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Abstract

The Evolvable Computation Group, at NASA’s Jet
Propulsion Laboratory, is tasked with demonstrating
the utility of computational engineering and computer
optimized design for complex space systems.  The
group is comprised of researchers over a broad range
of disciplines including biology, genetics, robotics,
physics, computer science and system design, and
employs biologically inspired evolutionary
computational techniques to design and optimize
complex systems.  Over the past two years we have
developed tools using genetic algorithms, simulated
annealing and other optimizers to improve on human
design of space systems. We have further demonstrated
that the same tools used for computer-aided design
and design evaluation can be used for automated
innovation and design, and be applied to hardware in
the loop such as robotic arms and MEMS micro-
gyroscopes.  These powerful techniques also serve to
reduce redesign costs and schedules.

1. Introduction

Complex space engineering design problems are
multi-parameter optimizations where physics models
predict the outcome derived from a series of input
parameters. Design, however, depends on desiring an
outcome and deriving the necessary input parameters.
Generally it is not feasible to invert the physics
models to derive an optimal solution. Instead, by
parallelizing the problem into a large population with
varying input parameters and competing the results, we
can extract favorable combinations of inputs.  In the
same way biological evolution functions, this process
is repeated over many generations and uses the
sophisticated biological operators of selection,
mutation, and recombination to explore larger volumes
of design space than could be examined by a human
designer or by computational brute force (i.e.,
complete enumeration, exhaustive search, or other
deterministic search algorithms).

Computationally derived evolutionary designs have
shown competitive advantages over human created
designs in complexity, creativity and robustness. Our
group has demonstrated this in the areas of power
system design, low-thrust trajectory optimization,
robotic arm deployment path finding, MEMS micro-
gyro calibration, mission planning and scheduling,
neural network design, and avionics architecture
design.  We have also developed a framework for the
rapid introduction and parallelization of optimization
problems in an evolutionary environment using
computer clusters.

These techniques offer an alternative approach to
system engineering of complex systems by the
imposition of design rules (Figure 1).  Whereas this
has been a successful approach for hardware systems
that can rely on physics, mathematics, material science
etc. as their foundation, software systems have largely
failed to improve in robustness by the imposition of
new design rules.  The approach of evolutionary
computation uses the same principles of variation and
selection that have been so successful in the
development of natural biological systems.

2. Overview

2.1 Evolutionary Computation Framework

The strength of evolutionary computation comes
from the ability to utilize existing computer models
and simulations that predict the results of multiple
input parameters.  These types of models are now
common elements of computer-aided design (CAD) as
well as scientific modeling and forecasting.  In
evolutionary computational techniques, a population of
these models is created and input parameters are varied.
The results are evaluated using fitness functions and a
percentage of the highest fitness individuals from one
generation is promoted to the next generation, while



new models are created through variation (e.g., by
mutation or cross-over).

Figure 1. Complexity and Design Rules.  As
complexity increases from hardware systems to
software to nature, the formalism and number of
design rules decreases.  Current efforts in software
engineering are trying to move software systems to
higher formalism.  Our effort tries to explore the
creation of complexity by removing formalism and
using a biological evolutionary approach.

In order to rapidly adopt new problems into an
evolutionary framework we have developed a graphical
user interface that enables the parallel operation of
genetic algorithms and other optimizers on a cluster
computer. This framework enables the tie-in of a
variety of different applications and the management of
application inputs and outputs.  The operation of a
parallel genetic algorithm to optimize a variety of tasks
has been demonstrated.  This evolvable software
system also includes a variety of algorithms useful for
optimization such as local searches and simulated
annealing. We have baptized the framework “Parallel,
Evolvable, and Revolutionary Synthesis and
Optimization Environment (PERSON)”. The
computational architecture of PERSON is based on a
package created by D. Levin at Argonne National Lab
[1]. The major contribution of PERSON is the
scriptable front-end that turned the software into a tool
(Figure 2).  We have a scripted approach to the
integration of applications into PERSON, which
enables rapid integration of a variety of different
simulations of physical models and a variety of
different fitness functions without recompilation of the
design environment. This architecture resembles a
generalized optimization toolkit that can be applied to
a large array of physical system simulation problems
that require optimization in a huge search space.  Note,

