Evolving Local Search Heuristics for SAT Using
Genetic Programming

Alex S. Fukunaga

Computer Science Department, University of California, Los Angeles, CA 90024, USA
fukunaga@cs.ucla.edu,

Abstract. Satisfiability testing (SAT) is a very active area of research
today, with numerous real-world applications. We describe CLASS2.0,
a genetic programming system for semi-automatically designing SAT
local search heuristics. An empirical comparison shows that that the
heuristics generated by our GP system outperform the state of the art
human-designed local search algorithms, as well as previously proposed
evolutionary approaches, with respect to both runtime as well as search
efficiency (number of variable flips to solve a problem).

1 Introduction

Satisfiability testing (SAT) is a classical NP-complete, decision problem. Let V
be a set of boolean variables. Given a well-formed formula F' consisting of positive
and negative literals of the variables, logical connectives V, A, For example,
the formula (a VbV —¢) A (maVe) A(—maV —bV c) is satisfiable, because if
a = true,b = false,c = true, then the formula evaluates to true. On the other
hand, the formula (a VbV ¢) A (maV —b) A (=bV —¢) A (—a V —c¢) is unsatisfiable
because there is no assignment of boolean values to a,b,c such that the formula
evaluates to true. SAT has recently become a very active field of research because
many interesting real world problems (e.g., processor verification, scheduling)
can be reformulated as SAT instances, spurring the development of fast SAT
solvers. Local search procedures for satisfiability testing (SAT) have been widely
studied since the introduction of GSAT [13], and it has been shown that for many
problem classes, incomplete local search procedures can quickly find solutions
(satisfying assignments) to satisfiable CNF formula.

The most widely used SAT local search algorithms can be succinctly de-
scribed as the template of Figure 1, where the “key detail” is the choice of vari-
able selection heuristic in the inner loop. Much research in the past decade has
focused on designing a better variable selection heuristic, and as a result, local
search heuristics have improved dramatically since the original GSAT algorithm.
Some of the most successful local search algorithms include: GSAT with Random
Walk [11], Walksat [12], Novelty /R-Novelty [7], and Novelty+/R-Novelty+ [5].

Evolutionary computation has also been applied to SAT. A thorough review
of previous applications of evolutionary algorithms to SAT can be found in [3].

The CLASS (Composite Learned Algorithms for SAT Search) system, pro-
posed in [1] was developed in order to automatically discover variable selection

T:= randomly generated truth assignment
For j:= 1 to cutoff
If T satisfies formula then return T
V:= Choose a variable using some
variable selection heuristic
?:=T with value of V reversed
Return failure (no satisfying
assignment found)

Fig. 1. SAT local search algorithm template

heuristics for SAT local search. It was noted in [1] that many of the best-known
SAT heuristics were expressible as decision-tree like combinations of a set of
primitives, and thus, it should be possible for a machine learning system to au-
tomatically discover new, efficient variable selection heuristics by exploring the
space of combinations of these primitives.

Whereas previous applications of evolutionary computation to SAT has fo-
cused on the design of evolutionary algorithms that searched the space of candi-
date solutions to the SAT problem directly, CLASS applies EC at the meta-level
by generating heuristics which are embedded in a standard local search frame-
work. It was shown that CLASS was capable of generating heuristics that were
competitive with the best known SAT local search heuristics, with respect to
the number of variable flips required to solve benchmark problems.

