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Abstract

Unmanned aerial vehicles (UAVs) offer a potential alternative for provid-
ing voice services in areas where communication is disrupted due to natural
disasters. These UAVs can be configured as aerial base stations (ABSs), en-
abling the deployment of a temporary communications network. However,
communication networks based on ABSs pose several significant challenges.
One of these challenges involves addressing interruptions or limitations in
network coverage caused by natural disasters. In such situations, there is a
high likelihood that users within the affected area may be unable to com-
municate due to a lack of coverage. This is a complex problem because it
depends on factors, such as the mobile user locations, the characteristics
of the air-to-ground channel, and geographical details of the area. In this
work, we propose an optimization model to determine the placement of a
set of ABSs within a limited disaster area that maximizes the probability of
successful voice services (PSVSs). This optimization model integrates a net-
work evaluation model that analyzes the wireless environment at a specific
time. The network evaluation model utilizes two-ray and Rayleigh channel
models, enabling the simulation of a worst-case scenario for wireless commu-
nication systems. We evaluate the proposed optimization model using the
(1+1)-evolution strategy with a one-fifth success rule. We explore various
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parameter configurations to understand their impact on algorithm perfor-
mance. This analysis helps identify the configuration of the optimization
model that yields the maximum PSVSs. Simulation results indicate that by
appropriately configuring the evolution strategy algorithm and comparing
random ABS locations with those determined ABS locations by the evolu-
tion strategy algorithm, the PSVS can be enhanced by an average of 60%.

Keywords:
UAV placement problem, aerial base stations, multi UAV deployment,
evolution strategy

1. Introduction

Human-induced climate change increases the frequency of natural disas-
ters [1]. According to [2], natural disasters are classified as land-based (e.g.,
earthquakes), water-based (e.g., river floods), atmospheric (e.g., tornadoes),
biological (e.g., pandemics), extraterrestrial based (e.g., comet strikes), or
even a combination of them (e.g., undersea earthquake and tsunami). Al-
though different, they indistinctly cause loss of life and damage to humans
and their possessions. Search and rescue operations involve a series of actions
that occur during the response phase of a natural disaster, to provide aid to
the potentially injured population. These activities are carried out by trained
first responders, including firefighters, paramedics, and emergency personnel.
One of the main requirements for these first responders to effectively carry
out search and rescue operations is to have a reliable communications net-
work. However, it is possible that the regular communications infrastructure
may be partially damaged or destroyed as a consequence of the natural disas-
ter. Therefore, in such critical circumstances, an adaptable, reconfigurable,
easily deployable, and reliable communications network is essential. Due to
flexible deployment, low cost, and rapid reconfiguration, unmanned aerial
vehicles (UAVs) are the most suitable candidates for deploying a tempo-
rary wireless network [3]. In this way, UAVs can serve as temporary aerial
base stations (ABSs) and dynamically change their location to provide on-
demand communications to the first responders and victims on the ground
in a natural disaster [4]. For example, in Puerto Rico, AT&T deployed its
helicopter Flying COW (Cell on Wings) to connect residents temporarily and
first responders after Hurricane Maria’s devastation [5].

2



Despite the above, as the work in [3] mentions, there are several chal-
lenges to efficiently deploying an ABSs-based wireless network. Some of the
main concerns in such deployment are ABS placement, resource manage-
ment, interference management, and channel modeling. UAV placement is
one of the biggest challenges since it depends on the location of a mobile user,
air-to-ground channel characteristics, geographical area details, and energy
constraints of UAVs. The optimization problem of finding the best position of
ABSs to maximize the network performance is an NP-hard problem [6]. Also,
UAV position directly impacts the performance metrics of a communication
network, like signal-to-interference and noise ratio (SINR). This performance
metric depends on the transmitter and receiver’s location and distance, the
transmission power, and the characteristics of the radio channel. Therefore,
ABS placement impacts the quality of service (QoS) perceived by mobile
users when they intend to access the network to request services. Addressing
these challenges associated with deploying ABS-based wireless networks is
imperative to ensure efficient network operation and deliver quality services
to mobile users.

This paper contributes to state-of-the-art with an optimization model
that incorporates a network evaluation model. Regarding the optimization
model, we have proposed an objective function that maximizes the proba-
bility of successful voice services according to the suitability of locations to
deploy the ABSs on a 2D city map. The above is constrained to locate ABSs
within the bounds of the disaster zone. The integrated network evaluation
model into the optimization model analyses the network at a given instant
time. To do so, we capture a 5G wireless environment within a disaster area
where the base stations collapsed (due to the natural disaster) and the mobile
users (victims and first responders) need to communicate. In this process,
the ABSs’ channels are assigned to mobile users according to propagation
conditions modeled using Rayleigh and two-ray channel models. These mod-
els simulate challenging signal propagation conditions to ensure quality voice
service in critical circumstances.

It is recognized that determining the optimal 3D placement of UAVs
involves complex mathematical modeling and advanced optimization tech-
niques. These strategies are often computationally intensive, particularly in
real-time applications. To reduce the complexity associated with 3D deploy-
ment, several studies like [7, 8, 9] have proposed decoupling the 3D UAV
deployment into two dimensions: vertical and horizontal. In [7], the hori-
zontal dimension is focused on determining UAV locations, while the vertical
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dimension is concerned with altitude optimization. The UAV altitude af-
fects the cell radius and the path loss experienced within the cell, while the
horizontal location and cell radius determine the ground users covered by
the UAVs. In contrast, the study in [8] addresses the calculation of the
optimal horizontal deployment coordinates of the UAVs. Subsequently, in
the vertical dimension, the authors determine the transmission power and
deployment height of the UAVs. Finally, in [9], the authors aim to maxi-
mize the number of covered users in the horizontal dimension by utilizing
the minimum required transmission power in the vertical dimension. While
these approaches successfully reduce deployment complexity by dividing the
problem into two dimensions, they simultaneously address two distinct op-
timization problems. Consequently, the solutions remain computationally
demanding, making it challenging to provide feasible solutions faster. Even
though our primary analysis framework is 2D, the UAV’s height is not ne-
glected; rather, it is a built-in aspect of the channel model that influences
propagation characteristics. This is consistent with the focus of our study:
to provide a practical, computationally efficient, and accurate assessment of
UAV-based communication in disaster scenarios without the need for a full
3D model.

Nowadays, data transmission has become increasingly popular in modern
communication. This service offers significant advantages, including faster
communication and more efficient data usage. However, it may not be the
most suitable option in emergency scenarios due to its reliance on specific
infrastructure and technologies. For example, data service requires greater
bandwidth and spectral resources, which could be a limitation in emergency
scenarios where such resources are scarce or unavailable. Additionally, band-
width limitations may arise in areas with network congestion, such as during
natural disasters or large-scale events, which could deteriorate call quality
and hinder effective communication. On the other hand, classic voice trans-
mission in mobile networks uses proven technologies such as LTE, which may
be more robust in emergencies where terrestrial infrastructure has been de-
stroyed. This technology has been tested over time and has proven to provide
reliable communication even in challenging conditions. Furthermore, classic
voice transmission has a greater availability of compatible devices. This
simplicity can be advantageous in emergencies where a quick and efficient
response is needed without relying on complex systems that may be prone
to failure.

We apply the (1+1)-evolution strategy ((1+1)-ES) with a one-fifth suc-
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cess rule [10] to locate ABS in the affected area. (1+1)-ES is inspired by
biological evolution dating back to the 1960s. It is mainly applied to solve
optimization problems in continuous search spaces [11]. It generates one
offspring from one parent in each generation, mimicking the asexual repro-
ductive mechanism of biological evolution. Subsequently, the parent and
offspring are compared to designate the fittest individual as the parent for
the next generation. The genetic algorithms (GAs) use a similar process of
evolution. However, (1+1)-ES offers distinct advantages over GAs, particu-
larly its ability to yield high-quality solutions with minimal objective function
evaluations and using small population sizes compared to GAs. Addition-
ally, (1+1)-ES can self-adjust mutation rates through the one-fifth success
rule in each generation [10]. These features render (1+1)-ES highly suitable
for rapidly generating solutions in natural disaster scenarios when compared
to GAs.