however, that this system goes beyond the traditional
optimization approach in that truly novel synthesis and
design/selection may be performed by the genetic
principles that govern the evolvable system
algorithms. The software framework development for
this evolvable system effort must be performed by an
experienced team of software engineers, computer
scientists, electrical engineers, biologists, and
physicists in order to provide any hope for a reasonable
outcome compared to the high mark targets.
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F igure  2 .  PERSON graphical evolutionary
computational framework.  Models can be introduced
with existing tools and simulators and are adapted
into a parallel evolutionary environment.

2.2 Evolutionary and Stochastic Algorithms

This publication is focused on the application of
efficient optimization techniques such as Genetic
algorithms (GA) and simulated annealing (SA) to a
variety of space science systems.  

Further discussions of GAs and SAs have been
published by this research group with respect to
algorithm details and their application to
nanoelectronic device designs [2], microelectronic
device designs [3], automated circuit designs [4],
quantum mechanical basis set selection [5], space craft
power system design [6], low-thrust orbit transfers [7],
automatic tuning of MEMS devices [8] and neural
network evolution [9].

The method of operation is the repeated application
of already sophisticated physics based models that
predict reality.  We would like to mention here that the
availability of efficient optimization tools and the
ability to explore large parameter spaces also enables
the development of more sophisticated physics based
models that predict “reality” better.  One such concrete
example is the development of an advanced model to
treat the consequences of arbitrary mechanical strain
distortions in semiconductor crystals [10].  This
advanced model expands the physical parameter space



dramatically, which could not have been usefully
explored without the PERSON framework.  GAs and
SAs can therefore not only seek better engineering
solutions, they can also help refine our physical
understanding of problems.

3. Computer Optimized Design

We have demonstrated that evolutionary
computational techniques can now be used for
automatic innovation and design, using the same
computer models that are employed to evaluate
engineering designs.  Four areas, described in this
paper, demonstrate human competitive performance as
described by Koza et al. [11]. Optimizations and
designs using evolutionary techniques result in designs
matching or exceeding the performance of those
derived from traditional means by human designers.
Metrics used for this performance evaluation include
design time, robustness and fault-tolerance, cost, and
comparison to accepted and flown designs.  The areas
described in this paper are the automatic design of
power systems, robotic arm deployment path planning,
the design of low-thrust trajectories and the automatic
tuning of MEMS micro-gyroscopes.  We expect that
future work will lead to further advances in
computational engineering and in the development of
Computer Optimized Design (COD) (Figure 3.).

Design

Single design based 
on expertise of 
human designer

+ Evolutionary 
Framework

Computational
Model

Competes a population of 
variable input parameters

over many generations

Predicts and evaluates the 
outcome (design) of variable

 sets of input parameters

Computer 
Aided Design

(CAD)
Allows rapid exploration
of alternative designs by

human designer

+

Computer 
Optimized 

Design (COD)
Allows automatic exploration 

and optimization of designs
over huge volumes of 

design space

Traditional
Design

Allows only one  point 
of design space to

 be examined

Figure 3.  Elements of Computer Optimized Design
(COD).  The use of an evolutionary framework coupled
to a computational simulation allows the extension of
computer aided design to rapidly and automatically
evaluate huge volumes of design space.

4. Results

4.1 Automatic Design of Power Sub-systems

Throughout the formulation phase of a JPL flight
project, project system engineers engage in an iterative

process of goal definition, mission concept creation
and design trade study.  They begin with several
plausible mission concepts that trade-off various
elements in the design.  This is done so that project
management and their funding agencies can choose
between different levels of mass, cost, performance and
risk.  Once some design choices have been made the
process is continuously repeated until the mission
architecture is characterized such that its effectiveness
in achieving mission objectives can be properly
evaluated.

