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Abstract—The goal of this work is to investigate the possibility
of improving current gamma/hadron discrimination based on
their shower patterns recorded on the ground. To this end
we propose the use of Convolutional Neural Networks (CNNs)
for their ability to distinguish patterns based on automatically
designed features. In order to promote the creation of CNNs
that properly uncover the hidden patterns in the data, and at
same time avoid the burden of hand-crafting the topology and
learning hyper-parameters we resort to NeuroEvolution; in par-
ticular we use Fast-DENSER++, a variant of Deep Evolutionary
Network Structured Representation. The results show that the
best CNN generated by Fast-DENSER++ improves by a factor of
2 when compared with the results reported by classic statistical
approaches. Additionally, we experiment ensembling the 10 best
generated CNNs, one from each of the evolutionary runs; the
ensemble leads to an improvement by a factor of 2.3. These
results show that it is possible to improve the gamma/hadron
discrimination based on CNNs that are automatically generated
and are trained with instances of the ground impact patterns.

I. INTRODUCTION

High-energy gamma-rays constitute one of the best probes
to investigate extreme phenomena in the Universe, such
gamma-rays arising from fast rotating neutron stars or super-
massive black holes. The detection of this kind of astrophysical
radiation, whose energies span from 10 GeV up to 100 TeV,
can be done at lower energies by satellite bourne detectors.
However, above a few hundreds GeV, the flux becomes too
small, and only ground-based experiments can measure indi-
rectly gamma-rays. These experiments take advantage of the
electromagnetic cascade that is produced by the interaction of
gamma-rays with Earth’s atmosphere to infer the direction and
energy of the primary gamma-ray. If the energy of the gamma-
ray is sufficiently high and the detection of the secondary
shower particles is done at high altitude, then it is possible to
survey large portions of the sky and be sensitive to transient
phenomena. The observation of high-energy gamma-rays with
ground-arrays, although effective, comes with a cost: one
has to deal with the huge background of cosmic rays that
bombard the Earth continuously. To select gamma-rays out of
the hadronic background one can explore the characteristics
of the shower development. Contrary to pure electromagnetic
showers, hadron induced showers produce high transverse
momentum particles which lead to the transverse broadening
of the shower and the creation of clusters. Experimentally, the

above features can be explored by measuring the steepness and
bumpiness of the lateral distribution of particles at the ground
with respect to the shower core position or by measuring
the relative amount of signal (number of particles) at large
distances from the shower core. However, the patterns of
the secondary particles at the ground remain to be explored,
although some studies have shown that this might have some
gamma/hadron discrimination power. In this manuscript, we
intend to explore the difference in the patterns at the ground,
between gamma and proton induced showers, recurring to
Artificial Neural Networks (ANNs). We compare the per-
formance of ANNs to the performance of classic statistical
approaches that resort to human-extracted features. To over-
come the difficulty associated to the design of ANNs we
use NeuroEvolution to automate the choice for the topology
and learning strategy (Section III); in particular we use Fast
Deep Evolutionary Network Structure Representation ++ (F-
DENSER++), detailed in Section IV. The results (Section V)
show that the performance of the fittest network generated by
F-DENSER++ surpasses the performance of classic statistical
approaches. The gains in performance represent an improve-
ment by a factor of 2.3; this indicates that with the same grid
of sensors we can perform twice better than other methods;
on the other hand it can lead to investment saving because a
smaller grid of detectors can be used.