A major shortcoming of the original CLASS system was that although the
automatically generated heuristics reduced the number of flips to find satisfying
assignments, the actual runtime required to solve the problems was much slower
(up to an order of magnitude) than the best available implementations of the
standard algorithms. This was largely due to the increased complexity of the
variable selection heuristic. It seemed that CLASS was making an unfavorable
tradeoff between search efficiency, and the time spent on each decision. Although
search efficiency is a key criterion for evaluating a SAT algorithm, in the end,
what matter for practical applications (e.g., SAT solvers embedded in circuit
verification tools) is runtime. Thus, from [1] it was not possible to conclude that
CLASS had generated heuristics that were truly better than than state of the art
algorithms. Furthermore, CLH-1, the best heuristic generated by CLASS, was
generated by using a population pre-seeded with hand-coded heuristics, and used
very sophisticated primitives which by themselves were as complex as the Novelty
and R-Novelty heuristics. Although [1] reported two other heuristics (CH-1 and
CH-2) which did not rely on this sophisticated “seed library” feature, it remained
an open question whether a learning system using only simpler primitives could
outperform CLH-1.

This paper describes CLASS2.0, which addresses the open issues described
above which could not be resolved with the first version, and provides empiri-
cal evidence that genetic programming can be used to generate heuristics that
outperform the state of the art SAT local search heuristics with respect to both
runtime and the number of steps executed. In section 2, we give an overview

of CLASS2.0, highlighting the improvements made compared to the first ver-
sion. We then present new empirical results, comparing the heuristics learned by
CLASS2.0 to state of the art local search algorithms, previously studied evolu-
tionary approaches to SAT, and heuristics generated by CLASS1.0.

2 The CLASS2.0 System

2.1 Key Concepts and Definitions

We introduce some terminology to facilitate the discussion of the common struc-
tural elements of Walksat-family SAT variable selection heuristics throughout
this paper.

Definition 1 (Positive/Negative/Net Gain) Given a candidate variable as-
signment T for a CNF formula F, let By be the total number of clauses that are
currently unsatisfied in F. Let T' be the state of F' if variable V is flipped.

Let By be the total number of clauses which would be unsatisfied in T'. The
net gain of V' is By — By. The negative gain of V is the number of clauses which
are currently satisfied in T, but will become unsatisfied in T' if V is flipped. The
positive gain of V is the number of clauses which are currently unsatisfied in T,
but will become satisfied in T' if V is flipped.

Definition 2 (Variable Age) The age of a variable is the number of flips since
it was last flipped.

The best-known SAT variable selection heuristics can be succinctly described
in terms of the above definitions. For example:
GSAT [13]: Select variable with highest net gain.
Walksat [12]: Pick random broken clause BC from F. If any variable in BC has
a negative gain of 0, then randomly select one of these to flip. Otherwise, with
probability p, select a random variable from BC' to flip, and with probability
(1 — p), select the variable in BC' with minimal negative gain (breaking ties
randomly).
Novelty [7]: Pick random unsatisfied clause BC. Select the variable v in BC
with maximal net gain, unless v has the minimal age in BC. In the latter case,
select v with probability (1 — p); otherwise, flip v with second highest net gain.

2.2 A Genetic Programming Approach to Learning Heuristic
Functions

The CLASS system was motivated by the following key observations:

First, the well-known, SAT local search heuristics could all be expressed as
a combination of a relatively small number of primitives. These primitives in-
cluded: (1) scoring of variables with respect to a gain metric, (2) ranking of vari-
ables and greediness. (3)variable age, and (4) conditional branching Heuristics
such as GSAT, Walksat, Novelty, Novelty+, could be implemented as relatively

simple functions built by composing the various primitives discussed above. Even
R-Novelty[7], which is one of the most complex heuristics proposed to date, can
be represented as a 3-level decision diagram [5].

Second, historically, new heuristics were often generated by “structural” inno-
vations which recombined existing primitives in new ways. For example, GWSAT
and Novelty+ added random walk to GSAT and Novelty after observing behav-
ioral deficiencies of the predecessors [11, 5].

Third, it appeared relatively difficult for even expert researchers to design
successful heuristics, and the design of new heuristics required However, some
major structural innovations involve considerable exploratory empirical effort.
For example, [7] notes that over 50 variants of Walksat were evaluated in their
study (which introduced Novelty and R-Novelty).