Formulating space system concepts that meet
payload, trajectory, communication and activity
requirements within the mass, cost, performance and
risk constraints takes several weeks and relies on
experienced teams of domain experts.  This may pose
some significant problems if project requirements
change rapidly or experts are not readily available.  Our
research in the automated design of spacecraft power
subsystems has shown that it is possible to mitigate
these problems by automating the creation of power
subsystem conceptual designs.  Consistent design
quality is achieved by using validated performance and
resource models to approximate anticipated subsystem
performance.  Rapid design generation is realized by
parallelizing the problem and employing high
performance computing.  This allows us to evaluate
roughly 15,000 unique designs in anywhere from 1 to
18 hours, depending on mission plan complexity and
computational power.

Our goal was to rapidly generate a diverse set of
credible designs so that spacecraft project management
and their funding agencies have real choices between
different levels of mass, cost, performance and risk.

Our approach is was to utilize evolutionary
algorithms operating on parameterized space vehicle
cost, mass and power subsystem resource and
performance models in a parallel processing
environment to generate near-optimal designs. The
tools used included a JPL power analysis tool called
Multi-Mission Power Analysis Tool (MMPAT) and
the PERSON evolutionary computing framework.
MMPAT in particular was a key component of the
system since it models the behavior of a spacecraft’s
power sources and energy storage devices as they
interact with the spacecraft loads and the environment
over a mission timeline. This allowed us to evaluate
whether what the system performance and resource
consumption would actually be.

To achieve diverse solutions we employ a Niched-
Elitist approach. In this method we form artificial
subpopulations in the population to emphasize and
maintain multiple design solutions. This can be done
in either the objective or parameter space. Since we
wanted to maintain diversity in the solutions to trade-
off regardless of how similar or different they are we



elected to niche by the objective space. Some of our
niches consist of:
• Best Performance Design
• Least Mass Design
• Least Cost Design

Best Performance/ Least Mass Design
This approach proved superior to other more

classical methods we tested.  For example while the
classical weighted sum approach was intuitive and easy
to implement, creating design solutions using this
method posed several problems.  Since it generates
only one design solution at a time, users needed to
perform multiple runs in order to obtain a set of
possible solutions.  More importantly, these solutions
may not be evenly distributed, as illustrated in Figure
4a.  Furthermore, since evolutionary algorithms are
stochastic the method may find an optimal solution
only to lose it in later generations. Using the Niched-
Elitist strategy we could generate all of the solutions
in one run, distributing them by subpopulation, as
shown in Figure 4b.  Moreover, since elitism retains
the best solutions from both the parent and child
populations we were able to keep the best overall
design in a particular category.

Figure 4a and b. Weighted Sum Approach (upper)
and Ideal Approach (lower) [12]

To evaluate the quality of the generated designs we
used mission plans and ancillary data from actual
missions then let the system automatically size
components.  The results were then compared to the
actual mission designs to see whether one of the
generated designs was close to the actual mission
design.  For example, one of these tests was an
optimization of one of the Mars Exploration Rovers
(MER), a NASA/JPL mission of two rovers that
landed in January 2004.

To setup the analysis we gave the PERSON
optimization framework some initial design parameters
and a valid range of values.  For the MER
optimization, we varied the number of cells per string
and the number of strings per segment for the six solar
array segments, as well as the battery capacity.  The
PERSON framework chose the initial population based
upon a random draw over a uniform distribution for
each of the variable power subsystem design
parameters before invoking MMPAT.

The rover was placed at 14.95 degrees south
latitude and given an activity plan that lasted 90 sols
(Mars days). This corresponds to the planned length of
surface operations of MER-A at the Gusev Crater
landing site. The activity plan consisted of applying a
50-watt load for six hours during local daytime and 8
watts the rest of the day. This simulated the load on
the rover while it performed its duties during the day,
and let it conserve battery power for the heaters at
night.