II. GAMMA AND PROTON SIMULATION

The above proposed investigations were done using gamma
and proton (hadron) simulations, generated with COR-
SIKA [1], and an experiment layout as described in [2]. The
detectors have been simulated with the Geant4 toolkit [3] and
the recorded signals have been used to reconstruct the main
shower characteristics (energy, direction, primary) so that the
sensitivity of this experiment to gamma-ray sources could
be evaluated realistically. The detector unit is composed of
small water Cherenkov detectors, which maximizes the trigger
efficiency, and segmented resistive plate chambers, which have
a good time resolution providing in this way a good shower
geometry reconstruction. This detector concept was chosen to
lower the energy threshold of previous experiments and bridge
the energy gap between satellite-bourne and present ground-
based experiments.
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The main aim of this work is to prove that the analysis
of the pattern at the ground can be used to improve current
gamma/hadron discrimination techniques. As such, we have
opted to use only for the present study the information
of the water-Cherenkov detectors (WCDs). Moreover, only
showers reconstructed with energies between 1 and 1.7TeV
were used. Secondary shower particles that hit the WCD
will produce light that can be recorded by photomultipliers
mounted sideways. As such, for each shower event, a WCD
station provides the following information: its position (x and y
coordinates of the center of the WCD), and the recorded signal
(approximately proportional to the number of particles in it).
It is only this information that shall be used to distinguish
gamma from hadron induced showers.

In [2], it was demonstrated that this detector concept can
perform the usual gamma/hadron discrimination. Two dis-
crimination variables based solely in the WCD information
where built: Compactness and S40. The former explores the
information in the shower lateral distribution function (LDF),
in particular, the steepness and bumpiness. This is done com-
paring the shower event LDF to a reference gamma LDF, built
from the average of many gamma showers. The variable S40
is used to identify particle clusters away from the shower core.
This is achieved by computing, for stations above 40 meters
away of the reconstructed shower core, the ratio between the
signal of the hottest station and the total signal. Although
there is some level of correlation between the two variables,
they carry independent information. To further explore the
combined discrimination power of Compactness and S40, a
linear discriminant analysis is used, henceforth referred simply
as Fisher. It is worth to mention that although the above
quantities are certainly exploring the shower pattern at the
ground, these classical statistics analyses cannot fully extract
all the information due to the stochastic nature of the shower,
forcing the use of non-parametric cuts.

III. NEUROEVOLUTION

NeuroEvolution (NE) [4] refers to the set of methods that
apply Evolutionary Computation (EC) to automatically opti-
mise ANNs. There are several NE approaches, which are often
grouped according to the target of evolution. For example, Si
et al. [5], David and Greental [6], and Morse and Stanley [7]
optimise the synaptic weights, Shabash et al. [8] search for
the weights and activation functions, and Radi and Poli [9]
evolve neural network learning rules. Differently, Soltanian et
al. [10], Suganuma et al. [11], and Fernando et al. [12] search
only the topology.

The separate optimisation of either the learning strategy or
the topology has proven successful. On the one hand, NE
has shown to be competitive with standard (non-evolutionary)
learning algorithms [7], [13], and does not require the ac-
tivation functions to be differentiable. On the other hand,
when optimising the structure of the network, the evolutionary
results match (and even surpass) the ones attained by grid or
random search, given less computational time [14]. Nonethe-
less, Turner and Miller [15] state that “the choice of topology

<fully-connected> ::= layer:fc <activation> (1)

[num-units,int,1,128,2048 <bias> (2)

<dropout> ::=layer:dropput [rate,float,1,0,0.7] (3)

<activation> ::= act:linear | act:relu | act:sigmoid (4)

<bias> ::= bias:True | bias:False (5)

<softmax> ::= layer:fc act:softmax num-units:10 bias:True (6)

<learning> ::=<bp> [batch size,int,1,50,500] (7)

|<rmsprop> [batch size,int,1,50,500] (8)

|<adam> [batch size,int,1,50,500] (9)

<bp> ::= learning:gradient-descent [lr,float,1,0.0001,0.1] (10)

[momentum,float,1,0.68,0.99] (11)

[decay,float,1,0.000001,0.001] <nesterov> (12)

<nesterov> ::= nesterov:True | nesterov:False (13)

<adam> ::= learning:adam [lr,float,1,0.0001,0.1] (14)

