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Abstract

Automatic repair of programs has been a longstand-
ing goal in software engineering, yet debugging remains
a largely manual process. We introduce a fully automated
method for locating and repairing bugs in software. The ap-
proach works on off-the-shelf legacy applications and does
not require formal specifications, program annotations or
special coding practices. Once a program fault is discov-
ered, an extended form of genetic programming is used to
evolve program variants until one is found that both retains
required functionality and also avoids the defect in ques-
tion. Standard test cases are used to exercise the fault and
to encode program requirements. After a successful repair
has been discovered, it is minimized using structural dif-
ferencing algorithms and delta debugging. We describe the
proposed method and report results from an initial set of ex-
periments demonstrating that it can successfully repair ten
different C programs totaling 63,000 lines in under 200 sec-
onds, on average.

1 Introduction

Fixing bugs is a difficult, time-consuming, and manual
process. Some reports place software maintenance, tradi-
tionally defined as any modification made on a system after
its delivery, at 90% of the total cost of a typical software
project [27, 30]. Modifying existing code, repairing defects,
and otherwise evolving software are major parts of those
costs [28]. The number of outstanding software defects typ-
ically exceeds the resources available to address them [4].
Mature software projects are forced to ship with both known
and unknown bugs [23] because they lack the development
resources to deal with every defect. For example, in 2005,
one Mozilla developer claimed that, “everyday, almost 300
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bugs appear [. . . ] far too much for only the Mozilla pro-
grammers to handle” [5, p. 363].

To alleviate this burden, we propose an automatic tech-
nique for repairing program defects. Our approach does
not require difficult formal specifications, program anno-
tations or special coding practices. Instead, it works on
off-the-shelf legacy applications and readily-available test-
cases. We use genetic programming to evolve program vari-
ants until one is found that both retains required function-
ality and also avoids the defect in question. Our technique
takes as input a program, a set of successful positive test-
cases that encode required program behavior, and a failing
negative testcase that demonstrates a defect.

Genetic programming (GP) is a computational method
inspired by biological evolution, which discovers computer
programs tailored to a particular task [22]. GP maintains a
population of individual programs. Computational analogs
of biological mutation and crossover produce program vari-
ants. Each variant’s suitability is evaluated using a user-
defined fitness function, and successful variants are selected
for continued evolution. GP has solved an impressive range
of problems (e.g., see [1]), but to our knowledge it has not
been used to evolve off-the-shelf legacy software.

A significant impediment for an evolutionary algorithm
like GP is the potentially infinite-size search space it must
sample to find a correct program. To address this problem,
we introduce two key innovations. First, we restrict the al-
gorithm to only produce changes that are based on struc-
tures in other parts of the program. In essence, we hypoth-
esize that a program that is missing important functionality
(e.g., a null check) will be able to copy and adapt it from
another location in the program. Second, we constrain the
genetic operations of mutation and crossover to operate only
on the region of the program that is relevant to the error (that
is, the portions of the program that were on the execution
path that produced the error). Combining these insights, we
demonstrate automatically generated repairs for ten C pro-
grams totaling 63,000 lines of code.

We use GP to maintain a population of variants of that
program. Each variant is represented as an abstract syn-
tax tree (AST) paired with a weighted program path. We



modify variants using two genetic algorithm operations,
crossover and mutation, specifically targeted to this repre-
sentation; each modification produces a new abstract syntax
tree and weighted program path. The fitness of each variant
is evaluated by compiling the abstract syntax tree and run-
ning it on the testcases. Its final fitness is a weighted sum of
the positive and negative testcases it passes. We stop when
we have evolved a program variant that passes all of the
testcases. Because GP often introduces irrelevant changes
or dead code, we use tree-structured difference algorithms
and delta debugging techniques in a post-processing step to
generate a 1-minimal patch that, when applied to the origi-
nal program, causes it to pass all of the testcases.

The main contributions of this paper are:

• Algorithms to find and minimize program repairs
based on testcases that describe desired functionality.

• A novel and efficient representation and set of opera-
tions for scaling GP in this domain. To the best of our
knowledge, this is the first use of GP to scale to and
repair real unannotated programs.

• Experimental results showing that the approach can
generate repairs for different kinds of defects in ten
programs from multiple domains.

The structure of the paper is as follows. In Section 2 we
give an example of a simple program and how it might be
repaired. Section 3 describes the technique in detail, includ-
ing our program representation (Section 3.2), genetic op-
erators (Section 3.3), fitness function (Section 3.4) and ap-
proach to repair minimization (Section 3.5). We empirically
evaluate our approach in Section 4, including discussions of
success rate (Section 4.4) and repair quality (Section 4.3).
We discuss related work in Section 5 and conclude.

2 Motivating Example

This section uses a small example program to illustrate
the important design decisions in our approach. Consider
the C program below, which implements Euclid’s greatest
common divisor algorithm:
1 /* requires: a >= 0, b >= 0 */
2 void gcd(int a, int b) {
3 if (a == 0) {
4 printf("%d", b);
5 }
6 while (b != 0) {
7 if (a > b) {
8 a = a - b;
9 } else {
10 b = b - a;
11 }
12 }
13 printf("%d", a);
14 exit(0);
15 }

The program has a bug; when a is zero and b is positive, the
program prints out the correct answer but then loops for-
ever on lines 6–9–10. The code could have other bugs: it
does not handle negative inputs gracefully. In order to re-
pair the program we must understand what it is supposed
to be doing; we use testcases to codify these requirements.
For example, we might use the testcase gcd(0,55) with de-
sired terminating output 55. The program above fails this
testcase, which helps us identify the defect to be repaired.