Figure 5.  Deep Impact Power System Optimization
[12]. Parameter values (such as battery size, solar cell
array size, etc.) are plotted by generation for lower cost
and mass.  Starting values (S) are the as designed
power system for the Deep Impact mission.  Final
values (F) are after 500 generations.

Using a population of 200 we ran the analysis for
177 generations using 3 objective functions.  This
resulted in 35400 designs being evaluated. The
optimization took 18 hours using 8 Intel(R) Xeon(TM)
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CPU 2.80GHz processors. As expected, this resulted
in several credible alternative solutions being generated
where each niche optimized their primary objective
while compromising the others.

An example of an MMPAT subpopulation
evolution by generation for a single objective function
is shown in Figure 5.  Here, starting design parameters
(S) (battery size, solar array size, etc.) for the Deep
Impact mission is optimize in our evolutionary
computing framework for lower mass and cost. For
comparison, the first generation is Deep Impact’s
actual design parameters. After about 500 generations,
the final optimized design (F) showed significant
improvements on the cost and mass over the flight
design when evaluated at the sub-system level.

4.2 Rover Arm Path Planning

Current and future planetary exploration missions
involving landers and/or rover-type vehicles such as
Mars Exploration Rover (MER), Mars Science
Laboratory (MSL), and subsurface access missions are
and will be equipped with robotic arms with four or
more joints, each joint having a high degree of
freedom (e.g., an angle range of 100 degrees in 1
degree steps).  Fast and efficient safe rover movement
(e.g., legged rovers and cliff-climbing rovers) and rover
arm deployment algorithms, taking rover position and
surrounding ground obstacles (e.g., rocks) into account
that can be executed with onboard CPU power, will
tremendously enhance mission autonomy by cutting
down on up-/downlink events, and thus increase the
useful lifespan of a mission. This work is capable of
increasing science return of future missions and
enabling support of intelligent in-situ science
experiments to be performed autonomously.

The calculation of a collision-free rover arm
deployment path is a search in a high-dimensional
configuration space. A rover arm consisting of N joints
with, e.g., on average 100 angle positions per joint,
spans a configuration space of 10(2*N). With N>6, the
number of possible configurations lies beyond
exhaustive search in a timely manner. To increase the
degree of complexity even more, the rover arm
deployment requires the generation/calculation of a
series of valid configurations, i.e., the safe arm
deployment path.

We have created three separate software programs
using a modified simulated annealing algorithm: 1)
calculation of a safe, collision-free rover arm end
configuration given a predetermined x-y-z end position
of the instrument-carrying joint together with a surface
normal at that point; 2) calculation of a safe, collision-
free deployment path from a start rover arm
configuration into the pre-calculated end configuration
(1); and 3) optimization of safe, collision-free rover
arm deployment path with respect to minimizing the

overall absolute joint angle movement. The time
necessary to calculate a safe deployment path is now
reduced from hours to hundreds of milliseconds (on a
Macintosh PowerBook 800MHz G4).

 
Figure 6.  Reachability Map for FIDO Rover:
Comparison of digital terrain maps showing
reachability of targets with the FIDO robotic arm.
Green (light) areas are reachable with arm path
solutions.  Grey areas are not reachable and red (dark)
areas indicate no data available for a solution.  Top
image is default elbow up reachability derived from
the FIDO arm path planning algorithm.  This algorithm
derives an un-optimized safe path to each target.  The
bottom image is the same terrain map analyzed with a
genetic algorithm to find the safest paths to targets.
The larger reachable area of the genetic algorithm i s
an indication of the power of the technique in not only
providing a greater number of reachable targets, but
also in providing the fittest arm path solutions with
respect to safety from arm (self and terrain)
collisions.  

