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Truss optimization in the field of Structural Engineering is a growing discipline. The application of Grammatical
Evolution, a grammar-based form of Genetic Programming (GP), has shown that it is capable of generating
innovative engineering designs. Existing truss optimization methods in GP focus primarily on optimizing global
topology. The standardmethod is to explore the search spacewhile seekingminimumcross-sectional areas for all
elements. In doing so, critical knowledge of section geometry and orientation is omitted, leading to inaccurate
stress calculations and structures not meeting codes of practice. This can be addressed by constraining the
optimisation method to only use standard construction elements.
The aim of this paper is not to find fully optimized solutions, but rather to show that solutions very close to the
theoretical optimum can be achieved using real-world elements. This methodology can be applied to any struc-
tural engineering design which can be generated by a grammar.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

A major part of engineering design is the process of satisfying hard
constraints. In structural engineering, topology optimization is known
as the science of “optimal layout theory” [1]. It allows engineers to
design highly optimized structures—maximizing material efficiency
while minimizing waste and reducing material cost. This allows for
structures that are stiff yet lightweight, which can lead to savings
in terms of resources and cost [2–4]. Engineering optimization is an
important problem as minor savings in weight or cost on a small
scale can have larger implications when extrapolated over a larger
design or project.

The theory of topology optimization in structural engineering states
that it is possible to create a structurally “perfect” design with both
optimal shape topology and member sizes by both rearranging the to-
pological layout of the members and by varying the sizes of those
individual members [4]. All members in the design should have similar
high states of stress at, or close to (but not exceeding) the limits of
the material as specified by design codes of practice and manufacturer
specifications. This eliminates redundancy, minimizes material usage
and creates a more economical design. This is most usually achieved
by minimizing the cross-sectional area of each structural member,
which consequentlyminimizes the overall weight of the entire structure.

Genetic Programming (GP) has been shown to be routinely capable
of achieving human-competitive performance in a number of real-
world scenarios [5–7]. Evidence of an increase in use of GP in industry
n).
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can be found in the increasing number of patent applications using
GP [8]. GP is particularly well suited for engineering tasks for a number
of reasons, including its ability to handle multiple conflicting objectives
[14,15] and its capacity to optimize both the structure and the contents
of that structure in parallel [14]. Since the solution is unknown (due to
incomplete information or theory), GP is one method in particular
which can uncover its optimal structure/topological form [1,11,16,17].
Sizing optimization is similar in theory to solving a simple linear
equation: the form (topology) is known, and the variables (member
sizes) are increased/decreased to fit. It is therefore possible to use
both GP and linear optimization as a hybrid approach towards
topology optimization.

Grammatical Evolution (GE) is a version of GP that uses a formal
grammar [9,11,12], allowing the user to easily embed domain
knowledge (such as structure boundary conditions, loading condi-
tions, and basic form including span and depth), and to generate
output in any language [11]. Both GE and topology optimization
represent the cutting edge of both GP and structural engineering
fields respectively.

This paper introduces a new method of topology optimization:
Dual Optimization in Grammatical Evolution (DO-GE). While existing
structural optimization methods in GE [14,16,18] primarily focus
on a structural topology scale (optimization of the structural layout),
optimization of individual element sizes is also possible [1,19,20]. The
combination of both topology and sizing optimization is established
[1,16,17,19,29], but the use of both standard construction elements
and compliance to design codes of practice in the process is novel.
Standard practice is to optimize element sizings by specifying the
required cross-sectional area. While this gives theoretically optimized
results, the output is of little use to structural engineers as in practice
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trusses are constructed using structural elements with preset cross
section and geometry. This highlights a fundamental weakness in tradi-
tional sizing optimization methods: by omitting knowledge of section
geometry and orientation, it is not possible to include accurate buckling
calculations as a constraint for structural design and thus structures
cannot be designed according to standard codes of practice. The ap-
proach presented in this paper addresses this deficiency by allowing
for any number of standard construction elements to be specified for
any elements within a design, leading to code-compliant construction-
ready designs which truly represent their evolved form.

The DO-GE approach has a number of advantages over a two-stage
approach of optimizing topology and element sizes separately. With a
single stage approach, a large number of designs can be assessed in a
relatively short space of time, whereas a two-stage approach would
be slower and would fail to allow for interactions between structural
topology and element sizes parameters. A single-stage approach also
allows for real-time analysis of both design variables and structural
properties of the individuals as evolution progresses.