[beta1,float,1,0.5,1] [beta2,float,1,0.5,1] (15)

[decay,float,1,0.000001,0.001] (16)

<rmsprop> ::= learning:rmsprop [lr,float,1,0.0001,0.1] (17)

[rho,float,1,0.5,1] [decay,float,1,0.000001,0.001] (18)

Fig. 1. Example of a grammar for encoding fully-connected networks.

has a dramatic impact on the effectiveness of NE when
only evolving weights; an issue not faced when manipulating
both weights and topology”, and therefore it is beneficial to
evolve the topology and weights simultaneously. Examples
of methods that simultaneously search for the best weights
and topology are ANNA Eleonora [16], NeuroEvolution of
Augmenting Topologies (NEAT) [17], or Cartesian Genetic
Programming Artificial Neural Networks (CGPANN) [18].

The previous methods work well on the optimisation of
the weights and topology of small scale networks, i.e., ANNs
with few neurons; however optimising hundreds or thousands
of weights, and the topology of the network simultaneously
is hard. That is the reason why the vast majority of the ap-
proaches that focus on the optimisation of deep networks [19]–
[21] optimise the topology (e.g., number, type, and sequencing
of layers), and the learning hyper-parameters rather than the
weights, i.e., the methods focus on the optimisation of which
learning algorithm to train the network (e.g., Backpropagation,
or Adam), and its hyper-parameters (e.g., learning rate, or
momentum).

One of the main drawbacks of NE concerns the time
required for evaluating the population of candidate solutions.
NE is on Evolutionary Computation, and thus a population of
candidate solutions is evaluated throughout a (usually large)
number of generations. To evaluate each candidate solution
when the weights are not directly evolved we need to train
the network, and when using large datasets the training process
is time consuming. Therefore, the networks are often trained
for a fixed (low) number of epochs (e.g., 8-10 epochs). To
overcome the burden of evolution we can use clusters of
Graphic Processing Units (GPUs) (e.g., Amazon AWS, or
Google Cloud) [22], evaluate the candidate solutions in a
limited amount of data instances [7], or train for a fixed
amount of epochs/time and let evolution resume the training in
a subsequent generation by loading the previous weights [23].



<fully-connected>

<fully-connected> <activation> <bias>

[{DSGE: 1, 
 {}
]

[{DSGE: 0, 
  {num-units: 256}
]

[{DSGE: 0, 
  {}
]

outer-level:

inner-level:

<dropout> <fully-connected> <softmax> <learning>

<droput>

[{DSGE: 0, 
  {rate: 0.17}
]

[{DSGE: 0, 
  {}
]

... ...

Layer type: fully-connected
Num. Units: 256
Activation: ReLU
Bias: False

Layer type: dropout
Rate: 0.17... ...

Fig. 2. Example of a DENSER’s genotype (top), and corresponding phenotype (bottom). The example is based on the outer-level structure [((fully-connected,
dropout), 1, 10), (softmax, 1, 1), (learning, 1, 1)], and on the grammar of Figure 1.

In the current work we use a variant of Deep Evolutionary
Network Structured Representation (DENSER) [20] to search
for Convolutional Neural Networks (CNNs) to distinguish
between gamma radiations and protons. DENSER, and the
reasons for selecting it are detailed in Section IV.

IV. DEEP EVOLUTIONARY NETWORK STRUCTURED
REPRESENTATION

Deep Evolutionary Network Structured Representation
(DENSER) [20], is a general-purpose grammar-based Neu-
roEvolution (NE) approach. It has successfully been applied
in object detection tasks, and all the user inputs are defined in
a human-readable format, and thus the framework is easy to
adapt to different domains and network structures.