We also applied a genetic algorithm [13] to the
rover arm path planning problem. Our improved
algorithm for the safe rover arm deployment problem
uses the following seven-step process:
1. Start with a random initial population
2. Determine arm extent bounding volume to prune

the search space
3 .  Define fitness function based on obstacle

avoidance and goal orientation
4. Perform collision detection and prune population

followed by goal orientation
5.  Perform mutation with a probabilistic choice of

small variation in state or segmented path
mutation followed by another fitness evaluation



6. Promote top 10% of the survivors to the next arm
extent bounding volume

Repeat steps 2 to 6 until placement point reached.
This approach will give an incremental path to the

goal position, without having to search through the
entire path from start to end position.

The simulated annealing-based rover arm path
planning algorithm as well as the GA-based algorithm
have been successfully tested both onboard the FIDO
rover platform and on the FIDO software simulator at
JPL (see Figure 6). The optimizer part came up with a
novel, shortest (2-step) deployment path from the
stowed to the safe rover arm position.

We are in the process of deploying both algorithms
on the MER rover software simulator and hardware
platform, with possible real-world arm deployments
during the extended NASA/JPL MER Mars Mission.
Details of this work will be documented in a future
publication.

4.2 Optimization of Low-Thrust Trajectories

Future space missions DAWN and JIMO will use
electric propulsion for inter-planetary cruise and orbital
operations. The strength of electric propulsion is that
in spite of its low thrust levels, the momentum
transfer to the spacecraft per kilogram of expelled
propellant is ten or twenty times greater than for
chemical propulsion. However, the control of low-
thrust spacecraft poses a challenging design problem
because perturbation forces often dominate the thrust
and a significant change of the orbit requires many
revolutions. Here we address the problem of designing
low-thrust orbit transfers between arbitrary orbits in an
inverse-square gravity field by using evolutionary
algorithms to drive parameter selection in a Lyapunov
feedback control law (the Q-law [14]).

The general goal of the design problem is to
maneuver a spacecraft with a series of thrust arcs from
orbit A to orbit B in the most fuel-efficient and
simultaneously time-efficient manner. Since the fuel
efficiency and the time efficiency often conflict, the
goal of this design problem becomes to determine the
Pareto front, which is the envelope in the objective
space resulting from the trade-off between the optimal
propellant mass and the flight time; each point along
the Pareto front corresponds to one particular mission
scenario. In order to access the Pareto front with
reasonable accuracy and to provide the time history of
the state variables and the thrust vector for any chosen
point of the Pareto front, we have developed an
efficient and efficacious method. A search for the
Pareto-optimal trajectories is performed in two stages:
1) optimal thrust angles and thrust-arc locations are
determined by the Q-law, and 2) the Q-law is
optimized with two evolutionary algorithms: a
modified simulated annealing algorithm (SA) and a

genetic algorithm (GA) with non-dominated sorting
[7].

Figure 7. Pareto front for an orbit transfer from a slightly-
inclined geostationary-transfer orbit to a geostationary
orbit.

We applied our method to several types of orbit
transfers around the Earth and the asteroid Vesta.
Substantial improvements in both final mass and
flight time over state-of-the-art are found in the
calculation of the Pareto front. For example, for a low-
thrust orbit transfer from a slightly-inclined
geostationary-transfer orbit to a geostationary orbit we
have obtained as much as a 15% propellant savings
over the nominal Q-law. Furthermore, the resulting
Pareto front contains the optimal trajectories found by
other optimization algorithms such as a static/dynamic
control algorithm [14] and an orbit averaging technique
[15]. Figure 7 shows the substantial improvement in
the estimation of the true Pareto front by the optimized
Q-law with SA and GA over the nominal Q-law, and
the comparable performance of the optimized Q-law to
other optimization techniques. Even more promising is
that our method builds the entire Pareto front within a
few hours of computation time, while other
optimization algorithms require a comparable
computational effort to acquire a single optimal
trajectory. A more detailed description of our method
and results is reported elsewhere [7].

Future plans comprise the direct optimization of
low-thrust trajectories, i.e., determination of sequence
of thrust arcs, both in space and time, and individual
duration thereof, independent of human-prescribed
control laws such as Q-law.