Section 2 will begin with a summary of related research in this area,
along with a description of the DO-GE method, including our approach
to design generation and analysis. Section 3 compares and contrasts
recent research methods with the DO-GE method using examples
from the literature, and a discussion on the implications of those results
is presented in Section 4. Finally, our conclusions and suggestions for
future work are presented in Section 5.
Fig. 1. A sample tr
2. Evolutionary approaches to structural engineering

The use of computers in structural design has been growing rapidly
in recent years. The advent of techniques such as TopologyOptimization
[1] and Evolutionary Computation (EC) [17] has heralded engineering
applications ranging from analog circuit design [5] to the design of
structures such as shelters [30] and bridges [14].

2.1. Engineering design approaches

A recent survey of the applications of evolutionary computation in
structural engineering design [17] has found the most difficult aspects
of the design to be i) appropriate representation of the engineering
system itself and ii) finding a suitable evaluation function. Appropriate
representation of the engineering system is possible using the relevant
design codes of practice [2,3,30,32]. In the case of structural design
this entails creating boundary conditions (supports and loading),
material limits (usually expressed as stress or strain) and design limits
(deflection). The use of the Finite Elementmethod of structural analysis
[4] as a fitness function has been proven useful [14,18], and it enables
the EC program to assess and evaluate individuals based on the results
of a finite element analysis.

Both Murawski et al. [41] and Kicinger et al. [44] successfully used
Evolutionary Computation (EC) methods to evolve steel wind bracings
for tall structures, based on Grierson and Cameron's SODA method
uss grammar.



Genome is created
• Phenotype is created from genotype

Phenotype is executed
• Structure is created

Structure is analysed

Anslysis results are examined
• Constraints are applied

Fitness is assigned

Fig. 3. Flowchart of the evolutionary process.

Fig. 2. A sample derived truss program.
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[43], while Kicinger et al. [42] incorporated multi-objective optimiza-
tion in minimizing both structure self weight and displacement.
Other well established optimization methods include Artificial Neural
Networks (ANN) (with model induction capabilities) [33] and Particle
Swarm Optimization (PSO) methods. However, the format of ANNs
present difficulties when encoding solutions, and their outputs can be
difficult to understand, thus they are not as flexible as the GP approach
in the structural engineering field. PSOs, on the other hand, have proven
particularly efficient in solving sizing optimization problems. Li et al.
[34] proposed a heuristic PSO, Kaveh and Talatahari [35] combined a
heuristic PSO with an ant colony strategy for an efficient hybridized
approach, while Luh and Li [28] used PSO for full topological optimiza-
tion of truss structures.

2.2. Truss Topology Optimization in Design

The field of Topology Optimization in Design (TOD) has seen rapid
expansion in the last few years with improvements in computational
power and efficiency [17]. Traditional TOD methods take a bit-array
approach where material is added to or removed from a solid mass to
obtain the most optimal topological arrangement of the material and
void for its particular application [1]. The field can be broken down
into two parts: Continuum and Discrete TOD.

Continuum TOD is similar in principle to the finite element method
of structural analysis [4] in that the system is assumed to be continuous
and as such can be discretized into smaller elements which, when opti-
mized, can be extrapolated to account for the overall design [21,22].
Popular methods include the Principle Stress Line [23], Evolutionary
Structural Optimization (ESO) [21,22,24] and Bidirectional Evolutionary
Structural Optimization (BESO) [20,21] methods, which have proved
highly effective in the area of architectural design [24] among others.
While this approach has been repeatedly proven to be computationally
and structurally more efficient than other forms of truss design [1,24],
it is implicitly cost-ineffective to manufacture as non-standard
elements, forms, and construction methods are required. A system
that instead uses standard construction elements has the potential
to be applied to a far wider array of applications in the real world
environment as existing fabrication technologies and construction
practices can still be used, requiring no bespoke industries.

The discrete TOD approach is much closer to traditional beam-truss
design in that it looks at the design of the complete structure, with par-
ticular focus on element connectivity. Thismethod lends itself especially
well to truss design, where appropriate connectivity of the members is
paramount. GA's have been used extensively in discrete TOD to evolve
trusses, and numerous approaches have been identified [16,25–27].
Existing methods include the representation of the truss as a combi-
nation of triangles [16], and the topological bit approach [25,26].
More recent methods have successfully used combinations of
Evolutionary Algorithms and approximate gradients [29] in truss
topology optimization.



Fig. 4. Basic truss designs.

