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Abstract. Automatic Defect Classification (ADC) is a well-developed
technology for inspection and measurement of defects on patterned wafers
in the semiconductors industry. The poor training data and its high di-
mensionality in the feature space render the defect-classification task hard
to solve. In addition, the continuously changing environment—comprising
both new and obsolescent defect types encountered during an imaging
machine’s lifetime—require constant human intervention, limiting the
technology’s effectiveness. In this paper we design an evolutionary clas-
sification tool, based on genetic algorithms (GAs), to replace the man-
ual bottleneck and the limited human optimization capabilities. We show
that our GA-based models attain significantly better classification perfor-
mance, coupled with lower complexity, with respect to the human-based
model and a heavy random search model.

1 Introduction

Traditional classification approaches suffer from a problem of poor generalization
on image classification tasks. In this paper we focus on the image classification
task for the semiconductors industry. During the production process within a
fab, which is a customer’s wafer fabrication facility, we would like to automati-
cally find and characterize defects, and determine their sources. Classified defects
may be fixed, thus increasing the yield of the wafer production process. The mo-
tivation for this paper is the industry’s demand for better classification results
with higher throughput (wafers produced per hour), and the desire for an au-
tomated process with minimal human intervention. Poor data, and a deceptive
environment in the fab where the classification problem itself varies over time,
renders the ADC task hard to solve. Our primary goal is to provide a solution for
the above challenges by using genetic-algorithm techniques, providing an evolu-
tionary classification tool that automatically optimizes itself across a machine’s
lifetime and adapts to the changing environment inside the fab.
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Different models of Automatic Defect Classification (ADC) tools already exist
in different fabs, using a wide range of classification models. Most of the ADC
models are based on machine learning [3] techniques, which is a broad subfield
of artificial intelligence. In our research we would like to optimize a given ADC
classifier, which is based on a radial basis function neural network (RBFN) with
Gaussian radial basis function kernels, by applying a genetic algorithm to select
kernels that are used within the RBFN hidden units. The research has taken
place in the SEM division, Applied Materials, Inc. (AMAT) and Ben-Gurion
University. We use the SEMVision classification tool, which is based on a RBFN,
as a benchmark for our research.

In Section 2 we introduce the defect classification problem. In Section 3 we
provide background on radial basis function neural networks (RBFN). In Sec-
tion 4, we present a reference model for the SEMVision ADC tool we intend to
use later. In Section 5 we describe the basic evolutionary model. An additional
model of heavy random search is defined for comparison with our model. In Sec-
tion 6 we introduce the enhanced evolutionary model for the defect classification
problem. Finally, Section 7 summarizes the results obtained in our research and
suggests some directions for future research.

2 The Defect Classification Problem

The goal of the defect classification process is quite simple: given an image, clas-
sify the defect type found in the image. The need for an image classification tool
arises in various fields; in our research we focus on the defect classification pro-
cess in the semiconductors industry. Semiconductor wafer manufacturers invest
much of their time in isolating the causes of yield-impacting defects during the
lithographic printing and processing of integrated circuits on wafers. Automatic
Defect Classification (ADC) automates the slow manual process of defect review
and classification during optical microscopy and scanning electron microscopy
(SEM). The ADC machine is a key step in the identification of the root cause
of manufacturing problems. A fast, accurate, and reliable ADC tool is required.
However, though the problem definition is simple, its solution involves many
challenges. During the fab’s lifetime new defects appear, and old defects become
obsolete; the ADC model has to adapt itself to this changing environment. Addi-
tional challenges, such as poor data with inaccurate classified samples and high
throughput demands from the customers, require a fast automated and reliable
ADC tool.

The automatic defect classification (ADC) problem can be defined as a subset
selection problem. Given a training set TR of pre-classified images and a pre-
classified validation set V L, we would like to find an optimal subset S ⊆ TR,
which maximizes the classification rate of the given ADC classifier. Each ex-
emplar in the training set S is translated into a hidden unit in the classifier.
For example, if we use a Gaussian kernel function in a RBFN, then ∀t ∈ S we
generate a hidden unit of a Gaussian function with a mean μ = t (in RBFN
models we usually define a fixed variance σ for all hidden units). Eventually,
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the size of the given subset S is equal to the number of units inside the RBFN
hidden layer. We briefly discuss the RBFN hidden units in Section 3. In addi-
tion, we keep an independent test set TEST of pre-classified images to estimate
the classification rate that can be achieved in a real-time application with the
optimized classifier. The test set TEST can also allow us to gauge the quality
of the achieved solution on real field data.