In DENSER, the individuals are encoded using a two
level representation: (i) the outer-level represents the macro-
structure of the network, i.e., the sequence of evolutionary
units1; and (ii) the inner-level keeps the parameters associated
to the outer-level evolutionary unit. Whilst the outer-level is
parameterised by the user-definition of a outer-level structure,
the inner-level is parameterised by means of a Context-
Free-Grammar (CFG). For example, for encoding a fully-
connected network, with fully-connected and dropout layers
the following outer-level structure can be defined: [((fully-
connected, dropout), 1, 10), (softmax, 1, 1), (learning, 1, 1)]2:
that is, the network structure is composed by between 1 and 10
fully-connected and/or dropout evolutionary units, 1 softmax
evolutionary unit, and 1 learning evolutionary unit. The outer-
level structure production-rules require a one-to-one mapping
to the grammar that is used for the inner-level. Figure 1
encodes an example of a grammar; there is a production

1In DENSER the evolutionary units correspond to all aspects of the network
that are to be optimised, e.g., layers and learning strategy, but can also include
data pre-processing and data-augmentation blocks.

2The outer-level structure defines the network sequencing using the follow-
ing format: [(production-rules, min evo units, max evo units), ...]

rule for fully-connected, dropout, softmax, and learning. The
grammar encodes the parameterisation required for each of the
parameters of the evolutionary units; the parameters can be of
one of the following types: integer, float or closed choice, and
the parameter block has the following format [variable-name,
variable-type, num values, min value, max value].

The evolutionary engine of the inner-level of DENSER is
based on Dynamic Structured Grammatical Evolution (DSGE):
a variant of Grammatical Evolution (GE) [24] that solves its
redundancy, and locality issues; there is a one-to-one mapping
between the expansion possibilities and the production rules,
and the genotype grows as needed, meaning that there are no
non-coding parts in the genotype. For more details on DSGE
the reader should refer to [25], [26].

An example of a genotype and phenotype of an individual
using the outer-level-structure [((fully-connected, dropout), 1,
10), (softmax, 1, 1), (learning, 1, 1)], and the grammar of
Figure 1 is shown in Figure 2. The individual of the example
is an ANN with 4 layers (2 fully-connected, 1 dropout, and 1
softmax) and the learning strategy. The inner-level representa-
tion follows the standard of DSGE, where the DSGE integer
represents the expansion possibility; e.g., from Figure 1 we
know that the activation non-terminal symbol has 3 expansion
possibilities (linear, relu, or sigmoid), and therefore “DSGE:
1” on the example implies that we select the relu expansion (as
evidenced on the phenotype). The inner-level genotype and the
phenotype focus without loss of generality on two evolutionary
units.

To promote evolution DENSER introduces genetic opera-
tors specifically tailored for the manipulation of ANNs. The
mutations enable the addition, duplication3, or removal of
evolutionary units (at the outer-level), and the perturbation

3Whilst the addition creates a new evolutionary unit, at random, the
duplication performs a copy by reference, i.e., if during evolution any of
the copies parameters’ is changed all copies are affected.
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Fig. 3. Topology of a Convolutional Neural Network.

of any of the parameters and expansion possibilities (at the
inner-level). The crossover swaps evolutionary units.

To assess the fitness of the individuals they are evaluated
using either a fixed learning strategy (in case only the topology
is the target of evolution), or the learning policy that constitutes
an evolutionary unit (as in the grammar of Figure 1). The
candidate solutions in DENSER are trained for a limited
number of epochs (fixed to 10).

The following sub-sections detail two cumulative vari-
ants of DENSER: Fast-DENSER (Section IV-A), and Fast-
DENSER++ (Section IV-B). These variants solve issues of
the standard DENSER version, that are pointed out next.

A. Fast-DENSER
Evolution in the standard DENSER implementation is car-

ried out as typically in a Genetic Algorithm (GA), i.e., a
population of individuals (often of size 100 or more) is evolved
throughout a large number of generations. This requires a great
number of evaluations, and thus slows down evolution.