62 M. Fenton et al. / Automation in Construction 39 (2014) 59–69
2.3. The GE method and its comparative advantages

GE is a grammar-based form of GP in which the grammar provides a
representation in which one can encode the structure of the solution
[10,11,13]. A grammar (Fig. 1) defines a derivation via a series of
rules: non terminals on the left, and a number of production choices
on the right. Production choices can be terminals (i.e. no further choices
can be made), non-terminals (leading to more production choices), or
combinations of both. It is also possible for grammars to be recursive
by setting a production choice equal to its own non-terminal, however
the current study is scope-limited to match the characteristics of other
methods, leading to a non-recursive grammar.

In essence, GE takes a grammar in Backus-Naur Form (BNF) [10]
beginning from the start symbol and maps a variable-length integer
array of genes (a chromosome) to a phenotype (an executable program,
Fig. 2) by expanding non terminals from left to right in the derivation
string [9]. The expansion of a non-terminal is determined by the value
of the current gene modulo the number of production choices in
the current rule. The mapping terminates when there are no non-
terminals left.

GE's advantages over a regular GA lie not only in the variable length
nature of the genotype integer array, but also in the power of the
mapping process itself. The use of a formal grammar allows complex
programs to be derived with ease, and one can effectively embed all
manner of useful domain knowledge in the grammar constraining the
form of the generated solution [9,12]. Genetic operators including
tournament selection, replacement, one-point crossover, and per-gene
mutation are similar or identical to those of a standard GA.

When comparing the use of grammars [9] in structural optimization
to pre-existing methods such as ANNs or PSO, grammars present a
much more advantageous approach as the output from the search
process is human-readable and can be readily altered to suit any appli-
cation, which allows for easy and quick analysis of results across a vari-
ety of platforms. It is also possible to add numerous constraints and bias
about the structure into the grammar itself [9,11,14,30], all of which
reduce the search space to a more manageable size. Integration with
existingmethods and systems is also one of our goals. Our implementa-
tion has the highly useful option of allowing the user to save designs as
Fig. 5. Sample truss design evolved using DO-GE. Experimental variabl
differentfile types such as those compatiblewith AutoDesk's .dxf exten-
sion,which allows for furthermanipulation of designs in an engineering
design environment.

Comparison with traditional TOD approaches (both Continuum and
Discreet fields) yields further advantages. One drawbackwith both TOD
approaches is that substantial computational effort is required for large
trusses [26]. The approach described in this paper has the significant
advantage that the physical dimensions of the design do not have a
bearing on the computational effort required to evolve the design.
In contrast to previous GA methods, the node locations in the design
search space are not fixed, but have a high degree of variability. This
combination of evolution of element size, connectivity, and node
location allows for far more complex designs to be evolved.

2.4. The DO-GE method

DO-GE differs from regular GE by utilizing two separate chromo-
somes simultaneously. DO-GE creates two separate integer array chro-
mosomes: the A-chromosome, which governs the topological form of
the structure, and the B-chromosome, which assigns material section
sizes to each individual edge in the individual. Chromosome A operates
in the normal GE fashion, controlling the derivation of the grammar
which details the layout of the trusses (as explained in Section 2.3
above). Chromosome B is passed in as an argument to the derived
program(as shown in Fig. 2),which itself creates a graphobject through
its execution. Each graph edge is assigned a material id from a corre-
sponding gene in Chromosome B (passed in as an argument to the
derived program). The list of edges is arranged in the order in which
the edges are generated, meaning that if the edge order changes, the
solution changes. This is not a concern, however, as the creation of
edges is explicitly controlled. While Chromosome A is fixed in length,
a variable-length chromosome is required for Chromosome B due to
the variable nature of the number of edges in each individual as the
truss type changes. Structural analysis of individuals is then carried
out using the free open-source finite element modeling program
SLFFEA [37] (Fig. 3). Previous work [14,18] has shown this method to
be both reliable and fast in analyzing any engineering structure
produced by a grammar.
es are: span: 24 m, style = Vierendeel, height = span/19, r = 9.

image of Fig.�5


Table 1
Material properties.

10 bar truss 17 bar truss

Tata steel sections Aluminium solid sections Tata steel sections Steel solid sections

Name Tata Mat_10 Tata Mat_17
Section type CHS CHS CHS CHS
Section sizes 157 standard sizes;

diam. from 0.838 to 20 in.
350 sections; CSA from 0.1
to 35 in2, increments 0.1 in2

157 standard sizes;
diam. from 0.838 to 20 in.