We view each of our customers’ fabrication factories as a ’greenhouse’ for im-
ages of defects. Each greenhouse generates defect prototypes with some common
characteristics at a specific time and place, and we have to fit and optimize the
ADC tool to the current fab with the current process and the current time stamp.
As a result, the objective function can change along the ADC machine’s lifetime
by modifying the input data sets TR, V L, and TEST during the classification
process. Therefore, our method should be based on an anytime algorithm, which
generates the best solution within the scope of available data that have been
explored up to the allowed time. Thus, we can change the data sets during the
ADC’s lifetime and the algorithm can fit itself to the new environment.

Usually, the classification rate is determined as the accuracy of the classified
result, i.e., the percentage of the defects classified correctly, or as the purity of the
classified result. Purity is the exactness of the classification, i.e., the fraction of
defects classified correctly with respect to the number of total classified images,
not including ’Unknown Defect’ classification results. We can also use a hybrid
definition involving both accuracy and purity results.

3 Radial Basis Function Neural Networks (RBFNs)

As shown in Figure 1, a RBFN is a three-layer, feed-forward network, with each
layer fully connected to the next layer. The RBFN consists of an input layer L0,
a hidden layer L1, and an output layer L2. The k -dimensional input vector enters
the RBFN through the k units of input layer L0, and passes through weighted
edges wi,j to the hidden units in hidden layer L1. A kernel threshold function
is activated in each of the hidden units, passing the activation result through
additional weighted edges wj,l to the output layer L2. The hidden layer consists
of a set of radial basis functions. Associated with each hidden-layer node is a
parameter vector ci called a center. For each hidden unit calculate the Euclidean
distance r between ci and the input vector, and pass the result to the kernel
function. Different kernel functions can be chosen as the network activation
function, such as Gaussian, Multiquadric, and Thin plate spline functions [10].

Training an RBFN consists of three main stages [3]: the first stage is net-
work initialization, which defines the selected features for the input layer and
determines the number of centers and the radii ci of the kernel functions in the
hidden layer. The second stage is obtaining the weights for the output layer :
once we have determined the network-initialization parameters we can seek the
weights for the output layer using least-squares error function minimization, sim-
ilar to single-layer networks, e.g., QR decomposition. The third stage is iterative
optimization, where several methods can be used for RBFN optimization [3].
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Fig. 1. Radial basis function neural network (RBFN)

Genetic algorithms can be used for different optimization tasks for RBFNs,
including kernel-function optimization [1, 4, 7, 8, 9, 11], architecture optimiza-
tion [5, 6, 11], and training-set optimization [6]. The evolutionary process is es-
pecially advantageous when the search space is large and the objective function
is non-differentiable, e.g., subset selection for training-set optimization. We also
find the GA solution to be advantageous when a deceptive objective function is
involved, e.g., as caused due to a changing environment during the ADC ma-
chine’s lifetime.

4 Reference Model for SEMVision ADC Tool

In order to understand the problem we introduce a Matlab-based model, using
the netlab toolbox, defined as a reference for the SEMVision ADC model. The
data set we used has 2613 individuals from 9 different defect classes, each one
represented by a vector with 76 features. The data set is separated into a training
set of size 605 and a validation set of size 2008. We ran a RBFN with Gaussian
kernel functions. We used a principal components analysis (PCA) algorithm
for the feature selection part. The k-means algorithm was used to select the
centers ci for each of the Gaussian kernels in the hidden units, and we used a
fixed width for the Gaussian variance. After setting the centers of the kernels
we optimized the network with an EM (expectation maximization) algorithm [2]
using a least-squares error function.