As the name suggests the end-goal of Fast-DENSER (F-
DENSER) [27] is to speedup evolution. To accomplish that F-
DENSER replaces the GA evolutionary procedure by a (1+λ)-
Evolutionary Strategy (ES); therefore, in each generation only
1+λ individuals are evaluated. In the conducted experiments
the authors compare DENSER (with a population size of 100
individuals), and F-DENSER (with λ=4) on the evolution of
CNNs; therefore, whilst in DENSER in each generation 100
individuals are evaluated, in F-DENSER only 5 individuals
are evaluated. The results demonstrate that the performance of
DENSER and F-DENSER is the same, but F-DENSER takes,
on average, 20x less time to generate the best solutions.

Another difference between F-DENSER and DENSER lies
on the evaluation stop criteria. Instead of training each in-
dividual for a fixed number of 10 epochs, F-DENSER also
investigates the evaluation of the individuals up to a maximum
GPU time, i.e., all individuals are granted access the same
computational resources. The training for a maximum granted
GPU time makes the assessment of the learning strategy more
adequate as more or less epochs can be performed depending
on the network requirements.

B. Fast-DENSER++
Despite the speedup of F-DENSER over DENSER, the

method is not able to generate networks that are ready for

deployment right-off evolution, i.e., during evolution the mod-
els are evaluated for a fixed number of epochs, or up to a
maximum granted GPU time, but that does not guarantee that
further training time does not increase the performance of the
network.

Fast-DENSER++ [28] (F-DENSER++) builds on top of
F-DENSER by introducing a new mutation operator that
modifies the maximum training time that is granted to each
individual. The rationale is to increase the training as the
networks grow, i.e., during the initial generations the networks
tend to be simple and therefore require less evaluation time; as
time proceeds, the networks become more complex and may
benefit from longer trains.

In the current paper, we conduct the experiments with
F-DENSER++ because it has been proved to be able to
generate highly performing fully-trained models, in less time
than the standard DENSER implementation.

V. EVOLUTION OF CONVOLUTIONAL NEURAL NETWORKS

The gamma-ray detector, as described in Section II, is
composed by 3m × 1.5m individual stations that occupy a full
circle array with a radius of approximately 80m. Therefore,
each event is a matrix with the recorded signal by each of the
cells. The goal is to, based on the signal matrix, distinguish
between gamma radiations and protons. CNNs [29] are suit
for analysing spatially-correlated data, and thus appropriate
for this supervised classification task.

CNNs are a Deep Learning (DL) model, i.e., from the
raw data (i.e., the matrix of signal), the model designs the
features, and then performs classification based on the acquired
data representation. The typical structure of CNNs divides
the hidden-layers in two major blocks: (i) a set of layers
responsible for representation learning and feature extraction,
which is formed by Convolutional and Pooling layers; and (ii)
a set of layers for classification, where fully-connected layers
are used (see Figure 3). Convolutional layers are composed by
a set of learnable filters that are convolved with the input; each
filter connects locally (to what is known as receptive field) to
the input and is activated by different patterns, thus encoding
a different feature. Pooling layers down-sample the input by
aggregating neurons, and consequently reduce the number of
trainable parameters. Fully-connected layers densely connect
to all neurons of the input layer.



Partition #Gamma Instances #Proton Instances
Train 22541 20261

Validation 1691 1519
Test 3945 3546

Generalisation 13879 12474
TABLE I

DESCRIPTION OF THE DATASET PARTITIONS.

The design of CNNs requires the definition of: (i) the
topology, i.e., the number of layers, type, sequencing, and pa-
rameterisation; and (ii) the learning strategy, i.e., the learning
algorithm, and its parameterisation. Instead of hand-designing
a CNN that is able to solve our gamma-ray detection problem
we use F-DENSER++ to automate the search.

The dataset description, the parameterisation of F-
DENSER++, and the fitness function are respectively detailed
in Sections V-A, V-B, and V-C. The experimental results are
presented in Section V-D, and are discussed in Section V-E.