From these observations, [1] claimed that the domain of SAT heuristic design
seemed to be a good candidate for the application of a genetic programming ap-
proach. CLASS represents variable selection heuristics in a Lisp-like s-expression
language. In each iteration of the innermost loop of the local search (Figure 1),
the s-expression is evaluated in place of a hand-coded variable selection heuristic.

To illustrate the primitives built into CLASS, Figure 2 shows some standard
heuristics represented as CLASS s-expressions. Due to space restrictions, we can
not define the language here, but a more detailed description of the CLASS
language primitives can be found in [1].

Walksat: Novelty:
(IfVarCond == NegativeGain 0 (IfNotMinAge BCO VarBestNetGainBCO
VarBestNegativeGainBCO (If (rand 0.5)
(If (rand 0.5) VarBestNetGainBCO
VarBestNegativeGainBCO VarSecondBestNetGainBCO))
RandomVarBCO))

Fig. 2. Walksat and Novelty represented in the CLASS language.

CLASS uses a population-based search algorithm similar to strongly-typed
genetic programming [9] to search for good variable selection heuristics (Figure
3). This algorithm is conceptually similar to the standard genetic programming
algorithm [6]. The Initialize function creates a population of randomly gener-
ated s-expressions. The expressions are generated using a context-free grammar
as a constraint, so that each s-expression is guaranteed to be a syntactically valid
heuristic that returns a variable index when evaluated. The Select function
picks two s-expressions from the population, where the probability of selecting a
particular s-expression is a function of its rank in the population according to its
objective function score (the higher an expression is ranked, the more likely it is
to be selected). The Compose operator (detailed below) is applied to the parents
to generate a set of children, which are then inserted into the population. Each
child replaces a (weighted) randomly selected member of the population, so that
the population remains constant in size (the lower the ranking, the more likely
it is that an s-expression will be replaced by a child). The best heuristic found
during the course of the search is returned.

The most significant difference between the CLASS learning algorithm and
standard strongly typed genetic programming is how children are created. In-
stead of applying the standard crossover and mutation operators, CLASS uses
a composition operator, which is intended to generate children whose behavior
is a blend of the parents’ behavior. Given two s-expressions sexpr1 and sexpr2,
composition combines them by creating a new conditional s-expression where
the “if” and “else” branches are sexprl and sexpr2, i.e., (conditional-sexpr
sexprl sexpr2). The actual composition operator results in 10 children being
created at each mating, where each child is the result of a different conditional
s-expression combining the two parents. Each child is evaluated, and then is in-
serted into the population. CLASS uses composition rather than the standard
genetic operators because (1) composition was a good model of how human re-
searchers derived some of the most successful SAT local search heuristics, and
(2) if at least one of the parent heuristics has the PAC-property [4], a subset of
the children derived via composition are guaranteed to be PACI[1].

We have also explored the use of a more “standard” strongly-typed GP us-
ing standard crossover, selection, and mutation operators to CL. However, we
have not yet been able to discover a parametrization of the standard GP to be
competitive with our current algorithm.

The composition operator used by CLASS naturally leads to code “bloat”,
since each child will be, on average, twice as complex as its parents. Uncontrolled
bloat would be a major problem in CLASS because fast evaluation of the s-
expression heuristics is critical to achieving our goal of fast local search runtimes.
We implemented a depth bound so that any interior nodes in the s-expression
tree that exceed the given depth bound in the run are transformed to a leaf node
(with a compatible type).

Initialize (population,populationsize)

For I = 1 to MaxIterations

Select parentl and parent2 from population
Children = Compose(parentl,parent?2)
Evaluate(Children)

Insert (Children,Population)

Fig. 3. CLASS Meta-Search Algorithm

2.3 Fitness Function

A candidate s-expression is executed on a set of training instances from the
distribution of hard, randomly generated 3-SAT problems from the SAT/UNSAT
phase transition region [8].! First, the heuristic is executed on 200, 50 variable,
215-clause random 3-SAT instances, with a cutoff of 5000 flips. If more than 130
of these local search descents was successful, then the heuristic is run on 400,

! mkenf (ftp://dimacs.rutgers.edu/pub/challenge/satisfiability /contributed/UCSC/instances/Cnfgen.tar.Z)
was used to generate training instances, using the flag to force satisfiable.