To imitate the non-availability of internet support because of infrastruc-
ture failure (thus no access to cloud computing services), we run the optimiza-
tion model, the (1+1)-ES, and the snapshot-network evaluation on NVIDIA’s
Jetson TX2. This device is part of edge artificial intelligence (AI), a tech-
nology where AI algorithms are processed on edge. Thus, in an emergency
situation, one of the UAVs will be an AI UAV, this is, a UAV running with
edge AI. Once the (1+1)-evolution strategy produces the optimal placement
of UAVs to maximize the probability of successful voice services, the AI UAV
communicates to all the UAVs in the temporal network their new locations.
The communication protocol necessary to do the above task is outside the
scope of the present work.

1.1. Related Works

Several studies attempt to find positions for the ABSs to meet different
objectives. For example, the work in [4] uses a drone’s edge device (jetson
nano) to take aerial video that is the input to the image classifier model.
Then, the authors apply a convolutional neural network to detect survivors;
when the model detects the survivor, the drone hovers over the survivor to
provide access to the wifi network with an accuracy of 94%. However, the
authors did not perform an evaluation analysis of the network conditions for
reliable communication. On the other hand, work in [12] evaluates the net-
work performance of UAV-assisted intelligent edge computing to search and
rescue missions. It considers network parameters such as delay, throughput,
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traffic sent and received, and path loss. It also proposes a model to de-
tect people in a localized area using a convolutional neural network. When
the UAV computing-based surveillance system identifies the survivor’s po-
sition, their position is given to the search and rescue team for assistance.
The authors use OPNET to create the evaluation scenario. Their evaluation
scenario is limited to two UAVs.

Likewise, work in [13] minimizes the number of UAVs deployed in a dis-
aster area to provide communication and the total distance flown by UAVs
to restore connectivity. Each UAV uses the angle of arrival (AoA) and the
received signal strength indicator (RSSI) to estimate the number of nodes
in the jth disconnected part. Simultaneous movement of multiple UAVs to
locate them in the affected area to recover communication is not allowed.
The above is critical since the time to recover connectivity cannot be sped
to save lives. Furthermore, even if this work uses the term ”minimize,” it
does not imply it addresses an optimization problem. In contrast, work in
[14] addresses the 3D location problem of multiple ABSs. It also allocates
resources to mobile users, maximizing the network’s profit (from the service
providers’ perspective). It applies the modified-alternate location-allocation
(M-ALA) heuristic that alternately solves two sub-problems: a bandwidth
allocation sub-problem, and the location sub-problem of the ABSs. Their
largest instance has 5000 users, while our proposed instance has 19819 mo-
bile users.

The work in [15] poses the ABSs placement as an optimization problem
to determine the number and location of the ABSs to provide connectivity
in flash crowds and emergencies. It considers the position of the ground
users, mobile user channel quality, and the positions of the other ABSs. The
above information feeds a genetic algorithm that finds the minimum number
of ABSs to connect to mobile users. The authors report 90% of connected
users for 55 mobile users. They consider WiFi to recover the communication
between ABSs and mobile users. Their instance size of 55 mobile users does
not capture the high concentration of users that a disaster area could have.
A study in [16] compares five placement algorithms to minimize the number
of ABSs to guarantee a minimum rate for mobile users in an urban environ-
ment. These five placement algorithms are circle-based placement based on
a sparse-recovery optimization approach, clustering-based positioning at a
fixed altitude, circle-based positioning based on an inward spiral around the
uncovered mobile users, 3D positioning via empirical models, and 3D place-
ment using radio maps. Among those algorithms, 3D placement using radio

6



maps is the one that performs better. The above is because of its awareness
of the path loss in the area. Its simulations include up to 90 mobile users in
the area.

The authors in [17] maximize the mean opinion score (MOS) through
the 3D UAVs’ placement and dynamic movement. To do so, they apply a
genetic algorithm based on the k-means (GAK-means) algorithm to generate
the cell partition of the users. After that, they use a Q-learning algorithm
to move UAVs in seven flying directions. Their signal model includes the
line-of-sight (LoS), the non-line-of-sight (NLoS) probability, the SINR, and
the quality of experience (QoE). Their simulation has 100 ground users and
four UAVs. They conclude that their proposed scheme outperforms the k-
means and the iterative-GAKmean (IGK) algorithms. In [18], the authors
presented a model to maximize network throughput. First, the SINR is
calculated in mobile users; then, the authors apply the artificial bee colony
(ABC) algorithm to find a good solution. Results show that ABC solves
the problem of network throughput optimization and finds the optimal flight
position of the ABSs.

Table 1 summarizes the key findings of each work discussed above in the
UAV placement problem. These works do not address the ABS placement
problem as one of maximizing the probability of successful voice services. We
propose this objective function to guarantee that once the (1+1)-ES finds the
strategic locations of the ABSs, the temporal wireless network supports the
highest number of successful voice services among the first responders and
victims. It is important to note that those successful voice services are pro-
vided with QoS. We prioritize the provision of this basic 5G mobile service
because it requires less bandwidth than data and video services. Addition-
ally, real-time voice transmission often requires lower latency than data and
video services. Voice communication can be more accessible to users with lim-
ited bandwidth or older devices that may not support high-definition video
streaming. This simplicity can result in lower hardware and software re-
quirements, as well as reduced energy consumption. These characteristics
can be advantageous in emergency scenarios, providing essential communi-
cation capabilities without incurring high infrastructure costs and preventing
performance degradation of the temporary wireless network.

Furthermore, our proposed optimization model verifies that the positions
for the ABSs are kept within the bounds of the affected zone. Also, we have
different mobile user statuses: present, requesting, candidate, and served.
Mobile user statuses determine how users interact and evolve with the tem-
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Type of UAV placement Objective Algorithm(s)

Single UAV placement [4] Survivors detection Convolutional neural network

Multi UAV deployment [12] Survivors detection Convolutional neural network

Multi UAV deployment [13] Minimizing the number of ABSs, minimizing distance flown by ABSs Heuristic

Multi UAV deployment [14] Maximizing the profit of the network Heuristic

Multi UAV deployment [15] Minimizing the number of ABSs to provide connectivity Genetic algorithm

Multi UAV deployment [16] Minimizing the number of ABSs to guarantee a minimum rate at mobile users Circle-based placement, clustering-based placement, 3D placement via empirical models, 3D placement using radio maps

Multi UAV deployment [17] Maximizing the mean opinion score (MOS) Genetic algorithm based on the k-means (GAK-means), Q-learning algorithm

Multi UAV deployment [18] Maximizing network throughput Artificial bee colony (ABC) algorithm

Table 1: Summary of the related work on the objectives and the optimization techniques
used for ABS placement.

poral wireless network. To obtain a new status, the mobile user must comply
with a set of requirements. In this sense, the requirement to obtain a candi-
date status establishes that one mobile is linked to just one ABS. The above
allows us to manage somehow the coverage radius overlapping among ABSs.
In this way, the ABSs can cover a wide area of the affected area, which results
in more mobile users with voice service.

Also, we generate an instance (see https://figshare.com/articles/

dataset/RC_CMU-PCP-19819_GZ/24194529) that utilizes real geographic co-
ordinates for mobile users and the boundaries of the affected disaster zone.
These coordinates are sourced from Tula Town in Mexico, where in Septem-
ber 2021, the Tula River overflowed, resulting in the loss of voice and data
services for 18 towns.

Finally, as opposed to the works discussed above, we apply the (1+1)-ES
that allows us to directly use the ABS positions in geographical coordinates in
the candidate solutions. Since the (1+1)-ES deals with one parent producing
one offspring in each iteration, we can speed up the time to obtain a good
solution, saving human lives. Also, the (1+1)-ES allows processing larger
instance sizes than the ones reported by the works discussed above.