Our algorithm attempts to automatically repair the de-
fect by searching for valid variants of the original program.
Searching randomly through possible program modifica-
tions for a repair may not yield a desirable result. Consider
the following program variant:

1 void gcd_2(int a, int b) {
2 printf("%d", b);
3 exit(0);
4 }

This gcd_2 variant passes the gcd(0,55) testcase, but fails
to implement other important functionality. For example,
gcd_2(1071,1029) produces 1029 instead of 21. Thus,
the variants must pass the negative testcase while retain-
ing other core functionality. This is enforced through pos-
itive testcases, such as terminating with output 21 on input
gcd(1071,1029). In general, several positive testcases will
be necessary to encode the requirements, although in this
simple example a single positive testcase suffices.

For large programs, we would like to bias the modifi-
cations towards the regions of code that are most likely to
change behavior on the negative testcase without damaging
performance on the positive testcases. We thus instrument
the program to record all of the lines visited when process-
ing the testcases. The positive testcase gcd(1071,1029) vis-
its lines 2–3 and 6–15. The negative testcase gcd(0,55)

visits lines 2–5, 6–7, and 9–12. When selecting portions of
the program to modify, we favor locations that were visited
during the negative testcase and were not also visited dur-
ing the positive one. In this example, repairs are focused on
lines 4–5.

Even if we know where to change the program, the num-
ber of possible changes is still huge, and this has been a sig-
nificant impediment for GP in the past. We could add arbi-
trary code, delete existing code, or change existing code into
new arbitrary code. We make the assumption that most de-
fects can be repaired by adopting existing code from another
location in the program. In practice, a program that makes a
mistake in one location often handles the situation correctly
in another [14]. As a simple example, a program missing
a null check or an array bounds check is likely to have a
similar working check somewhere else that can be used as a
template. When mutating a program we may insert, delete
or modify statements, but we insert only code that is sim-
ilar in structure to existing code. Thus, we will not insert



an arbitrary if conditional, but we might insert if(a==0)
or if(a>b) because they already appear in the program.
Similarly, we might insert printf("%d",a), a=a-b, b=b-a,
printf("%d",b), or exit(0), but not arbitrary statements.

Given the bias towards modifying lines 4–5 and our pref-
erence for insertions similar to existing code, it is reason-
able to consider inserting exit(0) and a=a-b between lines
4 and 5, which yields: variant:

1 void gcd_3(int a, int b) {
2 if (a == 0) {
3 printf("%d", b);
4 exit(0); // inserted
5 a = a - b; // inserted
6 }
7 while (b != 0) {
8 if (a > b) {
9 a = a - b;
10 } else {
11 b = b - a;
12 }
13 }
14 printf("%d", a);
15 exit(0);
16 }

This gcd_3 variant passes all of the positive testcases and
also passes the negative testcase; we call it the primary re-
pair. We could return it as the final repair. However, the
a = a - b inserted on line 5 is extraneous. The GP method
often produces such spurious changes, which we minimize
away in a final postprocessing step. We consider all of the
changes between the original gcd and the primary repaired
variant gcd_3, retain the minimal subset of changes that,
when applied to gcd, allow it to pass all positive and nega-
tive testcases. This minimal patch is the final repair:

3 if (a == 0) {
4 printf("%d", b);
5 + exit(0);
6 }
7 while (b != 0) {

In the next section, we describe a generalized form of
this procedure.

3 Genetic Programming for Software Repair

The core of our method is a GP that repairs programs by
selectively searching through the space of nearby program
variants until it discovers one that avoids known defects and
retains key functionality. We use a novel GP representa-
tion and make assumptions about the probable nature and
location of the necessary repair to make the search more ef-
ficient. Given a defective program, we must address five
questions:

1. What is it doing wrong? We take as input a set of
negative testcases that characterizes a fault. The input
program fails all negative testcases.

Input: Program P to be repaired.
Input: Set of positive testcases PosT .
Input: Set of negative testcases NegT .
Output: Repaired program variant.

1: PathPosT ←
⋃

p∈PosT statements visited by P (p)
2: PathNegT ←

⋃
n∈NegT statements visited by P (n)

3: Path ← update weights(PathNegT , PathPosT )
4: Popul ← initial population(P, pop size)
5: repeat
6: Viable ← {〈P, PathP , f〉 ∈ Popul | f > 0}
7: Popul ← ∅
8: NewPop ← ∅
9: for all 〈p1, p2〉 ∈ sample(Viable, pop size/2) do

10: 〈c1, c2〉 ← crossover(p1, p2)
11: NewPop ← NewPop ∪ {p1, p2, c1, c2}
12: end for
13: for all 〈V, PathV , fV 〉 ∈ NewPop do
14: Popul ← Popul ∪ {mutate(V, PathV )}
15: end for
16: until ∃〈V, PathV , fV 〉 ∈ Popul . fV = max fitness
17: return minimize(V, P, PosT , NegT )

Figure 1. High-level pseudocode for our technique.
Lines 5–16 describe the GP search for a feasible vari-
ant. Subroutines such as mutate(V, PathV ) are de-
scribed subsequently.

2. What is it supposed to do? We take as input a set
of positive testcases that encode functionality require-
ments. The input program passes all positive testcases.