A. Dataset

The dataset is composed by 79856 instances (shower events)
of two disjoint classes: gamma or proton. Each instance is a
100 × 45 matrix, where each position represents the energy at
a specific 3m × 1.5m cell of the circular grid of radius 80m.
The positions of the matrix where there are no cells (because
the grid is circular and the matrix is rectangular) are set to 0.

We partition the dataset into 4 independent sets. The first 3
are used during evolution:

Train – used for training the individual with the evolved
learning strategy;

Validation – necessary for measuring the loss during the train,
to perform early stopping;

Test – applied to compute the fitness of the network after
the training. This fitness value defines the quality
of the individual and guides evolution.

The last partition is used after the end of the evolutionary
search, and measures the generalisation ability of the models.
If this partition was not created it would be impossible to
perform an unbiased evaluation of the generated networks
because evolution is conducted towards the test partition, and
consequently it is expected that the networks perform well
on it; that does not mean that they perform well beyond the
data used during evolution. The number of instances of each
partition is detailed in Table I.

B. Experimental Setup

To apply F-DENSER++ to the evolution of CNNs first of all
we need to define the outer-level structure and the inner-level
grammar. We use the outer-level structure: [(features, 1, 30),
(classification, 1, 10), (softmax, 1, 1), (learning, 1, 1)], and the
grammar of Figure 4. The search space encompasses CNNs
with between 3 and 41 layers, and all parameters including
the learning strategy are encoded in the grammar.

F-DENSER++ parameters are summarised in Table II. The
table is divided into two independent sections: (i) evolution-
ary parameters – specify the evolutionary engine properties

<features> ::=<convolution> |<convolution> (1)

|<pooling> |<pooling> (2)

|<dropout> |<batch-norm> (3)

<convolution> ::= layer:conv [num-filters,int,1,32,256] (4)

[filter-shape,int,1,2,5] [stride,int,1,1,3] (5)

<padding><activation><bias> (6)

<batch-norm> ::=layer:batch-norm (7)

<pooling> ::=<pool-type> [kernel-size,int,1,2,5] (8)

[stride,int,1,1,3] <padding> (9)

<pool-type> ::= layer:pool-avg | layer:pool-max (10)

<padding> ::= padding:same | padding:valid (11)

<classification> ::=<fully-connected> |<dropout> (12)

<fully-connected> ::= layer:fc <activation> (13)

[num-units,int,1,128,2048 <bias> (14)

<dropout> ::=layer:dropput [rate,float,1,0,0.7] (15)

<activation> ::= act:linear | act:relu | act:sigmoid (16)

<bias> ::= bias:True | bias:False (17)

<softmax> ::= layer:fc act:softmax num-units:2 bias:True (18)

<learning> ::=<bp><stop> [batch size,int,1,50,300] (19)

|<rmsprop><stop> [batch size,int,1,50,300] (20)

|<adam><stop> [batch size,int,1,50,300] (21)

<bp> ::= learning:gradient-descent [lr,float,1,0.0001,0.1] (22)

[momentum,float,1,0.68,0.99] (23)

[decay,float,1,0.000001,0.001] <nesterov> (24)

<nesterov> ::= nesterov:True | nesterov:False (25)

<adam> ::= learning:adam [lr,float,1,0.0001,0.1] (26)

[beta1,float,1,0.5,1] [beta2,float,1,0.5,1] (27)

[decay,float,1,0.000001,0.001] (28)

<rmsprop> ::= learning:rmsprop [lr,float,1,0.0001,0.1] (29)

[rho,float,1,0.5,1] [decay,float,1,0.000001,0.001] (30)

<stop> ::= [early stop,int,1,5,20] (31)

Fig. 4. Grammar used by F-DENSER++ for the evolution of CNNs to classify
between gamma and proton.

(number of generations, mutation rates, etc.); and (ii) train
parameters – enumerate the learning parameters that are fixed
for all networks. The default training time is of 10 minutes,
and can increase in multiples by mutation.