This article is organized as follows: Section 2 describes the simulation sce-
nario, the snapshot-network evaluation, and the optimization model. Section
3 presents the (1+1)-ES to locate ABSs. Section 4 illustrates the simulation
results. Finally, Section 5 concludes this study along with future directions.

2. Problem formulation

This section describes the simulation scenario. We also explain the net-
work model for providing voice service to mobile users within the affected
zone. Finally, we show the optimization model that determines the locations
of each available ABS such that most mobile users attempting to make a
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call can access the network with successful voice communication during the
emergency.

2.1. Simulation scenario

We consider a simulation scenario in which we evaluate the optimiza-
tion model proposed for representing the locations of ABSs that provide the
maximum number of voice communication services after a natural disaster.
We bound the square-shaped affected area of L meters per side, centered
in latitude 20.033608 and longitude -99.319219. We assume that emergency
services have a set M = {mi} of ABSs available for fast deployment, build-
ing a temporary cellular network. mi is the geographic location of each
ABS, that is mi = (xi, yi), such that 1 ≤ i ≤ |M |, where |M | is the car-
dinality of the set M . It is further assumed that ABSs have technological
capabilities and functionalities to operate as ABS-LTE eNodeB suitable for
voice services. LTE stands for Long-Term Evolution and is the technology
proposed by the 3rd Generation Partnership Project (3GPP) to enable emer-
gency connectivity using ABSs [19]. On the other hand, the set denoted by
N = {nj|nj = (xj, yj) where xmin ≤ xj ≤ xmax and ymin ≤ yj ≤ ymax}
corresponds to the present mobile users (MUs) located inside the affected
area, where 1 ≤ j ≤ |N |. |N | is the cardinality of the set N . [xmin, xmax] is
the bound in the latitude of the affected area. [ymin, ymax] is the bound in
the longitude of the affected area. The location of each MU is considered a
random variable that follows a Poisson cluster process (PCP). PCP models
a network where MUs cluster in line with certain social behavior [20], i.e.,
the PCP represents the MUs gathered around an inactive base station be-
cause of the natural disaster. Furthermore, some MUs become requesting
mobile users (RMUs) because the MUs request a radio channel to initiate
voice service. RMUs are represented by the set K, therefore K ⊆ N , then
K = {kj|nj ∈ N and it requests voice service}. The selection of MUs to
become RMUs is random and follows a uniform distribution. We also as-
sume each available ABS knows the position of the MUs and RMUs within
the disaster area. Figure 1 shows the simulation scenario of this work. The
black lines represent the affected area bounds. The red triangles represent
the set of ABSs the first responders have for strategically deploying. The
scenario shown in Figure 1 has 19 819 MUs (blue circles), from which 4492
are RMUs (green circles).

The network performance evaluation, i.e., the number of RMUs properly
attended, is analyzed by capturing the state of the network (snapshot) during
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Figure 1: Simulation scenario proposed to locate ABSs in zones where communication
services are interrupted.

a specific time. This can be considered as watching a movie film by observ-
ing cinematic snapshots and then collecting all the necessary information
from each snapshot to understand the story told by the movie. During each
snapshot, the number and positions of the mobile users remain constant for
evaluation; however, the number of RMUs changes according to the dynam-
ics of the Erlang traffic model. The snapshot-network evaluation determines
the number of RMUs served by available ABSs. Performance evaluation is
carried out by analyzing the communication link established from the ABS
to the RMU, regarded as downlink communication analysis; this is the link
with the most significant communication losses in the communication net-
work design.
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2.2. Snapshot-network evaluation

To evaluate every snapshot, we designed a network model based on LTE
technology broadband in the 700 MHz frequency assigned to public safety
communications (PSC), with 20 MHz of dedicated spectrum available for
broadband, 10 MHz for downlink, and 10 MHz for uplink in band class 14
[19]. Since radio resources can be limited during an emergency, we guarantee
only voice services for the RMUs. The 3GPP standardizes the voice ser-
vice to 8 kHz [21]. In addition, given that the frequency division duplexing
(FDD) scheme is considered; it requires two radio channels to establish a
communication link, one to transmit and one to receive information. Then,
the amount of available channels in the system is 10000 kHz

(8 kHz×2
) = 625 channels,

i.e., the system has 625 available channels to provide communication to the
victims. The channels are allocated to the RMUs according to a fixed channel
assignment strategy. Table 2 lists the notations used in this paper.

Each ABS has a channel pool to serve the RMUs. However, an ABS can
allocate a channel to an RMU only if the RMU becomes a candidate mobile
user (CMU). A CMU must fulfill the following:

dmikj ≤ 2 km (1)

|M |⋂
i=1

Ai = ∅ (2)

SINRkj ≥ 3 dB (3)

Equation (1) represents the kj within the coverage radius of the mi. The
coverage radius equal to two km was defined according to previous experi-
ments. These prior experiments suggested that the interference can be re-
duced by setting the coverage radius equal to two km. The geographic dis-
tance between the kj and the mi is computed through the Haversine formula
[22] given by:

dmikj = 2R atan2(
√
a,
√
1− a) (4)

where R is the radius of the earth. a is a value that considered two coordi-
nates in latitude and longitude on the earth; it is given by:

a = sin2 xi − xj

2
+ cosxi cosxj sin

2 yi − yj
2

(5)

where xi and xj are the mi and the kj latitudes, respectively; yi is the longi-
tude of the mi, and yj is the longitude of the kj. where xi and xj are the mi
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Notation Description

M , N
Set of the geographic coordinates of the available
ABSs and MUs

mi, nj, mq
Geographic coordinates of the available ABSs,
MUs, and interfering signals, respectively

|M |, |N | Number of available ABSs and MUs

K, kj, |K|
Set of the geographic coordinates of the RMUs,
geographic coordinates of the RMUs, and number
of RMUs, respectively

dmikj , dmqkj

Distance of desired signal and distance interfering
signal, respectively

Ai
Set of CMUs that ABSs may allocate a radio chan-
nel

SINRkj Signal-to-interference and noise ratio in one RMU

Prxmikj , Prxmqkj

Received power of desired signal and interfering
signals, respectively

Imqkj

Power of interference at the RMU receiver in the
desired signal

Ptx Transmission power of the ABSs

Ptmikj , Ptmqkj

Path-loss power in desired signal and interfering
signals

Pdmikj , Pdmqkj

Loss power by multi-path fading on the desired
signal and interfering signals

Ui Set of geographic coordinates of SMUs by one ABS
Γ Number of SMUs properly attended

PBT Total blocking probability in the system
PBC Blocking probability due to coverage
PBR Blocking probability due to spectral resources
PR Call request probability
POC User-out-of-coverage probability
PIC User-in-coverage probability
PNA Probability of non assignment

Table 2: Notations of the system model.
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and the kj latitudes, respectively; yi is the longitude of the mi, and yj is the
longitude of the kj.

Equation (2) ensures that the kj connects only to one mi, where Ai is the
set of CMUs linked to mi. Equation (2) allows us to manage somehow the
radius coverage overlapping among ABSs.