100-variable, 430-clause random 3-SAT instances with a 20000 flip cutoff. The
score of an individual is: (# of 50-var successes) + (5 * (# of 100-var successes))
+ (1/MeanFlipsInSuccess ful Runs) The 50-variable problems serve to quickly
filter out very poor individuals and not waste time evaluating them further with
more expensive training instances, while the larger 100-variable problems enable
us to gain finer distinctions between the better individuals.

2.4 CLASS2.0

From the above description, it should be clear that searching for good heuristics
using CLASS is extremely time-consuming. Each call to the evaluation function
requires hundreds of descent of a local search algorithm, and during each descent,
thousands or variable flips are executed, and each flip requires the evaluation of
the candidate heuristic, i.e., each call to the fitness function results in hundreds
of thousands of evaluations of the candidate s-expression. Each run of the CLASS
genetic programming system (5000 fitness evaluations) took several days on a
Pentium-3 based workstation, making experimentation with the system very
cumbersome.

Although the original version, CLASS1.0, was able to generate some promis-
ing results, as reported in [1], it became difficult to make further progress with-
out making the system substantially faster. In addition, the most important
outstanding question was whether the heuristics discovered by CLASS were
actually better than the state of the art, human-designed heuristics after the
additional complexity of the heuristic was considered. Throwing additional com-
puting power at the problem (e.g., using additional, faster CPUs in a parallel GP
system) would make it easier to perform experiments, but it would not settle the
issue of whether the resulting heuristics were actually faster than the standard
heuristics when executed on the same CPU. Furthermore, the use of the library
feature in CLASS1.0 (i.e., the CLASS-L extensions), which seeded the initial
population with hand-coded heuristics, made it difficult to assess how powerful
the representation was.

Therefore, after carefully studying the various performance bottlenecks in
CLASS1.0, we developed a new system, CLASS2.0, which sought to address
the crucial performance issues. Profiling CLASS showed that there were two func-
tions that consumed the vast majority of computational resources. Not surpris-
ingly, the execution of the variable selection heuristic code was the biggest bot-
tleneck, especially when the s-expressions representing the heuristic were large
(since the complexity of evaluating the s-expression grows exponentially with the
depth of the expression tree). Second, when the variable selection heuristics were
small (roughly depth 3 or shallower), then the function for flipping a variable and
incrementally updating the gain values (defined in section 2.1) which were used
by the variable selection heuristic was a major bottleneck. We addressed both
of these issues. Also, all of the the CLASS-L extension features were eliminated
from CLASS2.0.

2.5 Faster s-expression evaluation

CLASS1.0 was an ad-hoc, multilingual implementation, where the genetic pro-
gramming component was implemented in tcl, and the local search engine
was implemented in C++. The GP component would generate a candidate s-
expression (as described above), then this s-expression would be translated to
an equivalent C++ expression, which would then be compiled using the C++
compiler (gece) and linked to the local search engine.

The fundamental problem with this architecture was that although the GP
component must emit code that is executed by the local search component,
it is extremely difficult and cumbersome, to correctly implement code in the
GP component with enough introspective capability into the s-expression lo-
cal search component such that the s-expressions could be optimized for fast
execution. The current implementation, CLASS2.0, is implemented entirely in
Common Lisp, allowing seamless integration between the GP and local search
components. Although Lisp is often cited as being an interpreted language that
is significantly slower than C/C++, modern ANSI Common Lisp implemen-
tations, using optional type declarations, are usually able to generate native
machine code comparable (i.e., not much worse than a factor of 2) to code gen-
erated by C++ compilers. All of the results in this paper were obtained using
CMUCL version 18e (http://www.cons.org/cmucl/)

Several improvements were implemented in order to enable faster expression
of the evolved heuristic s-expressions. First, when a child is generated, CLASS2.0
probabilistically performs an approzimate simplification of the s-expression. For
example, consider the expression on the left below. The function ((rand x)
returns a random variable between 0 and z. Note that the probability of s-
exprl being evaluated is only 0.01. Thus, we can eliminate that subtree and
“approximately” simplify the expression to the expression on the right.

