, 1]d with Vz ≥ ε. Then

πd(Aε(z)) = V d
z − (Vz − ε)d

d−1
∑

k=0

dk

k!
(− ln(1 − ε/Vz))

k , (16)

and, as a function of Vz, πd(Aε(z)) is strictly increasing.

Proof. Let Vz ≥ ε. We have

πd(Aε(z)) =

∫

Aε(z)
ddV d−1

x λd(dx) =

∫ ε

0
G(Vz, r) dr , (17)

where
G(Vz , r) := dd(Vz − r)d−1∂rλ

d(Ar(z)) .

From (13) we get for all 0 ≤ r ≤ ε

∂rλ
d(Ar(z)) =

(

− ln(1 − r/Vz)
)d−1

(d − 1)!
.
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If we define

F (r) := −(Vz − r)d
d−1
∑

k=0

dk

k!
(− ln(1 − r/Vz))

k ,

then we observe that F ′(r) = G(Vz , r) holds. Thus we have πd(Aε(z)) =
F (ε) − F (0), which proves (16). Furthermore, according to (17), we get

∂Vzπ
d(Aε(z)) =

∫ ε

0
∂VzG(Vz , r) dr .

The integrand of the integral is positive, as the next calculation reveals:

∂VzG(Vz, r) = dd(Vz − r)d−2 (− ln(1 − r/Vz))
d−2

(d − 2)!

(

− ln(1 − r/Vz) − r/Vz

)

= dd(Vz − r)d−2 (− ln(1 − r/Vz))
d−2

(d − 2)!

∞
∑

k=2

1

k

( r

Vz

)k
> 0

for all 0 < r < Vz. Thus ∂Vzπ
d(Aε(z)) > 0, and, considered as a function of

Vz, πd(Aε(z)) is strictly increasing.

Proposition A.5. Let ε ∈ (0, 1], and let z ∈ [0, 1]d with Vz ≥ ε. Then we
have the lower bound πd(Aε(z)) ≥ εd. If furthermore Vz ≥ dε, then we have
the estimate

e−1 dd

d!
εd ≤ πd(Aε(z)) ≤ 5

2

dd

d!
εd .

Proof. Let Vz = ε. Then

πd(Aε(z)) =

∫

[0,z]
ddV d−1

x λd(dx) =

d
∏

i=1

zd
i = εd .

Since πd(Aε(z)) is an increasing function of Vz, the first lower bound holds.
Let now Vz ≥ dε. Here we use the simple estimate

dd(Vz − ε)d−1λd(Aε(z)) ≤ πd(Aε(z)) ≤ ddV d−1
z λd(Aε(z)) .

Together with Proposition A.2 and Corollary A.3 this leads to

e−1 dd

d!
εd ≤ (1 − 1/d)d−1 dd

d!
εd ≤ πd(Aε(z)) ≤ 5

2

dd

d!
εd .

Remark A.6. Like λd(Aε(z)) in Proposition A.2, one can also expand
πd(Aε(z)) into a power series. This leads to

πd(Aε(z)) =
dd

d!
εd

∞
∑

k=0

ak(d)
( ε

Vz

)k
,

but here the coefficients ak(d) are not all positive. So we have, e.g., a0(d) =
1, but a1(d) = −d(d − 1)/2(d + 1). Therefore the power series expansion is
here less useful than in the situation of Proposition A.2.
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