The results showed no convergence. We tried a cross-validation technique in
order to optimize the number of features and kernels with no success. A balancing
method also proved unsuccessful in avoiding a trivial solution. If we use the
whole training set, as the SEMVision ADC does, the classification accuracy
reaches 85.7, a much higher performance than in the reference model. We can
see that traditional Machine Learning algorithms for kernel selection, such as
cross-validation for selecting the number of kernels, and k-means for clustering,
attain low performance compared to the SEMVision ADC.
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We conclude from the reference model that the data is too poor. The literature
suggests that the data we used should be ten times more abundant than the
network complexity, where the complexity of a network is measured as the total
number of connected edges [3]. In our case they are almost equal, and we have
no other choice than using the training data set, as is, for the centers in the
hidden neurons.

5 Basic Evolutionary Model

When the data is poor and inaccurate, known methods for RBFN optimization
do not converge to a reasonable solution, and we have no other choice than
using the whole training set as kernels for the RBFN. When the data is too
poor for using a clustering method, using real kernels in the classifier—which
represent real defects—can reduce the risk of overfitting. However, though using
the entire training set as kernels for the RBFN achieves reasonable results, this
method suffers from a stability problem and demands frequent skilled Customer
Engineer (CE) support, since every classified sample has an immediate impact on
the classified product of an image with the same characteristics. Erroneous flyers
in the training set can dramatically reduce the accuracy of the classifier, and the
changing environment requires constant CE support. Moreover, the sampling of
images for the training set is done manually by humans, who can hardly optimize
the selected samples for the ADC tool with no computational support. Perhaps
we can attain better accuracy by using a subset from the training data set.

In the model we use we would like to optimize the subset of kernels from
the training set for our ADC tool such that we attain better results with less
computational complexity: the fewer the kernels in the ADC, the less complex is
the ADC model, and the higher the throughput and generalization of our model.

The problem of subset selection from a training set is hard to solve. Under the
assumption that the data set is too poor for learning by using known optimization
methods, this problem of subset selection is NP-Hard by a simple reduction from
the subset sum problem.

The GA. We introduce a genetic algorithm for this optimization, with classifier
accuracy being the fitness. The GA is defined as follows:

– Initialization. Each generation comprises a population set π of 50 individual
genomes. We use random initialization with uniform distribution to construct
the first generation. Each bit in the genome is set to either 0 or 1 with
probability 0.5.

– Genome representation. Let TR = {t1, ..., tm} be a training set of m classified
images. We use a binary encoding for the genome representation, such that
each genome represents a subset of the initial training set, e.g., the genome
S = [01101001...] represents the subset S ⊂ TR, S = {t2, t3, t5, t8, ...}. The
genome length is equal to the size of the training set.

– Fitness function. In each generation we calculate the fitness function ffit per
individual. Each genome represents a subset S of the initial training set TR.
The fitness function is defined as the accuracy rate of the ADC classifier.



Evolving an Automatic Defect Classification Tool 199

– Selection, crossover, mutation. We use the entire population π as the mating
set in order to maintain diversity. In our case the difference in fitness be-
tween individuals is small, and the use of the fitness-proportionate selection
method might reduce selection pressure. Therefore, we use the rank selection
mechanism. We apply an elitism selection mechanism (of one individual per
generation), thus maintaining the best individual in the population set π
for the next generation. Single-point crossover is performed with crossover
rate pcross = 0.8. Each individual is subjected to mutation. This operation
inverts each bit in the genome with a probability of 0.05.

– Termination criterion. Though this is an anytime algorithm, for empirical
reasons, we stop the algorithm after 50 generations.

To compare with our GA we run a heavy random stress test for kernel selec-
tion. Although random selection of kernels from the training set is apparently a
naive choice, sometimes it is more justifiable than the more sophisticated tech-
niques. The reason is that, especially in small sample size problems, intricate
algorithms can easily lead to overfitting [6].

The Experiment. We have already seen that we can attain better performance
on the same data set by using the SEMVision ADC, than by using the reference
model. Therefore, in order to reduce overall run time, we allowed ourselves to
use a smaller data set than that used for the reference model above.

The data consists of 1905 individuals from 5 different classes. Each of the
individuals represents a defect image with 76 features. The data is separated
into a training set of size 498, a validation set of size 946, and a test set of size
461. In addition to the genetic algorithm, we ran a heavy random stress test
for kernel selection. The application runs on an XP OS with Xeon Dual-Core
computer and 2Gb RAM.