3. Where should we change it? We favor changing
program locations visited when executing the negative
testcases and avoid changing program locations visited
when executing the positive testcases.

4. How should we change it? We insert, delete, and
swap program statements and control flow. We favor
insertions based on the existing program structure.

5. When are we finished? The primary repair is the first
variant that passes all positive and negative testcases.
We minimize the differences between it and the origi-
nal input program to produce the final repair.

Pseudocode for the algorithm is given in Figure 1. Lines
1–2 determine the paths visited by the program on the input
testcases. Line 3 combines the weights from those paths
(see Section 3.2). With these preprocessing steps complete,
Line 4 constructs an initial GP population based on the in-
put program. Lines 5–16 encode the main GP loop (see
Section 3.1), which searches for a feasible variant. On each
iteration, we remove all variants that fail every testcase (line
6). We then take a weighted random sample of the remain-
ing variants (line 9), favoring those variants that pass more



of the testcases (see Section 3.4). We apply the crossover
operator (line 10; see Section 3.3) to the selected variants;
each pair of parent variants produces two child variants. We
include the parent and child variants in the population and
then apply the mutation operator to each variant (line 14;
see Section 3.3); this produces the population for the next
generation. The algorithm terminates when it produces a
variant that passes all of the testcases (line 16). The suc-
cessful variant is minimized (see Section 3.5), to eliminate
unneeded changes, and return the resulting program.

3.1 Genetic Programming (GP)

As mentioned earlier, GP is a stochastic search method
based on principles of biological evolution [15, 22]. GP
operates on and maintains a population comprised of dif-
ferent programs, referred to as individuals or chromosomes.
In GP, each chromosome is a tree-based representation of a
program. The fitness, or desirability, of each chromosome,
is evaluated via an external fitness function—in our appli-
cation fitness is assessed via the test cases. Once fitness is
computed, high-fitness individuals are selected to be copied
into the next generation. Variations are introduced through
computational analogies to the biological processes of mu-
tation and crossover (see below). These operations create
a new generation and the cycle repeats. Details of our GP
implementation are given in the following subsections.

3.2 Program Representation

We represent each individual (candidate program) as a
pair containing:

1. An abstract syntax tree (AST) including all of the state-
ments in the program.

2. A weighted path through that program. The weighted
path is a list of pairs, each pair containing a statement
in the program and a weight based on that statement’s
occurrences in various testcases.

The specification of what constitutes a statement is crit-
ical because the GP operators are defined over statements.
Our implementation uses the CIL toolkit for manipulating C
programs, which reduces multiple statement and expression
types in C to a small number of high-level abstract syntax
variants. In CIL’s terminology, Instr, Return, If and Loop
are defined as statements [26]; this includes all assignments,
function calls, conditionals, and looping constructs. An ex-
ample of C syntax not included in this definition is goto.
The genetic operations will thus never delete, insert or swap
a lone goto directly; However, the operators might insert,
delete or swap an entire loop or conditional block that con-
tains a goto. With this simplified form of statement, we

use an off-the-shelf CIL AST. To find the statements vis-
ited along a program execution (lines 1–2 of Figure 1), we
apply a program transformation, assigning each statement
element a unique number and inserting a fprintf call that
logs the visit to that statement.

The weighted path is a set of 〈 statement, weight 〉 pairs
that guide the GP search. We assume that a statement vis-
ited at least once during a negative testcase is a reasonable
candidate for repair. We do not assume that a statement vis-
ited frequently (e.g., because it is in a loop) is more likely
to be a good repair site. We thus remove all duplicates
from each list of statements. However, we retain the visit
order in our representation (see Crossover description be-
low). If there were no positive testcases, each statement vis-
ited along a negative testcase would be a reasonable repair
candidate, so the initial weight on every statement would
be 1.0. We modify these weights using the positive test-
cases. update weights(PathNegT , PathPosT ) in Figure 1
sets the weight of every statement on the path that is also
visited in at least one positive testcase equal to a parameter
WPath . Taking WPath = 0 prevents us from considering
any statement visited on a positive testcase; values such as
WPath = 0.01 typically work better (see Section 4.4).

Each GP-generated program has the same number of
pairs and the same sequence of weights in its weighted path
as the original program. By adding the weighted path to
the AST representation, we can constrain the evolutionary
search to a small subset of the complete program tree by
focusing the genetic operators on relevant code locations.
In addition, the genetic operators are not allowed to invent
completely new statements. Instead, they “borrow” state-
ments from the rest of the program tree. These modifica-
tions allow us to address the longstanding scaling issues in
GP [18, 19] and apply the method to larger programs than
were previously possible.

3.3 Selection and Genetic Operators

Selection. There are many possible selection algorithms
in which more fit individuals are allocated more copies in
the next generations than less fit ones. For our initial proto-
type we used stochastic universal samplying (SUS) [13], in
which each individual’s probability of selection is directly
proportional to its relative fitness in the population. We use
SUS to select 20 new members of the population (1/2 the
population size). The code from lines 6–9 of Figure 1 im-
plements the selection process. We discard individuals with
fitness 0 (i.e., variants that do not compile or variants that
pass no test cases), placing the remainder in Viable on line
6. These 20 individuals form the mating pool and are used
as parents in the crossover operation (below).

We use two GP operators, mutation and crossover, to cre-
ate new program variants from this mating pool. Mutation



Input: Program P to be mutated.
Input: Path PathP of interest.
Output: Mutated program variant.