(if (rand 0.1) (if (rand 0.1)
(if (rand 0.1) --> s—expr2
s—exprl s—expr3)
s—expr2)
s-expr3)

This results in behavior that approximates the behavior of the original s-
expression (i.e., 99% of the time, the modified expression returns the same value
as the original expression), but executes faster due to the simpler structure.
There is a tradeoff between the evaluation speedup gained by this technique
versus possible loss in search efficiency due to the approximation.

Another improvement to s-expression evaluation was in the efficient com-
putation and caching of subexpression values. For example, if an s-expression
requires the evaluation of both “the variable in broken clause BC1 with highest
net gain”, and “the variable in BC1 with second highest net gain”, then both
of these can be computed by a single pass through the variables in BC1, rather
than one pass for each query.

Also, if the same value is required multiple times during the evaluation of an
s-expression, then it is worth caching the result when first computed. However, if
it can’t be guaranteed that an expression is required more than once (e.g., when it
appears in a conditional subexpression), then it may in fact hurt performance to
pay the overhead of caching the first instantiation. Before evaluating an evolved
s-expression, CLASS2.0 applies a number of rules to transform the original s-
expression into a semantically equivalent expression where some of the functions
and terminals are the caching equivalents of the original functions and terminals
(if the transformation module determines it worthwhile to do so).

2.6 Faster local search engine

The local search engine of CLASS1.0, while reasonably fast, did not have the
fastest possible implementation of variable flipping. CLASS2.0 implements the
most efficient local search engine found so far in the literature, with some en-
hancements that yielded significant speedups. A detailed description of these, as
well as an extensive survey of efficient data structures and algorithms to support
local search can be found in [2].

The standard implementation of SAT local search is the C implementation
by Henry Kautz and Bart Selman (Walksat version 43).2 This is an efficient,
actively maintained implementation. We compiled Walksat-v43 using gcc and
-03 optimization. To evaluate the performance of the CLASS2.0 local search
engine, we compared it against Walksat-v43, as well as CLASS1.0, as follows:

We hand-coded the standard Walksat-SKC heuristic [7] as an s-expression
in the CLASS language (See Figure 2), generating CLASS1.0 and CLASS2.0
implementation of Walksat (Walksat-CLASS1.0, and Walksat-CLASS2.0). Each
of the three solvers (Walksat-v43, Walksat-CLASS1.0, Walksat-CLASS2.0) was
executed on the uf250 set of 100, 250 variable, 1065 clause instances®. Each
instance was run 10 times, with max-flips set to 10 million flips per instance.
All experiments in this paper were performed on a 1.3GHz AMD Athlon CPU
running Linux.

The results were as follows: All three solvers were 100% successful (i.e., all
tries found satisfying assignments within the max-flips limit). Walksat-v43 solved
all instances with an average of 73338 flips, executing 448962 flips per second.
Walksat-CLASS2.0 solved all instances with an average of 68933 flips, executing
403781 flips per second. Walksat-CLASS1.0 solved all instances in 69014 flips,
executing 278060 flips per second. As expected, the search effort (# of flips to
solution) is almost identical for all three engines. The CLASS2.0 engine (imple-
mented in Common Lisp) obtains 90% of the flip rate of the Walksat-v43 engine
(implemented in C). CLASS2.0 is substantially faster than the CLASS1.0 en-
gine (implemented in C++) due to significantly improved data structures. In
theory, the CLASS2.0 engine should be somewhat faster if the entire system
were rewritten in C, but we were satisfied that the underlying infrastructure was

% available at http://www.cs.washington.edu/homes/kautz/walksat
3 available at http://satlib.org

fast enough so that the evolved heuristics, when embedded into the CLASS2.0
framework, had a chance of outperforming Walksat-v43.