Results. If we use the whole training set, as the CE currently does, classifi-
cation accuracy reaches 0.870. With our GA we attained 0.897—with less than
half the number of kernels, i.e., achieving a 0.297 improvement with half the
complexity. The heavy random stress test shows poor results of 0.883 with al-
most no convergence over 50 generations, compared to the evolutionary model.
Moreover, we left the heavy random to run for 150 generations, and no signifi-
cant improvement was found. The total GA runtime is approximately 60 hours.
Three separate runs were made for this basic model, showing almost identical
behavior.

An improvement from 87.0% to 89.7% is much more impressive than, say,
from 77.0% to 79.7%, for instance. Moreover, using 193 kernels found by the GA
instead of 498 used by the manual method (CE), is a major improvement in terms
of throughput, since the ADC buildup time and its classification processing time
is exponential with the number of kernels inside the RBFN.

The total runtime of approximately 60 hours can be reduced dramatically with
several optimization methods, such as parallel fitness evaluation, an efficient way
to modify the ADC tool to learn a new training set without a new reconstruction
on each evaluation, parsing elimination, and hardware improvement. We must
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remember that this optimization algorithm is an off-line problem, where the
computational efforts can take place during the computer’s idle time. Moreover,
monitoring and optimizing the classification process in spaces of 2-3 day is good
enough for most of the fabs.

6 Enhanced Evolutionary Model

Given our experience with the basic evolutionary model, and given the charac-
teristics of the classification problem—poor and inaccurate data in a changing
environment—and the requirement for an accurate, fast, and automatic classi-
fication tool, we formulate the following guidelines for a solution, in order to
attain even better results:

– Anytime algorithm. genetic algorithms can be considered as a form of
anytime algorithm. Our model must provide the best solution it can find by
using the data that have been explored until the current moment.

– Optimization of training set. Our model should find the optimized subset
from the given training set.

– Generic model. We treat the SEMVision ADC model as a black box. This
way our optimization model can be used with different types of classification
methods.

– Reduced complexity. The use of a subset, instead of the whole training set,
reduces the complexity, improves throughput, and increases generalization.

– Robust solution with no human intervention. Our only requirement
from the customer is a daily classification of a constant number of samples,
which is a reasonable demand.

The Enhanced GA. The input for our model consists of a training set TR, a
validation set V L, and a test data set TEST . We assume the data set can increase
and change during the fab’s lifetime. The main genetic engine module is responsi-
ble for the entire problem optimization. The input for the genetic engine module
is the data sets, and the output is an optimal subset S ⊆ TR, which maximizes
the classification rate of the given ADC classifier—as measured on the test data
set TEST . The genetic engine module comprises two separate GAs working in
parallel: the defect controller module is responsible for defining the problem we
are trying to solve. The output of the defect controller module is a hint array with
the relevant samples of the training set. The ADC enhancer module is responsi-
ble for optimizing the current problem. The hint array, produced by the defect
controller, is part of the input for the ADC enhancer. Basically, we run two sepa-
rate GAs in parallel—defect controller and ADC enhancer—the latter constantly
receiving hints from the former, which help improve its performance.

The output of the defect controller GA module is a hint array with the relevant
samples of the training set. If the training set consists of n elements, the output
of the defect controller module is a hint array of size n with the fraction of
the kernels’ relevances inside the given training set TR. The hint array can
dynamically change during the evolutionary process. The ADC Enhancer GA
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module uses the hint array to achieve better problem optimization. The output
of the ADC Enhancer module is an optimal subset S ⊆ TR, which maximizes
the classification rate on the validation data set V L. The use of the hint array
in the ADC Enhancer module is through the mutation operation, as shown in
Figure 2.

�

�

�

�

Mutate(gene, hint)

parameter(s): gene – the genome
parameter(s): hint – the hint array
output: the mutated genome

Initialization :
i← 0
while i < hint.length

do

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

if random < mutation rate

then

⎧
⎨

⎩

if random < hint(i)
then gene(i) ← 1
else gene(i) ← 0

i← i + 1
return (gene)

Fig. 2. Pseudocode of the mutation operation

For example, if one of the samples inside the training set becomes obsolete,
then its fraction will drop in the hint array, and the flipping probability for the
equivalent bit inside the mutated genome will decrease as well. This way we can
also explore new and old defects in the classification process.