350 sections; CSA from 0.1
to 35 in2, increments 0.1 in2

Young's modulus (ksi) 30,458 10,000 30,458 30,000
Density (lb/in3) 0.285 0.100 0.285 0.268
Max tensile stress (ksi) 24.66 (t b 1.6 in.);

22.48 (t N 1.6 in.)
25 24.66 (t b 1.6 in.);

22.48 (t N 1.6 in.)
20

Max comp stress (ksi) Manufacturers limits 25 Manufacturers limits 20

Fig. 6. 10-bar truss problem.
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The regular genetic search operators used by GE – mutation and
crossover – are modified to accommodate the use of two separate
chromosomes. First, randomized pairs of parents are selected from the
parent population using tournament selection. For each pair, either
Chromosome A or Chromosome B is chosen, and then crossover is per-
formed on that chromosome of both parents, creating a pair of children
(the other chromosome is copied from each parent unchanged).
Once the child population is fully created, mutation is applied to
either Chromosome A or Chromosome B for each individual child
(choice-independent of the crossover stage), creating the next
parent population.

DO-GE has the added capability of being able to detect redundant
members in its truss designs. If a particular solution contains a member
with zero stresses (i.e. all member stresses xx, xy, zx, and moments xx,
yy, zz are zero), that individual is then re-analyzedwithout the presence
of that particular edge. If the fitness is improved upon (i.e. if all
constraints are still within their limits, and the overall structure self-
weight is lowered), then that member is omitted from the solution.
It must be noted that at present this is not an evolutionary feature;
it doesn't create a change in the chromosome, rather it is a measure
that is performed within the fitness function. This is an example of a
post-processing measure, any number of which can be run as part of
the fitness function after the DO-GE mapping has completed.

DO-GE encourages population diversity by removing individuals
from the child population which either match parent individuals or
other children. A number of checks are performed to ensure that only
exact duplicates are removed from the child population:

i. The fitness is checked
ii. Both Chromosomes are checked
iii. The phenotype is checked (locations of all nodes and edges).

This multi-level checking process catches all possible duplicates,
including any individuals that may occur due tomany-to-onemapping.
This feature is not possible in this study, but possible with certain
recursive grammars whereby different chromosomes will generate
the same phenotype.

2.4.1. Truss topology optimization
A truss grammar was built to design a variety of simple steel trusses

based on existing designs. Design constants were a span of 24 m
and a Universally Distributed Load (UDL) of 107.9 kips (480 kN). The
grammar uses six basic truss designs commonly used in structural
engineering practice, as shown in Fig. 4. These designs are represented
as the production choices of the non-terminal bconnection_typeN in
the grammar (Fig. 1).

There are also additional rules which allow the grammar to further
adapt the “macro” design of the truss. These include the rule brN,
describing the number of bays in each truss (number of times a design
feature is repeated, ranging from 4 to 40). Symmetry may be exploited
and a range of 2 to 20 employed. The rule bdepthN is used to set the
depth of the truss, which can vary between span/10 and span/25.
A simplified truss grammar example is presented in Fig. 1. It shows
the basic operators and moderators and their relation to one another
within the grammar itself. The grammar works by defining the top
and bottom chords of the truss, and then connecting them in accordance
with the variable type of truss selected by the grammar; the function
“cross_brace()” differs for each truss type. Three non-terminals are
defined by Chromosome A: brN, the range or number of bays of the
truss; bdepthN, the depth/height of the truss; and bconnection_typeN,
the design of the truss. Each time the grammar generates a new individ-
ual, production choices are applied to each non-terminal. When the
derived program is created, these production choices are set and an ex-
ecutable program is createdwhichdefines the structure. ChromosomeB
is then passed in as an argument to the derived program (it is not used
during the process of grammatical derivation), allowing individual
section sizes to be applied to different members in the structure.

A simplified derived program example is presented in Fig. 2 (derived
from the grammar presented in Fig. 1). A truss is created using the
“cross_brace” function and the nodes are then connected to correspond-
ing top and bottom chord nodes usingwhichever non-terminal connec-
tion type the grammar has selected; in the presented instance creating
the “box” style truss known as the “Vierendeel” design. A graphic repre-
sentation of the output of this program can be seen in Fig. 5.

2.4.2. Material selection and evolution in GE
In order to reduce the initial size of the search space (without

compromising later evolution) and to accelerate the initial search pro-
cess, the Chromosome B of each individual in the first population is
seededwith uniform genes throughout. Thismeans that each individual
in the first generation has a single material applied across all edges,
resulting in a far larger number of initial “fit” individuals upon which
further evolution is based.

image of Fig.�6


Table 2
10-bar truss problem: Evolved minimum cross-sectional areas for load case 1 (in2).