3 Empirical evaluation of evolved heuristics

We compare the performance of a CLASS2.0-generated heuristic to the perfor-
mance of the state of the art local search and evolutionary algorithms.

First, we extend the comparative study of SAT algorithms performed by
Gottlieb, Marchiori, and Rossi [3] to include heuristics generated by CLASS.
We used identical benchmark instances and computational resources, in order to
allow a direct comparison with previously evaluated algorithms. The set Suite
B consists of 50 75-variable problems and 50 100 variable problems. The set
Suite C consists of 100 80-variable problems and 100 100-variable instances.
All of the instances? are hard, satisfiable random 3-SAT instances from the
phase-transition region, with a clause-to-variables ratio of 4.3. °

As with previous studies, we measured: (1) the success rate, which is the per-
centage of successful runs (runs where a solution is found), using a computation
limit of 300,000 variable flips, and (2) the average # of flips to solution (AFS),
the mean number of flips to find a solution in a run, when a solution was found
(i.e., flips in unsuccessful runs are not counted).

Algorithm| Suite B, n=75 | SuiteB, n=100 | Suite C, n=80 | Suite C n=100
SR| AFS|time| SR| AFS|time| SR| AFS|time| SR| AFS|time
RFEA2+| 96(39396| n/a| 81|80282| n/a| 95|49312| n/a| 79|74459| n/a
ASAP| 87|39659| n/a| 59|43601| n/a| 72|45492| n/a| 61|34548| n/a
Walksat-v43|88.8|50706| 0.21|62.6|44335| 0.47|78.4(54178| 0.34(67.0{40080| 0.43
Novelty+|96.6({17108| 0.06|71.6|34849| 0.29|89.7/33518| 0.16|75.7|31331| 0.25
C2-D3(97.2|119646| 0.11{78.6({40085| 0.3590.8(25744| 0.19|80.9|37815| 0.42
C2-D6{98.2{15199| 0.16|82.0({38883| 0.69(95.1(27527| 0.32|83.8|36762| 0.63

Table 1. Results with cutoff=300,000 flips: Success Rate (SR) (%), Average Flips to Solution
(AFS), and Runtime (10 runs/instance for Walksat,Novelty+, C2-D3, and C2-D6

The data for RFEA2+ and ASAPare copied from [3]. The results for Suite
B are based on 50 runs per instance for RFEA+, and 10 runs per instance for
ASAP. For Suite C, the data for RFEA2+ is for 4 runs, and ASAP is for 5 runs.

The results for Walksat-v43 were obtained by running Kautz and Selman’s
Walksat version 43 code (see Section 2.6) using the -best heuristic flag and a
noise setting of 50. This is the same configuration as the WSAT runs reported
in [3]; we reran the algorithm so that we could obtain runtimes for comparison.

* Downloaded from http://www.in.tu-clausthal.de/ gottlieb/benchmarks/3sat

® Due to space restrictions, we only show results for the largest problem instances in
Suites B and C of [3]. Experiments were performed with all 662 instances from Suites
A B, and C. the results were qualitatively similar for Suite A (omitted here because
there were only 12 instances), and the smaller instances in Suites B and C excluded
from Figure 1.

10

We also tried to find the best possible configuration of the Walksat-v43 solver
(which implements not only Walksat but all of the novelty variants) on this
benchmark set, by trying the -best, -novelty, -rnovelty, -novelty+, and
+rnovelty+ heuristics for a noise ranging from 10 to 90 (tested at 5% incre-
ments), and report the results for the best configuration on this benchmark set,
which was Novelty+ (noise=75).