The defect controller module dynamically produces the hint array in the fol-
lowing manner: a subset with the best result during a pre-defined window of
time is maintained, i.e., the last fixed number of generations backward. We can
define best results in two different ways:

1. Classification rate above a predefined value.
2. Classification rate in top of predefined fixed percentage of the results from

the fixed number of generations backward.

For each of the kernels in the training set we calculate the fraction of usage
inside the best subsets from the relevant generations. The hint itself is an array
with the fraction of kernels usage in the best subsets. The higher the fraction
the higher the relevance of the kernel in the current problem.

We should note that both defect controller, and ADC enhancer modules can
only use the validation set V L during the evolutionary process, while the output
of the genetic engine module is measured on the output of ADC enhancer module
with an independent test set TEST . This way we assure that the output of
our model estimates the classification rate that can be achieved in a real-time
application.

In addition to the above two modules, we propose to apply a fitness weight
decay process to the samples in the data sets. According to the images’ creation
time tag we weight the data sets, such that an old sample will have lower effect
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upon the overall classification rate. This way we can use the fitness weight decay
process to attain better results for the current classified images, and we can also
explore obsolete defects in the data sets. Unfortunately, our classifier doesn’t
generate time tags for the classified images. Therefore, we cannot implement
fitness weight decay, and we leave it for future research.

The Experiment. We used the same data set as in the basic experiment in
Section 5, with the same evolutionary parameters for both the defect controller
and the ADC optimizer modules.

Results. Five separate runs were made for the enhanced model, showing almost
identical behavior. Using the enhanced model we attained a classification rate of
0.901 after 15 generations, while with the basic model we obtained 0.897 after
50 generations. Both models attained significantly better results than the man-
ual process, with half the complexity—a dramatic improvement in throughput
terms.

As opposed to the ADC enhancer module, it is important to keep the defect
controller module as objective as we can. Our goal in this module is to monitor
the changing environment inside the fab, and not to achieve an optimized solu-
tion. For this reason we always look a fixed predefined number of generations
backward, and we don’t use the hint array during its own evolutionary process.

Both the reduced complexity, the automatic control process, and the higher
accuracy attained, are practical benefits of our enhanced model. The major
breakthrough of the enhanced model is its ability to independently fit itself to
the changing environment inside the fab—with a deceptive environment of poor
and inaccurate information—achieving a high classification rate, an increased
throughput, and better generalization. Obsolete defects can be isolated using the
hint array, and the input data set can dynamically change during the machine’s
lifetime.

By using the hint array we can not only identify obsolete and relevant samples
in the data sets, we can also find an obsolete class of defects: when we find all
the samples for a specific class of defects irrelevant we can eliminate it from the
data sets.

7 Concluding Remarks and Future Research

Genetic algorithms are useful for numerous real-life classification challenges.
When the search space is large, when the objective function is inaccurate and
changes over time, when the data is impoverished, and when the problem we are
trying to solve has subset-selection characteristics, a GA may be the answer. In
our problem we find all the above elements. Finding an optimal subset out of
a group of 498 elements is a hard problem with subset-selection characteristics.
Some of our samples in the training set have been falsely classified so we have a
deceptive objective function. When the defects we are trying to classify change
during the fab life-time our objective function varies and we have to adapt to
the new environment. In the experiments we performed, the genetic algorithm
has proved itself as the best solution to date, as shown in Table 1.
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Table 1. A comparison between the different optimization methods: 1) the manual
method, where the CE optimizes the training set by hand, is the currently used method;
2) the heavy random stress test; 3) the basic evolutionary model; and 4) the enhanced
evolutionary model. The best classification rate is shown in the first row, the number
of kernels, which reflects the RBFN complexity and throughput, is shown in the second
row, and the number of generations for the method to converge to an optimal solution
is shown in the third row. We should remember that only the enhanced method can
adapt itself to a changing environment.

Manual Random Basic Enhanced

Accuracy 0.870 0.883 0.897 0.910
Kernels 498 196 193 198

Convergence Manually 50 47 15

In the future, when we can obtain a time stamp for each classified sample,
we will be able to test the proposed fitness weight decay process. In addition,
we hope that we can gather more data and test our new and obsolete defects
exploration model.
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