Element Li et al. [30] Kaveh & Talatahari [31] GE DO-GE

Using Tata CHS sections Aluminium solid sections Using Tata CHS sections Aluminium solid sections

1 30.704 30.307 8.944 30.5 8.680 29.5
2 0.1 0.1 0.237 0.2 Redundant Redundant
3 23.167 23.434 7.766 23.8 7.766 23.6
4 15.183 15.505 6.510 17.4 5.828 16.8
5 0.1 0.1 0.237 0.1 Redundant Redundant
6 0.551 0.5241 0.237 0.2 Redundant Redundant
7 7.46 7.4365 4.588 7.7 4.588 6.1
8 20.978 21.079 7.766 23.1 7.766 21
9 21.508 21.229 6.526 21.9 7.239 22.8
10 0.1 0.1 1.533 0.1 Redundant Redundant
Weight (lb) 5060.92 5056.56 5390.27 5287 5102.05 5056.88
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Depending on the number of materials supplied for possible
selection (n), DO-GE assigns each gene in the chromosome an
integer value ranging between 0 and (n-1). At present, element
sizes are taken from Tata Steel charts for S355 Hot-Finished Circular
Hollow Sections (CHS) [36]. There are 157 variations of steel
members on the list with diameters ranging from 0.838 in
(21.3 mm) to 20 in (508 mm). In addition the wall thickness can
also vary and any of the 157 possible steel sections can be applied
to any element in the truss. The chromosome assigns an integer
value from 0 to 156 (representing material ids 1 to 157) to each
individual element in the structure, which corresponds to the
index of the material on the list. Required material properties
include the cross-sectional area, mass per meter, second moments
of area Ix and Iy, and section thickness. It is possible to include any
number of material sections in the materials list, so long as the
five necessary variables are provided. The program automatically
increases or decreases the range of the chromosome variables
based on the length of materials list provided.

2.4.3. Fitness function constraints
A number of constraints within the fitness function are placed on

the individuals to ensure only appropriate designs are included in
the population. These constraints include limits on deflection, stress
(tensile & compressive) and Euler buckling loads for compression
members. While these constraints are related to the fitness function,
they can be used to modify the selection pressure for each individual.
Only a single objective (the self weight of the structure) is passed
through as thefinal fitness value (thismethod is used by the vastmajor-
ity of texts cited in this paper and is generally accepted as the standard
optimization goal in structural design). The use of a multi-objective
optimizer in this particular instance is unnecessary, as any parameters
other than weight that might need to be optimized are merely
constraints that must be imposed on the design (unlike [42] where
Table 3
10-bar truss problem: evolved minimum cross-sectional areas for load case 2 (in2).

Element Li et al. [30] Kaveh & Talatahari [31] GE

Using Tata CHS sections

1 23.353 23.194 7.239
2 0.100 0.100 0.578
3 25.502 24.585 7.766
4 14.250 14.221 7.285
5 0.100 0.100 0.831
6 1.972 1.969 1.721
7 12.363 12.489 5.828
8 12.894 12.925 6.510
9 20.356 20.952 7.239
10 0.101 0.101 0.237
Weight (lb) 4677.3 4675.8 5452.7
minimizing horizontal structural displacement is a design priority).
For example, there is no quantifiable engineering benefit from imposing
a vertical deflection limit of 10 mmwhen building design codes might
allow a deflection of 50 mm. In the search for minimum structure
weight, it is desirable for all constraints to be at their limits in order
to find the lightest possible structure. If a constraint is not at its limit,
an improvement can be made.

Multiple objective optimization capability is possible with DO-GE,
and indeed previous iterations of the program [14] have successfully
implemented the NSGA-II algorithm [15] in handling up to three con-
flicting objectives. However, in this instance only a single optimization
objective was deemed necessary, as once all constraints have been sat-
isfied, there is little or no performance improvement in trying to further
minimize them.

In the case of deflection, a limit of (span/250) is imposed over the
entire structure. The positions of each node before and after loading
are recorded, and if the total deviation of any node after loading is great-
er than the limit of (span/250) then that structure is considered to have
failed in deflection [2–4] and a default fitness of 1,000,000 is applied.

Tensile stress limits are based on the relevant design codes [2,31,32].
A maximum tensile limit of 24.656 ksi (170 MPa) is applied to all
members with a thickness of less than or equal to 1.575 in (40 mm),
while a limit of 22.481 ksi (155 MPa) is applied to all members with a
thickness of greater than 1.575 in (40 mm). If any element fails in
tension, a default fitness is applied.