1: for all 〈stmt i, probi〉 ∈ PathP do
2: if random(probi) ∧ random(Wmut) then
3: let op = choose({insert, swap, delete})
4: if op = swap then
5: let stmtj = choose(P )
6: PathP [i]← 〈stmtj , probi〉
7: else if op = insert then
8: let stmtj = choose(P )
9: PathP [i]← 〈{stmt i; stmtj}, probi〉

10: else if op = delete then
11: PathP [i]← 〈{}, probi〉
12: end if
13: end if
14: end for
15: return 〈P, PathP , fitness(P )〉

Figure 2. Our mutation operator. Updates to PathP

also update the AST P .

has a small chance of changing any particular statement
along the weighted path. Crossover combines the “first
part” of one variant with the “second part” of another, where
“first” and “second” are relative to the weighted path.

Mutation. Figure 2 shows the high-level pseudocode for
our mutation operator. Mutation is constrained to the state-
ments on the weighted path (line 1). Each location on the
weighted path is considered for mutation with probability
equal to its path weight. A statement occurring on nega-
tive testcases but not on positive testcases (probi = 1) is
always considered for mutation, whereas a statement that
occurs on both positive and negative testcases is less likely
to be mutated (probi = WPath ). Even if a statement is
considered for mutation, only a few mutations actually oc-
cur, as determined by the global mutation rate (a param-
eter called Wmut ) Ordinarily, mutation operations involve
single bit flips or simple symbolic substitutions. Because
our primitive unit is the statement, our mutation operator is
more complicated, consisting of either a deletion (the en-
tire statement is deleted), an insertion (another statement is
inserted after it), or a swap with another statement. In the
current implementation we choose from these three options
with uniform random probability (1/3, 1/3, 1/3).

In the case of a swap, a second statement stmtj is chosen
uniformly at random from anywhere in the program — not
just from along the path. This reflects our intuition about re-
lated changes; a program missing a null check may not have
one along the weighted path, but probably has one some-
where else in the program. The ith element of PathP is
replaced with a pair consisting of stmtj and the original
weight probi; the original weight is retained because stmtj

Input: Parent programs P and Q.
Input: Paths PathP and PathQ.
Output: Two new child program variants C and D.

1: cutoff ← choose(|PathP |)
2: C, PathC ← copy(P, PathP )
3: D, PathD ← copy(Q, PathQ)
4: for i = 1 to |PathP | do
5: if i > cutoff then
6: let 〈stmtp, prob〉 = PathP [i]
7: let 〈stmtq, prob〉 = PathQ[i]
8: if random(prob) then
9: PathC [i]← PathQ[i]

10: PathD[i]← PathP [i]
11: end if
12: end if
13: end for
14: return 〈C, PathC , fitness(C)〉,〈D, PathD, fitness(D)〉

Figure 3. Our crossover operator. Updates to PathC

and PathD update the ASTs C and D.

can be off the path and thus have no weight of its own.
Changes to statements in PathP are reflected in its corre-
sponding AST P . We handle insertions by transforming
stmt i into a block statement that contains stmt i followed
by stmtj . Deletions are handled similarly by transforming
stmt i into an empty block statement. We replace with noth-
ing rather than deleting to maintain the invariant of uniform
path lengths across all variants. Note that a “deleted” state-
ment may be selected as stmtj in a later mutation operation.

Crossover. Figure 3 shows the high-level pseudocode
for the crossover operator. Only statements along the
weighted paths are crossed over. We choose a cutoff point
along the paths (line 1) and swap all statements after the
cutoff point. For example, on input [P1, P2, P3, P4] and
[Q1, Q2, Q3, Q4] with cutoff 2, the child variants are C =
[P1, P2, Q3, Q4] and D = [Q1, Q2, P3, P4]. Each child thus
combines information from both parents. In any given gen-
eration, a variant will be the parent in at most one crossover
operation. A unique aspect of our crossover operator is that
crossover always takes place between an individual from the
current population and the original parent program, some-
times referred to as crossing back.

A second unusual feature of our crossover operator is
that instead of crossing over all the statements before the
cutoff point, it performs a crossover swap for a given state-
ment with probability given by the path weight for that
statement. Note that on lines 6–8, the weight from PathP [i]
must be the same as the weight from PathQ[i] because of
our representation invariant.



3.4 Fitness Function

Given an input program, the fitness function returns a
number indicating the acceptability of the program. The
fitness function is used by the selection algorithm to deter-
mine which variants survive to the next iteration (genera-
tion), and it is used as a termination criterion for the search.
Our fitness function computes a weighted sum of all test-
cases passed by a variant. We first compile the variant’s
AST to an executable program, and then record which test-
cases are passed by that executable:

fitness(P ) = WPosT × |{t ∈ PosT | P passes t}|
+ WNegT × |{t ∈ NegT | P passes t}|

Each successful positive test is weighted by the global pa-
rameter WPosT ; each successful negative test is weighted
by the global parameter WNegT . A program variant that
does not compile receives a fitness of zero; 1.8% of variants
failed to compile in our experiments. The search terminates
when a variant maximizes the fitness function by passing all
testcases. The weights WPosT and WNegT should be posi-
tive values; we discuss particular choices in Section 4.4.

For full safety, the testcase evaluations should be run in
a virtual machine, chroot(2) jail, or similar sandbox. Stan-
dard software fault isolation through address spaces may be
insufficient. For example, a program that removes a tem-
porary file may in theory evolve into a variant that deletes
every file in the filesystem. In addition, the standard regres-
sion testing practice of limiting execution time to prevent
run-away processes is even more important in this setting,
where program variants may contain infinite loops.