No data augmentation strategy is used, and the dataset is
pre-processed by feature-wise centering and standard deviation
normalization.

C. Fitness Function

To evaluate the fitness of each individual, we evaluate the
model in the test partition, and compute the true positive rate
(TPR) and false positive rate (FPR) to build the Receiver Op-
erating Characteristic (ROC) curve; we consider the positive
class as the instances classified as proton. The fitness of each
individual (ind) is calculated as:

fitness(ind) = max

(
TPR(x)√
FPR(x)

)
,

where TPR(x) and FPR(x) represent the TPR and FPR of the
model at the point x of the FPR threshold, respectively. Since
we are maximising, the models assigned with higher fitness



TABLE II
EXPERIMENTAL PARAMETERS.

Evolutionary Parameter Value
Number of runs 10

Number of generations 100
λ 4

Add layer rate 25%
Duplicate layer rate 15%
Remove layer rate 25%
DSGE-level rate 15%
Train time rate 20%

Train Parameter Value
Default train time 10 minutes

Loss Categorical Cross-entropy

values are those with a higher respose of TPR for each FPR
point, with emphasis to points with low FPR threshold.

The choice of the fitness function is connected with the fact
that the observation of astrophysical gamma-ray sources relies
on the identification of gamma-rays which are immersed in a
huge cosmic ray (hadronic) background. As the background
is continuous and isotropic, while gamma-ray are localized in
space, if one acquires during enough time, an excess of events
coming from the gamma-ray sky region should be visible. To
state that there is an excess, the number of gamma-ray events
has to be greater than the fluctuations of the background. As
events are considered independent the fluctuations follow the
Poisson distribution, i.e., the square root of the number of
events measured. By taking the number of background events
much greater than the number of signal events, one can neglect
the signal contribution in the square root which finally leads
to the chosen fitness equation.

D. Experimental Results

The analysis of the experimental results focuses on the
performance of the evolved networks, measured on the evolu-
tionary test set. The fitness function described in Section V-C
is strictly related to the ROC curve, and thus in Figure 5 we
depict the ROC curves (measure over the generalisation set) of
the fittest networks that achieve the worse, median, and highest
fitness values. The fittest networks are selected according to
their fitness value on the test set.

The curve of the individual with the median fitness value
is close to the curve of the best individual, indicating that
the results are consistent, i.e., a high performing network
is not discovered by change, but is rather an outcome of
the evolutionary search of F-DENSER++. The minimum,
average, and maximum fitness values are 4.07, 5.27, and 6.26,
respectively.

Despite the importance of the analysis of the overall results,
the ultimate goal is to select a model that is capable of
addressing the problem we have at hand, in this case, a
CNN which is capable of classifying between gamma and
proton. We select the best performing network according to the
evolutionary test fitness. Recall that this choice is not biased
because we will be later comparing the results based on a
different, disjoint, set of instances.

TP
R

FPR

Fig. 5. ROC curves of the worse, median, and best fittest individuals. A
logarithmic scale is used.

The topology of the best performing network is shown
in Figure 6. The CNN is composed by 5 hidden-layers:
4 convolutional, and 1 fully-connected; contrary to what is
common in hand-designed CNNs there are no pooling layers
which demonstrates that evolution helps generating novel and
out of the box topologies that human-designers would hardly
think of. The fittest CNN is trained using the Adam [30]
learning algorithm with a learning rate of 0.0001, a beta 1
of 0.75192, a beta 2 of 0.91021; the learning rate decay
is 0.00047, and the batch size is 98. The fittest CNN is
compared with the performance obtained by other approaches
in Section V-E.