Compressive limits on the material are based on the material
manufacturer's specifications [32,36]. Compressive resistance limits
are given for effective lengths of individual members, and are a function
of element size, geometry and end fixing conditions (i.e. fixed-fixed,
fixed-pinned, pinned-pinned); these limits are applied to the appropri-
ate elements in the structure and as with the two previous constraints,
if any element fails in compression a default fitness is applied. Likewise,
the use of Euler buckling limits for elements in compression ensure
DO-GE

Aluminium solid sections Using Tata CHS sections Aluminium solid sections

24.7 8.184 23.40
0.1 Redundant Redundant

29.0 8.184 24.80
15.4 5.084 15.00
0.3 Redundant Redundant
2.0 1.659 2.00

11.1 7.239 9.50
14.1 4.433 14.30
20.7 6.510 20.60
0.1 0.237 0.10

4919.5 5016.3 4612.8
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that designs featuring elements prone to bucklingwill be penalized. The
application of these constraints results in high-displacement, over-
stressed designs being removed from the population.
3. Numerical examples

The aim of this paper is not to find fully optimized solutions for ab-
solute minimum required cross-sectional areas in standard structures;
the literature contains numerous examples of efficient processes
for achieving this. Instead, the focus of this paper is to show that
real-world solutions very close to the theoretical optimum can be
achieved using standard construction elements. Benchmarking
tests are completed for common truss optimization problems against
popular or recently published methods to demonstrate the effective-
ness of using GE as a sizing optimizer in this manner. These problems
are then further developed to demonstrate the full dual optimization
capabilities of DO-GE, whereby the possibility of removing redun-
dant members is explored.

Two commonly used problems are analyzed from selected papers:
a 10-bar cantilever truss and a 17-bar cantilever truss [28,34,35,38].
In these papers imperial units were used to describe the problem; for
the sake of comparison they are also used in this paper. All experiments
Fig. 8. 10-bar truss problem: evolved minimum topology-stable structure.
were run with two different sets of materials, the properties of which
are described in Table 1. Deflection was universally limited to 2 in. in
all cases. After extensive testing to find the most suitable parameters,
experimental evolutionary variables were set at:

Population Size: 500

Generations: 500
Mutation: 1%
Crossover: 75%
Generational Replacement

3.1. Sizing optimization: 10-bar cantilevered truss

Luh and Lin [28], Li et al. [34], and Kaveh and Talatahari [35]
proposed solutions for a 10-bar planar truss sizing optimization
problem shown in Fig. 6.

Two load cases were tested:

1. F1 = 100 kips
F2 = 0

2. F1 = 150 kips
F2 = 50 kips

Tables of recent research solutions, including overall structure weight
and individual member cross-sectional areas, are presented in Tables 1
and 2 for load cases 1 and 2 respectively. It should be noted that the
research results presented by Li et al. and Kaveh and Talatahari use
aluminium as the design material; the research presented in this paper
utilizes standard steel sections. Using the Tata material set, the best
weights using GE are 5390.3 lb for load case 1 and 5453.7 lb for load
case 2. These evolvedweights are quite a bit higher than the best achieved
weights from previous works, with load case 1 being 333.7 lb heavier
than that of Kaveh and Talatahari and load case 2 being 776.9 lb heavier
than the previous best. However when the GE algorithm makes use of
the aluminium solid sections set of materials, minimum weights were
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achieved of 5287 lb for load case 1 and 4919.5 lb for load case 2. These are
far closer to the optimum, and exceeding the results of Kaveh and
Talatahari by 45.5 lb for load case 1 and 243.75 lb for load case 2. The
implications of these results are discussed in Section 4.
3.2. Dual sizing and topology optimization: 10-bar cantilevered truss

For the second part of the experiment, the 10-bar cantilevered truss
problem was solved allowing access to the full dual optimization capa-
bilities (simultaneous topology and sizing) of the GE program. The re-
sults of the evolutionary runs, shown in Tables 2 and 3, were found to
be much closer to the true optimum for both load cases.

With load case 1, the program evolved structureswith theminimum
required materials. This resulted in the removal of elements 2, 5, 6 and
10 from the structural topology, leaving a lightweight, rigid truss which
matches the best minimum weight achieved by Kaveh and Talatahari
[35]. With the use of the Tata material set, the best achieved solution
was 5102.1 lb, 288.2 lb lighter than the best solution obtained by GE
Fig. 10. 17-bar tr
using pure sizing optimization. A graph of the evolutionary runs for
load case 1 comparing evolution of the structure using the Tata and
aluminium solid sections materials sets using both GE and DO-GE is
presented in Fig. 7.

For load case 2, the most optimal topology would involve the
removal of elements 2, 5 and 10. However, the removal of elements
2 and 10 together would create a mechanism (a kinematically unstable
structure), whereby element 6 would be able to rotate freely around
node 2. In order to avoid this, an allowance has been made within
the program to ensure that only dynamically stable configurations
(i.e. no mechanisms) can be evolved; each element requires at least
one connection per node (Fig. 8).