Equation (3) computes the single-hop communications metric. The SINR
measures how much a desired signal is affected by other cells that use the
same set of frequencies. It indicates that the receiver of the desired signal
must achieve a minimum SINR threshold to represent a successful reception.
The threshold in Equation (3) guarantees the successful provision of voice
service in the LTE technology [23]. We evaluate the SINR caused by co-
channel interference (CCI) [24], which is calculated by:

SINRkj(dB) = Prxmikj(dB)− Imqkj(dB) (6)

where Prxmikj is the received power from the mi to the kj, i.e., the desired
signal. Imqkj is the sum CCI power at the kj receiver of the desired signal.
CCI occurs when multiple ABSs share the same channel pool simultaneously
[24]. Then to each receiver of the desired signal, the other ABSs appear to
be interfering signals. For example, in Figure 2, mq is the interfering signal
of the kj receiver of the desired signal. So mq is the q-th interfering signal
where 1 ≤ q < |M | for all q ̸= i. The CCI is expressed as:

Imqkj(dB) =

|M |∑
q=1

Prxmqkj(dB) (7)

where the received power of the desired signal Prxmikj and the received power
of the interfering signal Prxmqkj are expressed as:

Prxmikj(dB) = Pmi
(dB)− Ptmikj(dB)− Pdmikj(dB) (8)

Prxmqkj(dB) = Pmq(dB)− Ptmqkj(dB)− Pdmqkj(dB) (9)

The received powers are modeled using the channel models: Rayleigh
and two-ray. These models have been selected to capture the characteristics
of the communication channel. The Rayleigh channel model simulates non-
line-of-sight multipath fading and is often considered a worst-case scenario for
wireless communication systems. In such circumstances, transmitted signals
are expected to experience significant fading in both the uplink and down-
link directions. The presence or absence of obstacles in a radio environment
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Figure 2: Approach to calculating SINR. mi emits the desired signal to kj receiver, mq

emits an interfering signal for the kj receiver of the desired signal.

can be effectively modeled by theoretical random variables, eliminating the
need to simulate the objects or obstacles themselves. Theoretical channel
models such as Rayleigh, Rician, and k-Nakagami, among others, encompass
the randomness associated with signal blockages, shadowing, moving objects,
and other potential scatterers, all of which contribute to the total fading ex-
perienced by a received signal [25]. The two-ray channel model, on the other
hand, provides a simplified representation of the communication environ-
ment, incorporating direct and reflected paths; it also has large accuracy for
predicting large-scale signal strength over several kilometers for mobile radio
systems [24]. Unlike the Rayleigh model, which accounts for multipath fad-
ing due to scattering, the two-ray model considers a direct line-of-sight path
alongside a single reflected path. This model is particularly useful in scenar-
ios where a clear line of sight exists between the transmitter and receiver,
allowing for a more straightforward analysis of signal propagation character-
istics. In Equations (8) and (9), Ptmikj is the path-loss in the desired signal,
and Ptmqkj is the path-loss in the interfering signal caused by the two-ray
model. Consequently, Pdmikj and Pdmqkj represent the fading in the desired
signal and the interfering signal, respectively, caused by the Rayleigh model
[26].

The path losses of the two-ray model for the desired signal and the inter-
fering signal are given by:

Ptmikj(dB) = 40 log dmikj − (10 logGmi
+ 10 logGkj+

20 log hmi
+ 20 log hkj)

(10)
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Ptmqkj(dB) = 40 log dmqkj − (10 logGmq + 10 logGkj+

20 log hmq + 20 log hkj)
(11)

where Gmi
is the gain of the antenna mi and Gmq is the gain of the antenna

mq. hmi
and hmq is the height of mi and mq antennas, respectively. hkj and

Gkj are the height and gain of kj antenna. dmikj is the distance of the desired
signal, and dmqkj is the distance of the interfering signal; these are computed
by Equation (4). The UAV’s altitude is a crucial parameter embedded in
the two-ray model, directly impacting the received signal strength. This
approach enables the evaluation of signal propagation within a simplified 2D
framework, effectively incorporating altitude considerations while avoiding
the added complexity and computational demands of a full 3D model.

The two-ray and Rayleigh channel models represent a realistic model of
a region after a natural disaster. A multipath fading channel is considered
appropriate for this network model given that under the circumstances of
a natural disaster, several scatters are expected to be encountered, either
caused by debris, weather conditions, or changes in the original infrastruc-
ture. Therefore, it is expected that the transmitted signals will travel along
different paths, each of random length, thus giving place to the multipath
fading channel.

Therefore, the set of CMUs that ABSs may allocate a radio channel is
given by:

Ai = {aj|kj ∈ K and kj satisfies the Equations (1), (2), (3)} (12)

where the ABS in the location mi will assign a voice channel to the items
of Ai through the channel assignment process. In this process, aj becomes a
served mobile user (SMU) only if:

successaj =


1, if aj has a channel to transmit

and it uses it during a time period

0, otherwise

(13)

where successaj = 1 means that the aj finishes its call within the evaluation
time. Otherwise, the aj is blocked (i.e., successaj = 0). Then, the set of
SMUs is given by:

Ui = {uj|aj ∈ Ai and successaj = 1} (14)
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Therefore, the total number of SMUs properly attended (i.e., successful
voice services) that provide the locations of the available ABSs is given by:

Γ = |
|M |⋃
i=1

Ui| (15)

In this paper, we evaluate the network performance by calculating the
probability of successful voice service that provides the locations of the avail-
able ABSs. It is given by:

P (M) =
Γ

|K|
(16)

where |K| is the cardinality of the set K (the number of RMUs in the snap-
shot); and its value follows a Poisson distribution, and it depends on the
average number of calls generated in the system, that is:

Q =
A ∗ 60
T

(17)

where A is the traffic intensity (Erlangs) of the system. T is the average time
duration for a call in minutes.

We also calculated the total blocking probability PBT , for each evaluated
snapshot tn. The PBT metric is a performance measure for mobile com-
munication systems, quantifying the network’s ability to efficiently manage
connection requests (calls) until the user completes their call. We make the
assumption that the RMUs do not experience mobility, so we do not consider
handover interruptions. Additionally, we assume that all call requests always
outnumber the available channels, resulting in the continuous occupation of
available channels in every snapshot. Furthermore, we maintain the assump-
tion that link conditions remain stable and constant throughout the entire
duration of the snapshot. In this work, the PBT metric encompasses two
blocking probabilities: the blocking probability due to coverage, denoted as
PBC , and the blocking probability due to spectral resources, denoted as PBR.
The PBT is calculated as follows:

PBT = PBC + PBR (18)

where
PBC = PR|POC (19)

PBR = (PR ∩ PNA)|PIC (20)
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where PBR represents the call request probability, and POC represents the
user-out-of-coverage probability. On the other hand, PNA indicates the prob-
ability of non-assignment and PIC accounts for the user-in-coverage probabil-
ity. Overall, PBC occurs when an RMU is located outside the coverage zone
of the ABS, while PBR occurs due to a shortage of available communication
channels.

2.3. Optimization model

Our objective is to find locations of the ABSs that provide the maximum
probability of successful voice service in the disaster zone. Then, the problem
can be formulated as follows:

Maximize P (M) =
Γ

|K|
(21)

Subject to:
xmin ≤ xi ≤ xmax (22)

ymin ≤ yi ≤ ymax (23)

Equation (21) is the objective function (OF) that evaluates the set M
that has the geographic coordinates of the ABSs. The value obtained in
the OF indicates the probability of successful voice service the set of ABSs
offers. The optimal expected value of the OF is one, meaning that M covers
all RMUs. OF deals with feasible and infeasible individuals. In this paper,
a feasible individual fulfills the mathematical iniquities (22) and (23). The
iniquities (22) and (23) indicate that the mi must not leave the bounds of
the affected zone. These bounds are limited by xmin and xmax for latitude
and by ymin and ymax for longitude.

On the other hand, we apply the death penalty method as a constraint-
handling method to deal with infeasible individuals. This method of elimi-
nating infeasible solutions is a well-accepted constraint-handling method in
many evolutionary techniques. The death penalty method rejects individu-
als who do not comply with any of the constraints, and no information is
extracted [27], that is:

P (M) =

{
Γ
|K| , when M is feasible individual

0, when M is infeasible individual
(24)
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3. (1+1)-Evolution Strategy

The problem is positioning each available ABS in the disaster zone to
maximize the probability of successful voice services for mobile users. A
(1+1)-ES algorithm can tackle the above, providing suitable solutions. It is
an optimization metaheuristic that emphasizes the mutation and provides a
self-adaptation mechanism under such an operator. Specifically, we applied
the (1+1)-ES algorithm with a one-fifth success rule [10]. Using the one-fifth
success rule, it uses an evolution loop in which a parent generates a single
offspring. The one-fifth success rule adapts the step-size σ to mutate the
offspring.