Given the applicational type of the task, although it is
not required for the network to perform in critical-time it is
important that it predicts fast. The network reports an average
prediction time of approximately 109 ms, i.e., 10 frames-per-
second; this time includes the pre-processing. To enable future
comparisons it is important to mention that the experiments
are conducted in a dedicated machine, with 4 NVIDIA 1080
Ti GPUs (each with 12GB), 64 GB of RAM, and a Intel Core
i7-6850K @ 3.60GHz CPU. The predictions are carried out
at the CPU level; GPUs are used for training.

E. Discussion

Figure 7 compares the ROC curves of the fittest CNN
discovered by F-DENSER++, with the performance reported
by the classic statistics (Compactness, S40, and Fisher). In
addition to the fittest network we also investigate the perfor-
mance of the ensemble formed by the best networks (one from
each run); the generated networks are diverse in topology, and
consequently are likely to be better suit for some patterns of
inputs over others, i.e., while some of the networks can fail
to predict a specific instance others can predict it correctly.
The ensemble is formed by 10 voters (the fittest CNN of
each evolutionary run), and the predicted class is computed
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Fig. 6. Topology of the fittest CNN discovered by F-DENSER++.

based on the maximum of the average confidences. For all
methods the performance is measured on the same partition
of the data, and thus the results are comparable. The data is the
same of [2], but distinct from the one used in the evolutionary
experiments; nonetheless, it generated from the same source. It
consists of 1158 instances: 328 gamma, and 830 protons. The
dataset is unbalanced and follows the distribution expected in
nature.

The analysis of the plot shows that the CNNs generated
by F-DENSER++ surpass the results obtained by the classical
statistics. Further, the fitness values of the fittest CNN, ensem-
ble, Compactness, S40, and Fisher are of approximately 8.34,
9.89, 3.13, 3.35, and 4.22, respectively. Comparing to the best
result of the classic statistics, the generated CNNs promote
improvements by a factor of 2, and 2.3 for the fittest CNN,
and ensemble, respectively.

FPR

TP
R

Fig. 7. Comparison between the CNNs discovered by F-DENSER++ (best
and ensemble) and other ML methods: Compactness, S40, and Fisher. A
logarithmic scale is used.

VI. CONCLUSIONS AND FUTURE WORK

Gamma-ray detection helps investigating extreme phenom-
ena in the Universe, e.g., gamma-ray burst arising from fast
rotating neutron stars or supermassive black holes. In this
work it is our objective to use deep learning to improve
the gamma/hadron discrimination, based on the patterns they
produce at ground impact. The impact patterns are stored
as matrices of signal, where each position keeps the energy
detected in a specific WCD. Therefore, this task is suitable
for the application of CNNs: a deep learning network that is
known for its ability to learn to distinguish patterns in complex
signals.

The problem associated to the deployment of CNNs is
related to the design and parameterisation difficulties: the
networks are composed by several layers, each with specific
parameters; in addition to the definition of the layers and
their sequence we require the choice for the most effective
learning algorithm and its hyper-parameters. To overcome this
challenge we use F-DENSER++ to automatically search for
an effective CNN for our gamma-ray detection problem.

The results show that not only is the CNN generated by F-
DENSER++ able to solve the gamma-ray detection problem,
but it does so surpassing the performance reported by previous
classic methods, namely compactness, S40, and Fisher. Whilst
the fittest CNN reports a fitness value of 8.34, the best perfor-
mance of the classic methods is of 4.22, i.e., an improvement
by a factor of 2. This result is even more surprising when
forming an ensemble composed by the 10 best CNNs: the
fitness increases from 8.34 to 9.89, that corresponds to an
improvement by a factor of 2.3.

Future work will expand in two separate directions: (i)
investigate the performance of F-DENSER++ in the search for
CNNs for different primary energy; and (ii) study the impact
of the detector configuration on the detection performance



(e.g., number and shape/dimensions of the sensors). In terms
of evolution we will incorporate the number of layers and
trainable parameters in the evolutionary objectives, with the
rationale of generating more compact networks that may be
easier to analyse and validate; this will be carried in a multi-
objective fashion.
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