4.4 Automatic Tuning of MEMS Micro-
Gyroscopes

The MEMS Micro-Gyro, developed by the MEMS
Technology Group at JPL, is subject to an electro-
static fine-tuning procedure, which is necessary due to
unavoidable manufacturing inaccuracies. In order to
fine-tune the gyro, 4 bias voltages, applied to 8
capacitor plates, have to be determined independently
within a range of –60V to 15V. The fine-tuning
directly correlates with the accuracy of the gyros in
later use.

In order to fully automate the time-consuming  (on
the order of several hours) manual fine-tuning process,
we have established a hardware/software test bed to the
existing manual gyro-tuning hardware-setup using
commercial-off-the-shelf (COTS) components, which
includes four programmable power supplies, one offset
power supply, and an (electronic) signal analyzer as
well as driver and analyzing software.

We developed and implemented two algorithms for
efficiently determining the bias voltages [8]:  1) a
modified simulated annealing algorithm and 2) a
dynamic hill-climbing algorithm.  Both have been
incorporated into the hardware/software test bed.  We
were subsequently able to successfully fine-tune both
MEMS post-gyros and MEMS disk-resonating gyros
within one hour for the first time fully automatically
to a level of accuracy that is equal to or better than
what can be accomplished manually (see Figure 8).

One of the key problems solved during the course
of this research was to use the “frequency split”
between the resonant frequencies along both axes of
oscillation as a way to measure the tuning of the
gyroscope. Using an open-loop measurement system,
the resonant frequencies were determined by scanning
through the range of likely frequencies to determine
two peaks in the amplitude of vibration.  The objective
is to reduce the difference in resonant frequencies, also
called the “frequency-split”, to zero by changing the
bias voltage using SA and GA.  The frequency split
before tuning can be seen in Figure 9. The resonant
frequencies are determined by fitting the data to two
Lorentzian curves that model the behavior of the gyro
at the frequency of resonance.  The best-fit curves are
seen in the inset.  The fit parameters tell us the
position of the peak, and hence the resonant frequency.
Using the SA and GA algorithms combined with the
curve fitting method we can accurately report the
frequency split to a resolution below 0.06Hz, which is
considerably better tuning than the resolution
determined by a human operator.  Automatic MEMS
micro-gyro tuning can routinely achieve lower (by
40%) frequency splits in 20% of the time compared to
human operators.  The final tuned result can be seen in
Figure 10.

Figure 8. Frequency split as a function of
Simulated Annealing Iterations: (top) for the MEMS
post-gyro; (bottom) for the MEMS disk-resonating gyro.

 

Figure 9. The frequency split before tuning.  The two
Lorentzian curves are shown, as dashed and dotted
lines below the solid line indicating the sum of the
curves.  The inset shows the details of the peak data
points.

Figure 9. Fr equency split as a function of Simulated
Annealing Iterations: (top) for the MEMS post-gyro;
(bottom) for the MEMS disc-resonating gyro.

Figure 9. Fr equency split as a function of Simulated
Annealing Iterations: (top) for the MEMS post-gyro;
(bottom) for the MEMS disc-resonating gyro.



 

Figure 10. The frequency split after tuning i s
shown, reduced to approximately 0.05Hz.

The novel capability of fully automated gyro tuning
enables ultra-low mass and ultra-low-power high-
precision Inertial Measurement Unit (IMU) systems to
calibrate themselves autonomously during ongoing
missions, e.g., Mars Ascent Vehicle.

5. Conclusions

We have demonstrated that evolutionary
computational techniques can be applied to the design
and optimization of space systems.  Generally, these
applications offer better performance (in the range of at
least 10%) than traditional techniques and show faster
design times. Additionally, changing fitness
requirements and redesign, which inevitably occurs in
real systems and generally causes great fiscal and
schedule disruption, can be accommodated at relatively
low cost.

Our future work will consider the optimization of
multiple sub-systems into full spacecraft
optimizations. We are also evolving mission plans and
schedules and expect to integrate this work into the co-
design of a spacecraft, optimized to the mission plan.
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