In this work, we represented an individual as S, as shown in Figure 3. It
contains each ABS’s latitude and longitude coordinates and one σ value. σ
is the parameter that influences the mutation. In the real world, S provides
the locations that ABSs will take inside the affected area. The affected area
will have MUs (blue users), RMUs (yellow users), CMUs (red users), and
SMUs (green users).

Figure 3: Representation of an individual in the (1+1)-ES algorithm.

The evaluation begins by generating a snapshot of the disaster zone, i.e.,
loading the geographic locations of MUs and randomly selecting RMUs ac-
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cording to a uniform distribution. After, the (1+1)-ES takes the snapshot
as an input and processes it according to Algorithm 1. In the initialization
phase from STEP 1 to STEP 2, the archive of successful mutations A is cre-
ated, and the success rate ps is set to zero. Next, in STEP 3, the iteration
counter variable t is set to zero. STEP 4 initializes the individual S. It con-
sists of setting the initial value of σ and randomly generating the geographic
positions of the ABSs. These locations follow a uniform normal distribution.
They range from xmin to xmax in latitude and for longitude from ymin to ymax.
Subsequently, STEP 5 sets to S as the parent Sp. In STEP 6, the fitness
value is computed by following the process shown in Figure 4, and its value
is stored in Fxp. Here, the ABSs locations of Sp are evaluated in the OF as
described in Section 3.1. The evolution loop begins in STEP 7. In STEP 9,
an offspring So is created by adding to Sp a multivariate normal distribution
N (0, I) with mean vector 0 and variance-covariance matrix. The offspring
So recently created is evaluated in the OF, following the process described in
Section 3.1, and its fitness is stored in Fxo. From STEP 11 to STEP 17, the
fittest individual between parent and offspring is selected. A success case is
achieved if the offspring fitness value Fxo is better than the parent fitness
value Fxp. Therefore, the offspring So becomes the parent Sp in the next
iteration. The archive A stores that success case, i.e., #successes increases
to one unit. Otherwise, a failure case occurs if the parent fitness value Fxp

is better than the offspring fitness value Fxo. The above is stored in A, and
#failures increases its counter in one unit. Hence, the parent Sp is kept for
the next iteration. After that, the 1/5-success rule for step size adaptation
σ is applied from STEP 18 to STEP 22. To so do, during a given number of
iterations z, the step size σ is adapted. The 1/5-success rule states that the
step size σ does not change if the success rate ps equals 1/5, but if the success
rate ps falls below 1/5, the step size σ is reduced. On the other hand, the
step size σ is increased if ps grows above 1/5. Then, in STEP 23, the step size
σ is updated. The evolution process finishes when the number of iterations
Tmax is reached. Finally, the (1+1)-ES algorithm finds the fittest individual
that locates the ABSs to achieve the maximum probability of successful voice
services.

3.1. Objective function evaluation

The process to obtain the fitness of the Sp and the So is shown in Figure 4.
It begins by taking as input, the geographic locations of the ABSs along with
the geographic locations of the RMUs. We verify the geographic locations of
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Algorithm 1: (1+1)-ES

Data: The individual S, the step-size initial σ, the step size
adaptation z, the stop condition Tmax

Result: The best individual S
1 Initialize archive A for storing successful mutations;
2 ps = 0;
3 t = 0;
4 Initialize individual S;
5 Sp = S;
6 Fxp = P (Sp);
7 while t < Tmax do
8 t = t+ 1;
9 So = Sp + σ · N (0, I) ; /* · is a dot product */

10 Fxo = P (So);
11 if Fxo > Fxp then
12 Sp = So;
13 Fxp = Fxo;
14 store success in A;

15 else
16 store failure in A;
17 end
18 if t mod z = 0 then
19 get #successes and #failures from at most 10z entries in A;

20 ps =
#successes

#successes+#failures
;

21 σ′ =


σ∗ c if ps < 1/5

σ÷ c if ps > 1/5

σ if ps = 1/5

;

22 end
23 σ = σ′ ;

24 end

the ABSs, considering the Equations (22) and (23). The proposed solution
is infeasible if any geographic coordinate of the available ABSs does not ful-
fill the constraints above. In this case, the individual’s fitness is set to zero
as Equation (24) indicates. Otherwise, if the solution is feasible, its fitness
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is obtained through the snapshot-network evaluation process comprising the
ABSs and channel assignments. The ABSs assignment process uses the loca-
tions of the RMUs and the verified locations of the Sp or the So to determine
the CMUs. To do so, the RMU is within the coverage radius of some i-th
ABS, i.e., the RMU fulfills the Equation (1). Next, the ABSs assignment
process validates that the RMU is linked to a single ABSs by verifying the
Equation (2). If the RMU approves the above conditions, the SINR is com-
puted for the RMU as indicated in Equation (3). When the RMU achieves
the Equations (1), (2), and (3), it becomes a CMU which is stored in the set
Ai. Consequently, the ABS in the mi position can assign its channels pool
to the CMUs stored in Ai.

After that, the channel assignment process starts. It assigns channels to
the CMUs linked to Ai. Then, Ai is an input to the channel assignment
process. This process begins treating Ai as a first-in-first-out (FIFO) queue
of the i-th ABS. timei stores the voice call duration for each CMU in Ai

considering the CMU’s order has in Ai. Hence, timei is a FIFO queue too.
The voice call duration follows an exponential distribution. Next, the eval-
uation time of channel assignment (ts) initializes at zero. This evaluation is
a loop lasting 60 iterations. An iteration in the channel assignment evalu-
ation is one minute in the system. The evaluation loop begins by checking
if a CMU is in the queue Ai; if this is true, the channel assignment process
verifies if the i-th ABS has an available channel inside its channel pool. If
an available channel exists, the ABS assigns the channel to the CMU in the
queue Ai and takes its voice call duration from timei. It means the CMU will
begin its call. Subsequently, the CMU and its channel occupation time are
queued from Ai and timei, respectively. Once Ai hasn’t CMUs in the queue,
or the ABS has all its channels occupied, the voice call duration of each
CMU connected decreases by one unit. Afterward, the channel assignment
process checks if there are calls finished. A call is finished when the counter
of the occupation channel time of the CMU is zero. If so, the CMUs become
SMUs, i.e., the CMUs have successfully completed their calls. The channels
previously used by those CMUs return to the channel pool of the ABS that
attended them. Then, the evaluation time of the snapshot increases in one
unit. In the case there are no calls finished, the evaluation time of channel
assignment increases too. After the 60 iterations, the snapshot evaluation
time finishes, and the total of SMUs is calculated. Finally, the individual’s
fitness is computed using Equation (21).)
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Figure 4: Snapshot-network evaluation to obtain the individual’s fitness value.
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4. Simulation Results

In this section, we present the simulation results obtained from the eval-
uation of our optimization model using the (1+1)-ES algorithm. We provide
details on the parameters used in our computer simulations and describe
the experiments we conducted. Our analysis focuses on assessing the per-
formance of the (1+1)-ES algorithm in terms of the probability of successful
voice services. Additionally, we analyze the total blocking probability to
gain a comprehensive understanding of the system’s behavior. Finally, we
discuss the impact of different configurations of the (1+1)-ES algorithm on
the evaluation time.

4.1. Simulation parameters

Table 3 shows the parameters in the simulation scenario. We consider a
12 km x 12 km disaster area corresponding to the town of Tula in Hidalgo,
Mexico, with 29 390 inhabitants [28]. From that whole population, we only
consider 19 819 MUs distributed within the affected area, i.e., |N | = 19
819. Also, we assume the emergency services have four ABS to providing
communication services, that is |M | =4. The average number of RMUs per
ABS (Q) is computed by Equation (17). It considers the traffic intensity A
in 56.11 Erlangs (70 channels), an outage probability of 1%, and the average
time duration of an emergency call T at three minutes as reported in [29].
Therefore, the average number RMUs in the affected area is given by the
available number ABS (|M | = 4) and the average number RMUs per ABS
(Q = 1 123).