Using the Tatamaterial set, the best achieved solutionwas 5016.3 lb,
436.4 lb lighter than the best single optimization solution by DO-GE.
With the use of aluminium solid sections, the best achieved solution
was actually better than that achieved by Kaveh and Talatahari [35],
at 4612.8 lb (Table 3). A graph of the evolutionary runs for load case 2
comparing evolution of materials 1 and 2 using both GE and DO-GE is
presented in Fig. 9.
uss problem.

image of Fig.�9


Table 4
17-bar truss problem: Evolved minimum cross-sectional areas (in2).

Element Khot [35] Adeli [36] Li et al. [30] GE DO-GE

Using Tata CHS sections Steel solid sections Using Tata CHS sections Steel solid sections

1 15.930 16.029 15.896 12.276 16.0 13.826 16.0
2 0.100 0.107 0.103 2.387 0.1 Redundant Redundant
3 12.070 12.183 12.092 15.392 12.2 12.276 12.2
4 0.100 0.110 0.100 0.394 0.1 Redundant Redundant
5 8.067 8.417 8.063 8.944 8.1 7.766 8.1
6 5.562 5.715 5.591 2.403 5.7 5.828 5.7
7 11.933 11.331 11.915 9.486 12.1 12.276 12.1
8 0.100 0.105 0.100 0.578 0.1 Redundant Redundant
9 7.945 7.301 7.965 5.828 8.0 7.766 8.0
10 0.100 0.115 0.100 2.527 0.1 Redundant Redundant
11 4.055 4.046 4.076 7.301 4.0 4.433 4.1
12 0.100 0.101 0.100 1.736 0.1 Redundant Redundant
13 5.657 5.611 5.670 5.208 5.6 5.208 5.7
14 4.000 4.046 3.998 4.588 4.4 4.464 4.1
15 5.558 5.152 5.548 2.651 5.7 5.208 5.7
16 0.100 0.107 0.103 3.317 0.1 Redundant Redundant
17 5.579 5.286 5.537 3.658 5.7 5.208 5.7
Weight (lb) 2581.9 2594.4 2581.9 2774.5 2605.7 2642.1 2595.4
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3.3. Sizing optimization: 17-bar cantilevered truss

Li et al. [34], Lee and Geem [38], Khot and Berke [39] and Adeli and
Kumar [40] proposed solutions to the 17-bar planar truss problem as
shown in Fig. 10. Nodes 1 and 2 were pinned, while a single vertical
point load of 100 kips was set at node 9. It should be noted that in this
case, all of the prior research utilized steel as the design material.

As with the 10-bar cantilevered truss problem above, the experi-
ments were again run with two different sets of materials: firstly
with the Tata material [36] and secondly with steel solid sections
as described in Section 4.

Table 4 lists best evolved solutions from DO-GE and compares them
with those found by previous works [34,38–40], including individual
member cross-sectional areas and overall structure weight. Using the
Tata materials, the best achieved solution was 2774.5 lb. With the use
of steel solid sections, the best achieved solution was 2605.7 lb, only
23.74 lb off the best solution achieved by Li et al. [34].

3.4. Dual sizing and topology optimization: 17-bar cantilevered truss

As with the 10-bar truss discussed earlier, the second part of the
experiment involved addressing the 17-bar optimization problem
with the full topology search functions of the DO-GE program included
in the evolutionary run. As with the 10-bar cantilevered truss problem,
the best solution found by the full DO-GE program was significantly
better than with pure sizing optimization when both topology opti-
mization and sizing optimization were run in tandem, with weight
reductions of up to 4.77% coming from the program choosing a
“modified Warren” type structure which removed elements 2, 4, 8,
10, 12 and 16 (Fig. 11).

Using the Tata materials, the best achieved solution was 2642.1 lb,
132.4 lb lighter than the best single optimization solution by DO-GE.
With the use of the steel solid sections material set, the best achieved
solution was only 10.3 lb off that achieved by Li et al. [34], at
Fig. 11. 17-bar truss problem: evolved minimum topology.
2595.4 lb (Table 4). A graph of the evolutionary runs comparing
evolution of Tata materials and steel solid sections using both GE and
DO-GE is presented in Fig. 12.
4. Discussion

While the best solution for each load case found using DO-GE was
consistently heavier than the best solutions from previous works, this
is due to both the use of different materials (aluminium was used in
the case of the 10-bar truss) and a more restricted range of available
materials. Traditional optimization methods [1,16,17,19,34,35,38]
calculate the minimum required cross-sectional area, while the DO-GE
method presented here matches the closest commercially available
element (based on a predefined list) to that minimum. Moreover,
DO-GE's ability to detect unnecessary members allows it to further
improve on standard GE methods.