The heuristics evolved by CLASS2.0 included in this study are C2-D3 and
C2-D6. These are the results of running CLLASS2.0 for 5500 individual evalua-
tions. C2-D3 was evolved with a depth limit on the s-expression of 3, while C2-D6
was evolved with a depth limit of 6. We emphasize that the training instances
used during evolution are different from the benchmark instances, although they
are from the same problem class (generated using the mkenf utility with the
same control parameters).

The results in Table 1 show that the evolved heuristics C2-D3, and C2-D6
are quite competitive with the previous evolutionary algorithms as well as the
state of the art local search algorithms. C2-D6 has a higher success rate than
C2-D3, although it is paying a price in runtime due to the greater complexity of
its s-expression.

Note that we simply picked C2-D3 and C2-D6 from the first GP runs we
performed using a depth 3 limit and depth 6 limit. Heuristics with similar scores
can be routinely evolved (see Section 4)

While the above study followed the standard methodology and allowed a
direct comparison with the results of [3], the relatively low cutoff limit and the
use of the success rate + AFS metric makes it difficult to see exactly how much
faster one algorithm is than another. To provide another perspective, we repeated
the experiments using a much larger resource threshold of 100,000,000 flips, and
1 run per instance.

The results are as shown in Table 2. For the hardest problems, C2-D3 and
C2-D6 clearly outperformed Walksat-v43 and Novelty+.

Algorithm| Suite B, n=75 | SuiteB, n=100 | Suite C, n=80 | Suite C n=100
SR| AFS|time|SR AFS|time| SR AFS|time| SR AFS| time
Walksat-v43(100(244856| 0.13| 963134042 15.8|100|1790021| 3.79| 98(3633661|12.21
Novelty+|100| 31027|0.07|100{2218112| 5.42({100| 167908| 0.41({100{1228156(3.07
C2-D3|100| 85555 0.34|100| 267770|1.04|100| 62194|0.24|100| 233481| 0.90
C2-D6(100| 33656|0.28{100| 404983|3.38|100| 47506|0.40|/100| 268342| 2.21

Table 2. Results with cutoff=100,000,000 flips: Success Rate (SR) (%), Average Flips
to Solution (AFS), and Runtime

4 Empirical evaluation of the evolutionary algorithm

Is the GP-like population-based algorithm used in CLASS (Figure 3) a rea-
sonably efficient meta-level search algorithm? We compared our algorithm to a
simple, random generate-and-test (G&T) algorithm. G&T simply samples the

11

space of s-expressions by repeatedly calling the random s-expression generated
used during the initialization of the population in Figure 3. We ran each algo-
rithm 10 times. Each run involved 5500 fitness function evaluations. For the GP,
we generated and evaluated a population of 1000 and ran until 4500 children
had been generated and evaluated. For G&T, 5500 random individuals were
evaluated. Both algorithms were run with an s-expression depth limit of 6. We
then compared the fitness function scores (Section 2.3) of the best individual
found by the two algorithms. The mean value of the best individual score over
10 runs for the GP was 1377, and was 1213 for G&T. Also, the mean fitness of
the final population in the GP was 1306, while the mean fitness of all individu-
als generated by G&T was 411. These results show that the GP was searching
the space more effectively than G&T, and that the GP population was focusing
on high-quality individuals (as opposed to getting lucky and generating a single
better individual than G&T).

5 Conclusions

This paper summarized extensions to the work started in [1]. We showed that
CLASS2.0, a genetic programming system for learning variable selection heuris-
tics for SAT local search could generate heuristics that were truly competitive
(both in terms of runtime and search efficiency) with state of the art local search
algorithms, as well as previous evolutionary approaches.