The parameters used in the network are chosen to enable the voice service
of an LTE network. We considered the carrier frequency band of 700 MHz,
and all ABSs transmit at the same power level Ptx (95 dB). LTE supports
a maximum transmit power of 100 dB [30]. It is important to note that we
assumed that the available ABSs are low-altitude platforms (LAPs). LAPs
are usually employed to enhance cellular communications due to their cost-
effectiveness compared to high-altitude platforms (HAPs). LAPs allow fast
deployment capabilities and enable short-range LoS communication links,
which can significantly improve communication performance [31]. Therefore,
we set the altitudes of all the ABSs (hmi

and hmq) at 122 m according to
[32].
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Parameters Value
Disaster zone 12 km x 12 km

Number of MUs 19,819
Number of ABSs 4

Average number RMUs in the
affected area

4,492

Carrier frequency 700 MHz
Transmitter power ABS Ptx 95 dB
ABSs altitude hmi

and hmq 122 m
ABS antenna gain Gmi

and Gmq 10 dB
RMUs altitude hkj 1.5 m

RMU antenna gain Gkj 3 dB

Table 3: Parameters of the affected area and network used in the simulation.

4.2. Experimental results

We evaluated the optimization model on the simulation environment de-
scribed in Section 2. To do so, we applied the (1+1)-ES algorithm. We
designed four experiments to determine the best performance of the (1+1)-
ES algorithm on the problem of the location of ABS for scenarios where
communication is interrupted. Table 4 shows the parameters in the carried-
out experiments. On the other hand, an optimization algorithm has different
parameters that need to be set up with specific values. These parameters
will impact the quality of the solutions; hence is necessary to select values
that allow the best performance of the optimization algorithm. Parameter
setting is a non-trivial process and requires knowing the parameters’ effect
on the problem. In this sense, the (1+1)-ES performance is influenced by
σ and z parameters. The step-size σ gives the search scale and generates a
perturbation on the multivariate random vector causing the mutation in the
solutions. σ is adapted at each number of iterations z of the algorithm and
according to success rate ps. z defines how many iterations must elapse to
adapt σ. Then, in Table 4, the first column is the experiment’s names. The
second column is the initial value of step size σ used at each experiment. The
step size σ (in decimal degrees) is related to the displacement scale of each
ABS. Since the largest side of the affected area is equal to 12 km, then the
maximum displacement scale is set to 0.1 decimal degrees in the individual.
In Table 4, the second column shows the displacements in the base-10 num-
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ber system, indicated within parentheses. The third column is the z value.
This value is set to ten for the four experiments because, in previous tests,
we observed that for z=5, the algorithm converged too early and lost the
ability to explore the solutions space. On the other hand, from the previous
study for z=20, we detected that the algorithm delayed the convergence af-
fecting the delivery time of a solution; this value allowed the exploration of
the solutions space. Finally, from a prior study of z=10, we noticed that the
algorithm obtained the balance between exploitation and exploration since
it offered high-quality solutions.

Experiment Step size σ Value z

(1+1)-ES 1 0.1 (12 km) 10
(1+1)-ES 2 0.01 (1.2 km) 10
(1+1)-ES 3 0.001 (0.12 km) 10
(1+1)-ES 4 0.0001 (0.012 km) 10

Table 4: Values of the step size σ used in the four experiments to evaluate the performance
of the (1+1)-ES.

The purpose of the four experiments described in Table 4 is to analyze the
performance of the (1+1)-ES algorithm by modifying the displacement scale
and determining which is more efficient in positioning ABSs in a bounded
zone. 30 different network snapshots are evaluated at each experiment. Each
network snapshot tn considers the same MU positions and the same number
of MUs (|N |=19,819). The number of RMUs is different in each network
snapshot; it is given by a Poisson distribution with an average of 4,492 re-
quests in the system. Different RMUs are selected to evaluate each network
snapshot. The four experiments were carried out in Python programming
language version 3.6 and were run on a Jetson TX2, with Ubuntu 18.04 LS
operative system, 64-bit Denver 2 A57 CPUs, 8 GB 128-bit LPDDR4 58.4
GB/s, NVIDIA Pascal with 256 cores GPU.

Figure 5 shows the best solution obtained in the different network snap-
shots evaluated on (1+1)-ES for the different step sizes σ shown in Table 4.
The best solution is the optimal combination of ABS locations found by
(1+1)-ES; thus, those are the ABSs locations in the snapshot that should be
deployed. Here, (1+1)-ES 3 experiment (σ=0.001) obtained the best perfor-
mance; it provided solutions on average 6.5% higher than the general mean
of all experiments, its evolution process generated the highest average num-
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ber of successful cases (25.5 successful cases). A successful case is a feasible
candidate solution (offspring) that exceeds the quality of a feasible candi-
date solution from the previously generated (parent). On the other hand,
(1+1)-ES 4 experiment (σ=0.0001) obtained the worst performance because
found solutions on average 14.6% lower than the overall general mean of
tests. Moreover, it has the highest number of solutions at zero; a solution
at zero indicates that the algorithm did not find feasible candidate solutions
during its evolution. In the context of this work, finding feasible candidate
solutions is essential because the algorithm is expected to ensure solutions
that facilitate the efficient localization of ABSs, enabling first responders to
establish communication with potential victims situated within the impacted
area.

Figure 5: Best solutions delivered by (1+1)-ES. Solutions indicate the PSVS that the ABS
positions provide.

Table 5 shows experimental results obtained by evaluating 30 network
snapshots for each experimental design. The (1+1)-ES 1 (σ=0.1) experiment
demonstrates its capability to find feasible solutions, reducing the probability
of obtaining solutions at zero. However, it does not guarantee to achievement
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of the highest quality solutions, as evidenced in the second column in Table 5.
In the (1+1)-ES 2 (σ=0.01) and (1+1)-ES 3 (σ=0.001) experiments, both
setups have the same ability to find feasible solutions and provide solutions
of similar quality (see the second column). Nevertheless, on average (see the
third column), (1+1)-ES 3 provides solutions 4% higher than (1+1)-ES 2. In
contrast, the (1+1)-ES 4 (σ=0.0001) generated the best solution, achieving a
PSVS of 0.76357. However, it also obtained the highest probability of failing
to find a solution (0.4). This means that 40% of the time the algorithm
did not find a solution. Based on these results, we suggested using the
parameters of the (1+1)-ES 3 experiment. Although it does not provide
the best solution, this setup provides the highest probability of obtaining
PSVS superior at 0.6. In other words, the configuration of the (1+1)-ES 3
experiment indicates that the positions of ABSs can offer a 62% probability of
establishing a successful network connection for users or emergency operators.

Experiment Best solution Mean POS ≥ 0.60 POS = 0

(1+1)-ES 1 0.73879 0.61570 0.70 0.067
(1+1)-ES 2 0.75208 0.58343 0.70 0.133
(1+1)-ES 3 0.75634 0.62440 0.867 0.133
(1+1)-ES 4 0.76357 0.41275 0.50 0.40

Table 5: Experimental results obtained by the evaluation of 30 network snapshots of each
experiment. POS is the probability of obtaining a solution.