When the results are analyzed in more detail, some interesting
points become apparent. These are directly related to the application
of the method as a structural design tool and highlight some important
short-comings of the more traditional optimization methods.

For the literature examples presented in Section 3, compressive and
tensile stress limits were identical and were set at 25 ksi in the case of
the 10-bar truss and 50 ksi for the 17-bar truss. In structural design
practice this is far from the case, as many section-dependent factors
govern the material stress limits, including relevant design codes of
practice [2,3,30,32] andmanufacturer's specifications [32]. This discrep-
ancy is particularly relevant in the case of axial compression. Both stan-
dard codes of practice [30,32] and manufacturer specified compression
resistance limits [36] are considerably more conservative as they take
into account various factors of safety. These are not used in traditional
optimizers. It must also be stressed that these variable stress limits
apply regardless of the material used, as compressive stress limits
are a function of the length of the member, its cross-sectional area,
and its thickness.

In the current standard for structural steel design [32], methodolo-
gies are available to calculate the allowable maximum resistance of
axial compression members; this is based on the gross cross-sectional
area and the compressive strength of the material (which itself is a
function of the section geometry). DO-GE addresses these issues
by building dictionaries of section data for each structural member,
including section geometry and properties, compressive and tensile
stress limits (based on section geometry, design codes of practice,
andmanufacturer specifications), and permissible Euler buckling limits.
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A summary of the maximum permissible stress for each element in
compression is given in Table 5.

Inspection of the data shows that there is considerable variation
in the maximum permissible compressive stresses, with values
ranging from 3.4 to 49.4 ksi. When one considers the approach
used by traditional optimization methods (to take a fixed constant
value for this property), the implications of this approach with
respect to compressive resistance and buckling are very clear.
It also highlights a very significant shortcoming of traditional optimi-
zation methods.

For illustrative purposes, all experiments were run a second time
with a wider array of materials representative of those of other works
Table 5
Summary of compression elements in sample problems.

Element no. Length (in) Secondmoment of area (in4) Max allowable stress (ksi)

10-bar truss (load case 1)
3 360 153.040 29.810
4 360 72.075 18.505
8 509.12 153.040 19.420
10 509.12 2.883 3.416

10-bar truss (load case 2)
2 360 0.235 0.758
3 360 153.040 29.810
4 360 101.146 22.552
8 509.12 72.075 18.505

17-bar truss
3 100 749.583 45.112
4 100 0.074 3.785
7 100 44.927 45.016
11 100 101.146 49.362
12 100 4.132 35.991
14 100 31.713 47.272
15 141.42 9.442 32.392
16 141.42 7.520 22.902
17 141.42 12.757 32.011
(solid aluminium and steel material sets, as described in Table 1).
Evolved solutions were found to be much closer to the previous best
solution reported in the literature, using the standard cross sections
available commercially. Comparisons between element cross-sectional
areas evolved using DO-GE and those of previous methods (Tables 2–4)
confirm that DO-GE is fully capable of matching other optimization
methods. More importantly however, these comparisons also highlight
the ever-widening gap between idealized optimization and real-world
achievable optimization.

5. Conclusions and future work

Although truss optimization methods exist, this study finds that the
most popular methods are not fully appropriate for everyday use in
the construction industry as they focus purely on optimizing minimum
element cross-sectional area, neglecting crucial section properties and
material specifications. Furthermore, the widespread use of identical
tensile and compressive stress limits on the material and the lack of
use of design codes and standards of practice in such optimization
methods give a false impression of both the efficiency of the algorithm
and the achieved results.

The GE-based truss optimization approach presented in this paper
can be considered more suitable for everyday use in that:

• the representation of the structure is easily encoded
• the results are human-readable and easily analyzed
• the limits of the amounts of constraints that can be applied have yet
to be explored

• redundant truss elements can be identified and removed
• the approach can be transposed to many different platforms
• it uses existing predefined structural materials
• its outputs are compatiblewith existing truss fabrication technologies.

Most importantly, our approach only creates designswhich conform
to standard design codes of practice, and hence all fit individuals can be
considered viable for construction.
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Future work will concentrate on exploring the recursive capabilities
of GE in structure generation, which would theoretically vastly increase
the representation space of the program. The use of variable mutation
and crossover rates in [41] also warrants investigation as it could yield
additional performance benefits.
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