The fitness function encodes software requirements at
the testcase level. The negative testcases encode the fault
to be repaired and the positive testcases encode necessary
functionality that cannot be sacrificed. Note that including
too many positive testcases could make the fitness evalua-
tion process inefficient and constrain the search space, while
including too few may lead to a repair that sacrifices impor-
tant functionality; Section 4.3 investigates this topic.

Because the fitness of each individual in our GP is in-
dependent of other individuals, fitness calculations can be
parallelized. Fitness evaluation for a single variant is simi-
larly parallel with respect to the number of testcases. In our
prototype implementation, we were able to take advantage
of multicore hardware with trivial fork-join directives in the
testcase shell scripts (see Section 4).

3.5 Repair Minimization

Once a variant is discovered that passes all of the test-
cases we minimize the repair before presenting it to devel-
opers. Due to the randomness in the mutation and crossover

algorithms, it is likely that the successful variant will in-
clude irrelevant changes that are difficult to inspect for cor-
rectness. We thus wish to produce a patch, a list of ed-
its that, when applied to the original program, repair the
defect without sacrificing required functionality. Previous
work has shown that defects associated with such a patch
are more likely to be addressed [34]; developers are com-
fortable working with patches. We combine insights from
delta debugging and tree-structured distance metrics to min-
imize the repair. Intuitively, we generate a large patch by
taking the difference between the variant and the original,
and then we throw away every part of that patch we can
while still passing all test cases.

We cannot use standard diff because its line-level
patches encode program concrete syntax, rather than pro-
gram abstract syntax, and are thus inefficient to minimize.
For example, our variants often include changes to con-
trol flow (e.g., if or while statements) for which both the
opening brace { and the closing brace } must be present;
throwing away part of such a patch results in a program
that does not compile. We choose not to record the genetic
programming operations performed to obtain the variant as
an edit script because such operations often overlap and the
resulting script is quite long. Instead, we use a version of
the DIFFX XML difference algorithm [2] modified to work
on CIL ASTs. This generates a list of tree-structured edit
operations between the variant and the original. Unlike a
standard line-level patch, tree-level edits include operations
such as “move the subtree rooted at node X to become the
Y th child of node Z”. Thus, failing to apply part of a tree-
structured patch will never result in an ill-formed program
at the concrete syntax level (although it may still result in
an ill-formed program at the semantic type-checking level).

Once we have a set of edits that can be applied together
or separately to the original program we minimize that list.
Considering all subsets of the set of edits is infeasible; for
example, the edit script for the first repair generated by our
algorithm on the “ultrix look” program in Section 4 is 32
items long (the diff is 52 lines long). Instead, we use
delta debugging [35]. Delta debugging finds a small “in-
teresting” subset of a given set for an external notion of in-
teresting, and is typically used to minimize compiler test-
cases. Delta debugging finds a 1-minimal subset, an inter-
esting subset such that removing any single element from it
prevents it from being interesting. We use the fitness func-
tion as our notion of interesting and take the DIFFX opera-
tions as the set to minimize. On the 32-item “ultrix look”
script, delta debugging performs only 10 fitness evaluations
and produces a 1-minimal patch (final diff size: 11 lines
long); see Section 4.3 for an analysis.



4 Experiments

We report experiments and case studies designed to:

1. Evaluate performance and scalability by finding re-
pairs for multiple legacy programs.

2. Measure run-time cost in terms of fitness function
evaluations and elapsed time.

3. Evaluate the success rate of the evolutionary search.

4. Understand how testcases affect repair quality,
characterizing the solutions found by our technique.

4.1 Experimental Setup

We selected several open source benchmarks from sev-
eral domains, all of which have known defects. These in-
clude benchmarks taken from Miller et al.’s work on fuzz
testing, in which programs crash when given random in-
puts [25]. The nullhttpd1 and atris2 benchmarks were taken
from public vulnerability reports.

Testcases. For each program, we used a single negative
testcase that elicits the fault listed in Figure 4. No special ef-
fort was made in choosing the negative testcase. For exam-
ple, for the fuzz testing programs, we selected the first fuzz
input that evinced a fault. A small number (e.g., 2–6) of
positive testcases were selected for each program. In some
cases, we used only non-crashing fuzz inputs as testcases; in
others we manually created simple positive testcases. Test-
case selection is an important topic, and in Section 4.3 we
report initial results on how it affects repair quality.

Parameters.
Our algorithms have several global weights and param-

eters that potentially have large impact on system perfor-
mance. A systematic study of parameter values is beyond
the scope of this paper. We report results for one set of
parameters that seemed to work well across most of the ap-
plication examples we studied. We chose pop size = 40,
which is small compared to other GP projects; on each trial,
we ran the GP for a maximum of ten generations (also a
small number), and we set WPosT = 1 and WNegT = 10.
With the above parameter settings fixed, we experimented
with two parameter settings for WPath and Wmut :

{WPath = 0.01, Wmut = 0.06}
{WPath = 0.00, Wmut = 0.03}

Note that WPath = 0.00 means that if a statement appears
on a positive testcase path then it will not be considered for
mutation, and WPath = 0.01 means such statements will be
considered infrequently.