To analyze how σ influences the algorithm’s performance, the best solu-
tion found in each experiment was plotted in Figure 6. Specifically, Figures
6a, 6c, 6e and 6g show the PSVS values of the feasible candidate solutions
and their corresponding σ values observed during the evolutionary process of
the (1+1)-ES. We observed how the initial value of σ influences the search
for the solutions in the algorithm. In Figure 6a of the (1+1)-ES 1 experi-
ment (initial σ=0.1), the algorithm explores the solutions space but does not
emphasize the exploitation process. In the (1+1)-ES 3 (initial σ=0.001), we
observed a balance between the exploration and exploitation processes of the
solutions space (see Figure 6e). In the case of the (1+1)-ES 4 experiment (see
Figure 6g), where the initial step size (σ) is set to 0.0001, the algorithm ex-
hibits a tendency to prioritize exploitation over exploration during the early
iterations. This bias towards exploitation can result in premature conver-
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gence. We also observed that; σ always decreases with the pass of iterations,
that is, the probability of obtaining a successful solution is lower than 0.20,
as the one-fifth success rule indicates it. In general, (1+1)-ES explores the
search space when σ takes values from 0.1 (maximum displacement scale)
to 2.33 × 10−6 approximately and exploits the displacement space when σ
takes a value in the range from 2.33 × 10−6 to 1.85 × 10−7. Figures 6b, 6d,
6f, and 6h show the displacements of each ABS by experimental design in
the evolution of the best solution of each experiment. We observed that as
the displacements are affected by the σ value, σ decreases, and the distance
displacement between feasible candidate solutions is reduced. Comparing
the displacements with the σ behavior, the (1+1)-ES exploits, on average, in
distances less than 0.200 km, and it explores otherwise.

We analyzed the function calls to both the penalty and objective func-
tions. Figure 7 shows the average number of calls made to each experiment’s
penalty and objective functions. Notably, we identified a clear correlation be-
tween the initial step size, denoted as σ, and the frequency of calls to these
functions. As σ decreases, we observed an increase in the number of calls
to the objective function, accompanied by a decrease in calls to the penalty
function. This phenomenon can be attributed to the significant influence
of the initial value of σ on the starting point in the algorithm’s evolution
process. Specifically, in the ES-(1+1) 1 experiment, its evolutionary process
begins by perturbing the mutation operator with 0.1, equivalent to a distance
of 12 km, causing the algorithm to take an average of 246 iterations to find a
space with feasible solutions. In contrast, the (1+1)-ES 2 experiment started
its evolution process with a perturbation of 0.01, equivalent to a distance of
1.2 km. It required an average of 118 iterations to find a space with feasible
solutions. Moving to (1+1)-ES 3, it initiated its evolution process with a
perturbation of 0.001, equivalent to a distance of 0.12 km. On average, it
took only 15 iterations to find a space with feasible solutions. Finally, the
ES-(1+1) 4 experiment initiated its evolution process with a perturbation of
0.0001, equivalent to a distance of 0.012 km, resulting in an average of just
8 iterations to find a space with feasible solutions. The above indicates that
the algorithm faces a more challenging task when initializing its evolution
process with a distance of 12 km (0.1) compared to a starting distance of
0.012 km (0.012).

On the other hand, comparing Table 5 and Figure 7, we observed that
the initial value of σ has an impact on the quality of solutions and the search
process. (1+1)-ES 1 obtained the fewest calls to the objective function but
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Figure 6: The behavior of the evolution process of the best solution found at each experi-
ment.
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produced the lowest-quality solution (0.73879) due to its limited exploitation
process. In contrast, (1+1)-ES 2, called the objective function 122 times dur-
ing its search but failed to effectively exploit the solution space. As for (1+1)-
ES 3, on average, it called the objective function 183 times, thus achieving
the highest average in the PSVS (0.6244) and striking a balance between ex-
ploitation and exploration processes. Finally, (1+1)-ES 4 on average called
the objective function more times (200) and delivered the highest-quality
solution (0.76357) but prioritized exploitation over exploration in the search
process. Therefore, as the number of calls to the objective function increases,
the algorithm gains the capacity to exploit the solution space more effectively.
Importantly, the number of calls to the objective function also influences the
evaluation time. On average, (1+1)-ES 4 required 1,058 seconds to return
a solution, while (1+1)-ES 1 delivered a solution in an average time of 475
seconds. (1+1)-ES 2 and (1+1)-ES 3 returned solutions in 672 seconds and
979 seconds, respectively. Given the critical role of evaluation time in our
work, these findings are of utmost significance.

Figure 7: Average number of evaluations to a solution (penalty function and objective
function).
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We also analyze the total blocking probability obtained from the differ-
ent network snapshots evaluated on the (1+1)-ES algorithm. The results are
summarized in Table 6. The first column contains the experiment names,
while the second column shows the initial average total blocking probability,
denoted as PBI . This value is derived from the first random candidate so-
lution generated by the algorithm, specifically, the first parent generated in
each network snapshot evaluation. If there are any shared RMUs in the cov-
erage of the ABSs, then PBI is set to 1, because our model does not consider
a handover strategy. Otherwise, PBI is calculated using Equation (18). We
also provide the averages of the blocking probability due to coverage (PBC),
the blocking probability due to spectral resources (PBR), and the total block-
ing probability (PBT ) resulting from the locations of ABSs that provide the
maximum PSVS in each network snapshot evaluated. In general, PBC is cal-
culated using Equation (19), which includes voice services denied to RMUs
located outside the coverage radius of the ABSs. Each ABS has a coverage
radius of two km. PBR is computed with Equation (20), which considers the
voice services denied to CMUs due to channel unavailability and those denied
because they could not complete their voice calls during the network snap-
shot evaluation process. Finally, in the last column, we report the average
reduction percentage of the blocking probability achieved between the first
solution generated by the (1+1)-ES algorithm and after its implementation.

In Table 6, we observed that the average value of the PBI in all experi-
ments exceeded 0.9. This trend can be primarily attributed to the fact that,
in 85% of the cases, the (1+1)-ES algorithm was initiated with solutions
where some RMUs were shared within the coverage radius of two or more
ABS. An example of this is shown in Figure 8a. Notably, the (1+1)-ES 3
experiment achieved the highest PBI value due to having the highest num-
ber of parents with a PBI value of 1. We also noted that the (1+1)-ES 4
experiment had the highest values for PBC , PBR, and PBT . In this case, the
algorithm either failed to find a solution, or the ABSs shared RMUs within
their coverages. Consequently, PBC , PBR, and PBT were set to 1. On the
other hand, the (1+1)-ES 1 experiment exhibited the lowest values for PBC ,
PBR, and PBT . This outcome stems from the algorithm finding feasible so-
lutions in 93% of the cases, enabling us to obtain PBT value in the snapshot
evaluated. However, the (1+1)-ES 3 experiment achieved the highest reduc-
tion percentage due to several factors: it had the highest PSVS compared
to (1+1)-ES 1, (1+1)-ES 2, and (1+1)-ES 4; its search process struck a bal-
ance between exploration and exploitation; and had an 83% probability of
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obtaining feasible solutions in the evolution process.

Experiment
Mean Reduction

percentagePBI PBC PBR PBT

(1+1)-ES 1 0.9046 0.27737 0.27822 0.48892 41.6%
(1+1)-ES 2 0.9089 0.32789 0.33007 0.52423 38.5%
(1+1)-ES 3 0.9410 0.32625 0.32892 0.52184 41.9%
(1+1)-ES 4 0.9074 0.53352 0.53666 0.67018 23.7%

Table 6: Experimental results of total blocking probability.

In emergency situations, the ABSs and spectral resources are often lim-
ited. Therefore, depending on random ABS placement may not be the most
efficient approach. This is because spectral resources may not be optimally
utilized when ABSs are not strategically positioned in areas where people
need communication services. Efficiently locating available ABSs is crucial to
ensure the effective utilization of spectral resources. Therefore, based on the
results we have obtained, we recommend utilizing the (1+1)-ES 3 experiment
configuration. This configuration has the highest probability of achieving a
PSVS superior to 0.6, and its evolution process strikes a balance between
exploration and exploitation and produces the highest reduction percentage
in the PBT . Hence, Figure 8 illustrates the best solution obtained in the
(1+1)-ES 3 experiment. Figure 8a shows the initial solution generated by
the algorithm; the initial positions of the available ABSs share RMUs within
the coverage of the ABSs. Consequently, the algorithm assigns a PSVS of
zero to these initial positions. This approach aligns with our model’s objec-
tive, which aims to efficiently use the available resources. Also, it provides
some degree of control over the coverage overlap of the ABSs. In Figure 8a,
the blue points are the MUs, and the RMUs are the yellow points. The
ABSs are the color triangles, and the circles in the same color as the trian-
gles depict their coverage radius ABS. Figure 8b shows the search process
of the experiment. As the algorithm evolves, the positions of the ABSs can
shift due to the exploit and explore processes. The initial ABS positions are
the color triangles, the search process is the color points, and the final ABS
positions are the color crosses. We observed that the algorithm searches the
best locations for maximizing the probability of successful voice service. The
best solution is illustrated in the real world in Figure 8c; the positions of the
ABSs are the aircraft marks, the coverage of each ABS is a dark red circle,
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the RMUs locations are the yellow marks, the green marks are SMUs (the
users successfully served by an ABS). It is crucial to ensure that the ABSs
are optimally positioned for maximum PSVS. As observed in Figure 8c, the
ABSs are located in areas with more RMUs, which highlights the significance
of an optimized positioning strategy.