Previously, a number of algorithms have been proposed which outperform
Walksat and Novelty+ with respect to the number of flips required to solve
satisfiable instances, including those reported in [1], as well as algorithms that
used more sophisticated objective functions and/or clause weighting (e.g., SDF
[10] and previous evolutionary algorithms [3]). Such previous studies have been
more concerned with search efficiency than with the runtimes of the algorithms.
However, search efficiency does not necessarily imply a superior algorithm, be-
cause the per-flip overhead of an efficient search algorithm , incurred due to a
more complex objective function (e.g., clause weighting) or variable selection
heuristic may be inherently too high for it to outperform the standard algo-
rithms in practice. With the recent interest in real-world applications that have
been formulated as SAT instances, SAT is no longer merely an academic bench-
mark problem. In the end, all that matters is speed, and a SAT solver must
actually run faster than the standard algorithms in order to be truly useful to
practitioners. From this perspective, CLASS1.0 was far from the goal of gener-
ating human-competitive results. A substantial engineering effort to implement
CLASS2.0 was required in order to demonstrate that faster SAT solvers could
indeed be generated using this approach.

Thus, the main contribution of this paper is a demonstration that genetic
programming can be used to attack an important problem that has been inten-
sively studied by human researchers for over a decade, and can routinely gener-
ate algorithms that objectively outperform the state of the art, hand-developed
heuristics for a class of difficult instances. The performance of the evolved heuris-

12

tics generalize fairly well to instances from other classes of SAT instances (not
presented here due to space constraints, but generalization results for C2-D3 and
C2-D6 are similar to those obtained for the heuristics evolved by CLASS-1.0[1].
Further improvements to the learning process to maximize the generalization is
the major area of future work.

In addition, we showed that this could be accomplished without seeding the
population with a “library” of hand-coded solutions or excessively complex prim-
itives, as was done in [1]. We also showed that the CLASS genetic programming
algorithm significantly outperformed random search in the space of CLASS-
language s-expressions. These results confirm that the CLASS population-based
algorithm is indeed a reasonable meta-learning algorithm, i.e., that the power
of the system is not just in the representation but in the combination of the
representation and the search algorithm.

Note: Source code for CLASS, including the C2-D8 and C2-D6 expressions,
is available at the author’s home page (search Google for current location).

References

1. A. Fukunaga. Automated discovery of composite sat variable-selection heuristics.
In Proc. AAAI pages 641648, 2002.

2. A. Fukunaga. Efficient implementations of sat local search. to appear in Proceed-
ings of SAT-2004, May 2004.

3. J. Gottlieb, E. Marchiori, and C. Rossi. Evolutionary algorithms for the satisfia-
bility problem. Ewvolutionary Computation, 10(1):35-50, 2002.

4. H. Hoos. Stochastic local search - methods, models, applications. PhD thesis, TU
Darmstadt, 1998.

5. H. Hoos and T. Stutzle. Local search algorithms for sat: An empirical evaluation.
Journal of Automated Reasoning, 24:421-481, 2000.

6. J. Koza. Genetic Programming: On the Programming of Computers By the Means
of Natural Selection. MIT Press, 1992.

7. D. McAllester, B. Selman, and H. Kautz. Evidence for invariants in local search.
In Proc. AAAI pages 459-465, 1997.

8. D. Mitchell, B. Selman, and H. Levesque. Hard and easy distributions of sat
problems. In Proc. AAAI pages 459-65, 1992.

9. D. Montana. Strongly typed genetic programming. Technical report, Bolt, Beranek
and Neuman (BBN), 1993.

10. D. Schuurmans and F. Southey. Local search characteristics of incomplete sat
procedures. Artificial Intelligence, 132:121-150, 2001.

11. B. Selman and H. Kautz. Domain-independent extensions to gsat: Solving large
structured satisfiability problems. In Proc. Intl. Joint Conf. Artificial Intelligence
(IJCAI), 1993.

12. B. Selman, H. Kautz, and B. Cohen. Noise strategies for improving local search.
In Proc. AAAI 1994.

13. B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard satisfia-
bility problems. In Proc. AAAI pages 440-446, 1992.