1
http://nvd.nist.gov/nvd.cfm?cvename=CVE-2002-1496

2
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=290230

The weighted path length is the weighted sum of state-
ments on the negative path, where statements also on the
positive path receive a weight of WPath = 0.01 and state-
ments only on the negative path receive a weight of 1.0.
This gives a rough estimate of the complexity of the search
space and is correlated with algorithm performance (Sec-
tion 4.4).

We define one trial to consist of at most two serial in-
vocations of the GP loop using the parameter sets above in
order. We stop the trial if an initial repair is discovered.
We performed 100 random trials for each program and re-
port the fraction of successes and the time taken to find the
repair.

Optimizations. When calculating fitness, we memoize
fitness results based on the pretty-printed abstract syntax
tree. Thus two variants with different abstract syntax trees
that yield the same source code are not evaluated twice.
Similarly, variants that are copied without change to the
next generation are not reevaluated. Beyond this caching,
the prototype tool is not optimized; for example, it makes a
deep copy of the AST before performing crossover and mu-
tation. Incremental compilation approaches and optimiza-
tions are left as future work.

4.2 Experimental Results

Figure 5 summarizes experimental results for ten C pro-
grams. Successful repairs were generated for each program.
The ‘Initial Repair’ heading reports timing information for
the genetic programming phase and does not include the
time for repair minimization.

The ‘Time’ column reports the wall-clock average time
required for a trial that produced a primary repair. Our ex-
periments were conducted on a quad-core 3 GHz machine;
with a few exceptions, the process was CPU-bound. The
GP prototype is itself single-threaded, with only one fit-
ness evaluation at a time, during a fitness evaluation we ex-
ecute all testcases in parallel. The ‘fitness’ column lists the
average number of fitness evaluations performed during a
successful trial. Fitness function evaluation is typically the
dominant expense in GP applications as problem size in-
creases, which is why we record number of fitness function
evaluations. An average successful trial terminates in three
minutes after 400 fitness evaluations. Of that time, 54% is
spent executing testcases (i.e., in the fitness function) and
another 30% is spent compiling program variants.

The ‘Success’ column gives the fraction of trials that
were successful. On average, over half of the trials pro-
duced a repair, although most of the benchmarks either suc-
ceeded very frequently or very rarely. Low success rates
can be mitigated by running multiple independent trials in
parallel. On average there were 5.5 insertions, deletions and
swaps applied to a variant between generations, because a



Program Version LOC Statements Program Description Fault
gcd example 22 10 example from Section 2 infinite loop
uniq ultrix 4.3 1146 81 duplicate text processing segfault
look ultrix 4.3 1169 90 dictionary lookup segfault
look svr4.0 1.1 1363 100 dictionary lookup infinite loop
units svr4.0 1.1 1504 240 metric conversion segfault
deroff ultrix 4.3 2236 1604 document processing segfault
nullhttpd 0.5.0 5575 1040 webserver remote heap buffer exploit
indent 1.9.1 9906 2022 source code processing infinite loop
flex 2.5.4a 18775 3635 lexical analyzer generator segfault
atris 1.0.6 21553 6470 graphical tetris game local stack buffer exploit
total 63249 15292

Figure 4. Benchmark programs used in our experiments, with size in lines of code (LOC). The ‘Statements’ column
gives the number of applicable statements as defined in Section 3.2.

single application of our mutation operator is comparable
to several standard GP mutations. The average initial repair
was evolved using 3.5 crossovers and 1.8 mutations over the
course of 6.0 generations. Section 4.4 discusses success in
detail.

The ‘Size’ column lists the size, in lines, of the primary
repair. Primary repairs are typically quite long and contain
extraneous changes (see Section 3.5). The ‘Minimized Re-
pair’ heading gives performance information for producing
a 1-minimal patch that also passes all of the testcases. Min-
imization is deterministic and takes an order of magnitude
fewer seconds and fitness evaluations. The final minimized
patch size is quite manageable, averaging 4 lines.

4.3 Repair Quality and Testcases

In some cases, the evolved and minimized repair is ex-
actly as desired. For example, the minimized repair for gcd
inserts a single exit(0) call, as shown in Section 2 (the
other line in the two-line patch is location information ex-
plaining where to insert the call). Measuring the quality of
a repair is both a quantitative and a qualitative notion: the
repair must compile, fix the defect, and avoid compromis-
ing required functionality. All of the repairs compile, fix
the defect, and avoid compromising required functionality
in the positive testcases provided.

For uniq, the function gline reads user input into a static
buffer using a temporary pointer without bounds checks;
our fix changes the increment to the temporary pointer.

For ultrix look, our repair changes the handling of
command-line arguments, avoiding a subsequent buffer
overrun in the function getword, which reads user input into
static buffer without bounds checks.

In svr4 look, the getword function correctly bounds-
checks its input, so the previous segfault is avoided. How-
ever, a loop in main uses a buggy binary search to seek

through a dictionary file looking for a word. If the dictio-
nary file is not in sorted order, the binary search loop never
terminates. Our patch adds a new exit condition to the loop.

In units, the function convr reads user input to a static
buffer without bounds checks, and then passes a pointer to
the buffer to lookup. Our repair changes the lookup func-
tion so that it calls init on failure, re-initializing data struc-
tures and avoiding the segfault.

In deroff, the function regline sometimes reads user
input to a static buffer without bounds checks. regline calls
backsl for escape sequence processing; our repair changes
the handling of delimiters in backsl, preventing regline

from segfaulting.
In indent program has an error in its handling of com-

ments that leads to an infinite loop. Our repair removes
handling of C comments that are not C++ comments. This
removes the infinite loop but reduces functionality.