A similar study in [15] reported a mobile coverage ratio up to nearly
94% to 96% for ten ABSs (52 to 53 out of 55 mobile users) in a simulation
area of 200 m x 200 m. Our simulation stresses network resources beyond
the standard setting and uses the ABSs resources more efficiently since our
approach can cover a wider area with a high concentration of mobile users
using only four ABSs. We achieved an average coverage of 62% (3219 out of
4462 mobile users) in a 12 km x 12 km area.

5. Conclusions

The experimental results demonstrated the effectiveness of the proposed
model in locating ABSs within affected areas, specifically targeting regions
where a significant number of users attempt to access the network to make
calls. The results obtained from the (1+1)-ES algorithm indicate that when
initialized with a large step size (σ = 0.1), it requires more effort to find fea-
sible solutions within the search space. In contrast, using a smaller step size
(σ = 0.001) demands less effort. σ perturbs the mutation operator, causing
the (1+1)-ES to explore the search space with larger step sizes (from 0.1 to
2.33 × 10−6) and exploit the search solutions with smaller step sizes (from
2.33× 10−6 to 1.85× 10−7). Overall, the initial step size σ significantly im-
pacts the performance and efficiency of the (1+1)-ES algorithm. Therefore,
when parameters are properly calibrated, the (1+1)-ES can determine the
positions of ABSs.

On the other hand, when comparing the total blocking probability deliv-
ered by a random positioning of the ABS against the total blocking prob-
ability obtained by positioning the ABS using the (1+1)-ES algorithm, a
significant improvement is observed. On average, the use of the (1+1)-ES
algorithm reduced the total blocking probability by 36%. Nevertheless, it
is important to note that there remains an average total blocking probabil-
ity of 0.55. This means that there is a 55% chance that a call request will
be blocked due to insufficient resources, including ABSs or channels. This
limitation can be attributed to our network model’s inability to handle call
requests that fall within the coverage areas of two or more ABSs. However,
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(a) Initial (b) Evolution

(c) Final

Figure 8: Best solution found in the experiment (1+1)-ES 3: (a) represents the initial
solution generated by the algorithm, (b) shows the evolution process of the algorithm, and
(c) represents the best solution found by the algorithm.
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this issue can be resolved by implementing an allocation strategy for such
cases. Additionally, the blocking probability can be reduced by incorporating
more ABSs, expanding the coverage radius, or considering a heterogeneous
network architecture—these are tasks we plan to address in the future.

In future work, we plan to include a constraint for the deletion overlaps
in ABSs coverage. Additionally, we will explore methods to enhance network
performance, which could involve exploring channel assignment strategies or
channel reuse techniques. Our aim is to reduce the probability of service
blocking and increase the likelihood of successful voice service completion,
leveraging the available spectral resources. We will tune the evolution strat-
egy parameters using reinforcement learning methods. In doing so, we aim
to attain the best algorithmic performance. Furthermore, in emergency sce-
narios, response times are critical. Therefore, we will explore implementing
our proposed model in parallel computing to decrease execution times.
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[10] T. Bäck, C. Foussette, P. Krause, Contemporary Evolution Strate-
gies, Natural Computing Series, Springer, 2013. doi:10.1007/

978-3-642-40137-4.
URL http://link.springer.com/10.1007/978-3-642-40137-4

[11] J. Kacprzyk, W. Pedrycz, Springer handbook of computational intelli-
gence, Springer, 2015.

[12] S. H. Alsamhi, A. V. Shvetsov, S. Kumar, S. V. Shvetsova, M. A. Al-
hartomi, A. Hawbani, N. S. Rajput, S. Srivastava, A. Saif, V. O. Nyan-
garesi, Uav computing-assisted search and rescue mission framework
for disaster and harsh environment mitigation, Drones 6 (7) (2022).
doi:10.3390/drones6070154.

[13] N. U. Hasan, P. Valsalan, U. Farooq, I. Baig, On the recovery of terres-
trial wireless network using cognitive uavs in the disaster area, Interna-
tional Journal of Advanced Computer Science and Applications 11 (4)
(2020). doi:10.14569/IJACSA.2020.01104106.

36

https://doi.org/10.1145/3551660.3560909
https://doi.org/10.1109/JSYST.2020.3015428
https://www.mdpi.com/2076-3417/13/19/10723
https://www.mdpi.com/2076-3417/13/19/10723
https://doi.org/10.3390/app131910723
https://www.mdpi.com/2076-3417/13/19/10723
https://doi.org/10.1109/LWC.2017.2700840
http://link.springer.com/10.1007/978-3-642-40137-4
http://link.springer.com/10.1007/978-3-642-40137-4
https://doi.org/10.1007/978-3-642-40137-4
https://doi.org/10.1007/978-3-642-40137-4
http://link.springer.com/10.1007/978-3-642-40137-4
https://doi.org/10.3390/drones6070154
https://doi.org/10.14569/IJACSA.2020.01104106


[14] C. T. Cicek, H. Gultekin, B. Tavli, The location-allocation problem of
drone base stations, Computers & Operations Research 111 (2019) 155–
176. doi:https://doi.org/10.1016/j.cor.2019.06.010.

[15] Z. Zhao, P. Cumino, C. Esposito, M. Xiao, D. Rosário, T. Braun,
E. Cerqueira, S. Sargento, Smart unmanned aerial vehicles as base sta-
tions placement to improve the mobile network operations, Computer
Communications 181 (2022) 45–57. doi:https://doi.org/10.1016/

j.comcom.2021.09.016.

[16] P. Q. Viet, D. Romero, Aerial base station placement: A tutorial
introduction, IEEE Communications Magazine 60 (5) (2022) 44–49.
doi:10.1109/MCOM.001.2100861.

[17] X. Liu, Y. Liu, Y. Chen, Reinforcement learning in multiple-uav net-
works: Deployment and movement design, IEEE Transactions on Ve-
hicular Technology 68 (8) (2019) 8036–8049. doi:10.1109/TVT.2019.

2922849.

[18] J. Li, D. Lu, G. Zhang, J. Tian, Y. Pang, Post-disaster unmanned aerial
vehicle base station deployment method based on artificial bee colony al-
gorithm, IEEE Access 7 (2019) 168327–168336. doi:10.1109/ACCESS.
2019.2954332.

[19] A. U. Chaudhry, R. H. M. Hafez, Lmr and lte for public safety in 700MHz
spectrum, Wireless Communications and Mobile Computing 2019, pub-
lisher: Hindawi (2019). doi:10.1155/2019/7810546.
URL https://doi.org/10.1155/2019/7810546

[20] H. ElSawy, E. Hossain, M. Haenggi, Stochastic geometry for model-
ing, analysis, and design of multi-tier and cognitive cellular wireless
networks: A survey, IEEE Communications surveys & tutorials 15 (3)
(2013) 996–1019.

[21] S. Bruhn, H. Pobloth, M. Schnell, B. Grill, J. Gibbs, L. Miao,
K. Järvinen, L. Laaksonen, N. Harada, N. Naka, S. Ragot, S. Proust,
T. Sanda, I. Varga, C. Greer, M. Jeĺınek, M. Xie, P. Usai, Standardiza-
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