In flex, the flexscan function calls strcpy from the
yytext pointer into a static buffer in seven circumstances.
In some, yytext holds controlled input fragments; in others,
it points to unterminated user input. Our patch changes one
of the uncontrolled copies.

In atris, the main function constructs the file path to
the user’s preference file by using sprintf to concatenate
the value of the HOME environment variable with a file name
into a static buffer. Our repair removes the sprintf call,
leaving all users with the default global preferences.

In nullhttpd there is a remote exploitable heap
buffer overflow in ReadPOSTData: the user-supplied POST

length value is trusted, and negative values can be used
to copy user-supplied data into arbitrary memory loca-
tions. We used six positive testcases: GET index.html,
GET blank.html, GET notfound.html, GET icon.gif,
GET directory/, and POST recopy-posted-value.pl.
Our generated repair changes read_header so that
ReadPOSTData is not called. Instead, the processing in



Positive Initial Repair Minimized Repair
Program LOC Tests |Path| Time fitness Success Size Time fitness Size
gcd 22 5x human 1.3 149 s 41.0 54% 21 4 s 4 2
uniq 1146 5x fuzz 81.5 32 s 9.5 100% 24 2 s 6 4
look-u 1169 5x fuzz 213.0 42 s 11.1 99% 24 3 s 10 11
look-s 1363 5x fuzz 32.4 51 s 8.5 100% 21 4 s 5 3
units 1504 5x human 2159.7 107 s 55.7 7% 23 2 s 6 4
deroff 2236 5x fuzz 251.4 129 s 21.6 97% 61 2 s 7 3
nullhttpd 5575 6x human 768.5 502 s 79.1 36% 71 76 s 16 5
indent 9906 5x fuzz 1435.9 533 s 95.6 7% 221 13 s 13 2
flex 18775 5x fuzz 3836.6 233 s 33.4 5% 52 7 s 6 3
atris 21553 2x human 34.0 69 s 13.2 82% 19 11 s 7 3

97363 881.4 184.7 s 36.9 58.7% 53.7 12.4 s 8.0 4.0

Figure 5. Experimental Results: The ‘Positive Tests’ column describes the positive tests (Section 3.4). The ‘|Path|’
columns give the weighted path length. ‘Initial Repair’ gives the average performance for one trial, in terms of ‘Time’
(the average time of each successful trial, including compilation time and testcase evaluation), ‘fitness’ (the average
number of fitness evaluations in a successful trial), ‘Success’ (how many of the random trials resulted in a repair).
‘Size’ reports the average diff size between the original source and the primary repair, in lines. ‘Minimized Repair’
reports the same information but describes the process of producing a 1-minimal repair from the first initial repair
found; the minimization process is deterministic and always succeeds.

cgi_main is used, which invokes write to copy the POST

data only after checking if in_ContentLength > 0.
To study the importance of testcases, we ran our

nullhttpd experiment without the POST testcase. Our al-
gorithm generates a repair that disables POST functionality;
all POST requests generate an HTML bad request error reply.
As a quick fix this is not unreasonable, and is safer than the
common alarm practice of running in read-only mode.

Our repair technique aggressively prunes functionality to
repair the fault unless that functionality is guarded by test-
cases. For indent we remove C comment handling without
a C testcase. For atris we remove handling of local pref-
erence files. Our technique also rarely inserts local bounds
checks directly, instead favoring higher-level control-flow
changes that avoid the problem, as in units or deroff.

Our approach thus presents a tradeoff between rapid re-
pairs that address the fault and using more testcases to ob-
tain a more human repair. In the atris example, a security
vulnerability in a 20000 line program is repaired in under
100 seconds using only two testcases and a minimal sacri-
fice of non-core functionality. In the nullhttpd example, a
similar vulnerability is fully repaired in 10 minutes, with all
relevant functionality retained. Time-aware test suite prior-
itization techniques exist for choosing a useful and quick-
to-execute subset of a large test suite [29, 32]; in our ex-
periments five testcases serve as a reasonable lower bound.
We do not view the testcase requirement for our algorithm
as a burden, especially compared to techniques that require
formal specifications. As the nullhttpd example shows, if
the repair sacrifices functionality that was not in the positive

test suite, a new repair can be made from more test cases.

4.4 Success and Sensitivity

We observed a high variance in success rates between
programs. GP is ultimately a heuristic-guided random
search; the success rate in some sense measures the diffi-
culty of finding the solution. A high success rate indicates
that almost any random choice or coin toss will hit upon the
solution; a low success rate means that many circumstances
must align for us to find a repair. Without our weighted
path representation, the success rate would decrease with
program size as more and more statements would have to
be searched to find the repair.

In practice, the success rate seems more related to the
structure of the program and the location of the fault than
to the nature of the fault. For example, in our experiments
infinite loops have an average success rate of 54% while
buffer overruns have 61% — both very similar to the over-
all average of 59%. Instead, the success rate is inversely
related to the weighted path length. The weighted path
length loosely counts statements on the negative path that
are not also on the positive path; our genetic operators are
applied along the weighted path. The weighted path is thus
the haystack in which we search for needles. For example,
flex has the longest weighted path and also the lowest suc-
cess rate; in practice its repair is found inside the flexscan

function, which is over 1,400 lines of machine-generated
code implementing a DFA traversal via a huge switch state-
ment. Finding the right case to repair requires luck. The



indent and units cases are analogous. Note that adding
additional positive testcases actually reduces the weighted
path length, and thus improves the success rate, although it
also increases the runtime. In addition, we can use existing
path slicing tools; Jhala and Majumdar, for example, slice
a 82,695-step negative path on the gcc Spec95 benchmark
down to 43 steps [21].

Finally, the parameter set WPath = 0.01 and Wmut =
0.06 works well in practice; more than 60% of the success-
ful trials are from these settings. Our weighted path rep-
resentation is critical to success; without weighting from
positive testcases our algorithm rarely succeeds (e.g., gcd
fails 100% of the time). We have also tried higher muta-
tion chances and note that success gradually worsens with
values beyond 0.12.

4.5 Limitations, Threats to Validity

We assume that the defect is reproducible and that the
program behaves deterministically on the testcases. This
limitation can be mitigated by running the testcases multi-
ple times, but ultimately if the program behavior is random
we may make on an incorrect patch. We further assume that
positive testcases can encode program requirements. Test-
cases are much easier to obtain than formal specifications
or code annotations, but if too few are used, the repair may
sacrifice important functionality. In practice too many test-
cases may be available, and a large number will slow down
our technique and constrain the search space. We further
assume that the path taken along the negative testcase is dif-
ferent from the positive path. If they overlap completely our
weighted representation will not be able to guide GP mod-
ifications. Finally, we assume that the repair can be con-
structed from statements already extant in the program; in
future work we plan to use a library of repair templates.

5 Related Work

Our approach automatically repairs programs without
specifications. In previous work we developed an auto-
matic algorithm for soundly repairing programs with spec-
ifications [34]. The previous work suffers from three key
drawbacks. First, while it is sound with respect to the given
policy, it may generate repairs that sacrifice other required
functionality. In this paper, a sufficient set of positive test-
cases prevents us from generating such harmful or degener-
ate repairs. Second, the previous work only repairs single-
threaded violations of temporal safety properties; it cannot
handle multi-threaded programs or liveness properties. It
would not be able to repair the three infinite loop faults
handled in this paper. Third, the previous work requires
as input a formal specification of the policy being violated

by the fault. In practice, despite recent advances in speci-
fication mining (e.g., [16]), formal specifications are rarely
available. For example, there were no formal specifications
available for any of the programs we repaired in this paper.

Trace localization [8], minimization [17], and explana-
tion [11] projects also aim to elucidate faults and ease re-
pairs. These approaches typically narrow down a large
counterexample backtrace (the error symptom) to a few
lines (a potential cause). Our work improves upon this in
three fundamental ways. First, a narrowed trace or small set
of program lines is not a concrete repair. Second, our ap-
proach works with any detected fault, not just those found
by static analysis tools that produce counterexamples. Fi-
nally, their algorithms are limited to the given trace and
source code and will thus never localize the “cause” of an
error to a missing statement or suggest that a statement be
moved. Our approach can infer new code that should be
added or swapped: five of our ten minimized repairs re-
quired insertions or swaps. Their work could also be viewed
as complementary to ours; a defect found by static analysis
might be repaired and explained automatically, and both the
repair and the explanation could be presented to developers.

Demsky et al. [12] present a technique for data structure
repair. Given a formal specification of data structure consis-
tency, they modify a program so that if the data structures
ever become inconsistent they can be modified back to a
consistent state at runtime. Their technique does not repair
the program source code or otherwise fix or address faults.
Instead, it inserts run-time monitoring code that “patches
up” inconsistent state so that the buggy program can con-
tinue to execute. Their technique requires formal specifica-
tions, which can be inferred but are often unavailable. Their
technique also introduces run-time overhead and does not
produce a repair. Finally, their technique only deals with
data structures and not with logic errors; it would not be
able to help with the gcd infinite loop in Section 2, for ex-
ample. Our techniques are complementary: a buggy pro-
gram might be kept running via their technique while our
technique searches for a long-term repair.

Arcuri [6, 7] proposed the idea of using GP to repair soft-
ware bugs automatically, but our work is the first to report
substantial experimental results on real programs with real
bugs. The approaches differ in several details: we use ex-
ecution paths to localize evolutionary search operators, and
we do not rely on a formal specification in the fitness evalu-
ation phase. Where they control “code bloat” along the way,
we minimize our high-fitness solution after the evolutionary
search has finished.

The field of Search-Based Software Engineering
(SBSE) [20] uses evolutionary and related methods for soft-
ware testing, e.g., to develop test suites [24, 32, 33]. SBSE
also uses evolutionary methods to improve software project
management and effort estimation [9], to find safety viola-



tions [3], and in some cases to re-factor or re-engineer large
software bases [10, 31]. In SBSE, most innovations in the
GP technique involve new kinds of fitness functions, and
there has been less emphasis on novel representations and
operators, such as those we explored in this paper.

6 Conclusions

We present a fully automated technique for repairing
bugs in off-the-shelf legacy software. Instead of using for-
mal specifications or special coding practices, we use an
extended form of genetic programming to evolve program
variants. We consider only certain classes of repairs, us-
ing one part of a program as a template to repair another
part. Our GP algorithm uses a representation that combines
abstract syntax trees with weighted violating paths; these
insights allow our search to scale to large programs. We use
standard testcases to show the fault and to encode required
functionality; our initial repair is a variant that passes all
testcases. The initial repair is minimized using delta debug-
ging and structural differencing algorithm. We are able to
generate and minimize repairs for ten different C programs
totalling 63,000 lines in under 200 seconds on average.
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