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ABSTRACT
Complex networks have attracted a large amount of research
attention, especially over the past decade, due to their preva-
lence and importance in our daily lives. Numerous human-
designed models have been proposed that aim to capture
and model different network structures, for the purpose of
improving our understanding the real-life phenomena and its
dynamics in different situations. Groundbreaking work in
genetics, medicine, epidemiology, neuroscience, telecommu-
nications, social science and drug discovery, to name some
examples, have directly resulted. Because the graph mod-
els are human made (a very time consuming process) us-
ing a small subset of example graphs, they often exhibit
inaccuracies when used to model similar structures. This
paper represents the first exploration into the use of ge-
netic programming for automating the discovery and algo-
rithm design of graph models, representing a totally new
approach with great interdisciplinary application potential.
We present exciting initial results that show the potential of
GP to replicate existing complex network algorithms.

1. INTRODUCTION
A network can generally be considered as any set of items

which are interconnected by physical or conceptual physical
links. A graph is the natural mathematical abstraction of
this idea. A complex network [17] is a network where the
structure or pattern of the links impart some meaning, it
is important to note that the term complex as it is used
here does not necessarily refer to the size of the graph or
the number of links. Complex networks arise naturally, for
instance in the form of patterns of contact between peo-
ple, creating social networks[22][21]. The network formed
between academic papers which cite each other[10] and the
linkage structure of the world wide web are both examples
of information networks[15]. Power distribution systems[3]
and airline routes[3], as well as the physical Internet are all
examples of technological networks[3][18][2]. While complex
networks are all around us, they are still not well-understood
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and the field of complex networks is still rapidly growing.
Building graphs to visualize and understand information

has been a long-standing practice in many fields including
the social sciences, biology, chemistry, physics, computer
science, and mathematics. Understanding the patterns of
connections that arise between components in these net-
works furthers our understanding of the interactions and
behaviours of the components, as well as the behaviour of
any processes acting on the network itself[18]. A graph model
is an algorithm that describes the manner in which vertices
are connected (Figure 1 illustrates this process).

Figure 1: A graph model produces a set of graphs

By building graph models that describe the pattern of
connections within networks, many of their properties can
be precisely measured and accurate estimations of the be-
haviours of processes acting upon them can be made[18]. For
example, if we could understand the patterns of connections
that arise in epidemiological networks then the spread of dis-
ease within those networks can be better predicted; the num-
ber of infected individuals at a given time step could perhaps
be estimated, or effective vaccination practices could be de-
vised. Accurate graph models could contribute significant
advancements in many fields given that there is a method
for producing them, a task that traditionally has been done
by hand – a difficult and time consuming process[17][18].

An automated approach to the construction of graph mod-
els would significantly reduce the amount of human effort re-
quired, and could potentially out-perform human attempts
at constructing graph models, especially when the network
at hand has a large number of edges or vertices. Humans
are only capable of manually processing a relatively small
amount of data, so human-generated models are created us-
ing a small subset of real-world examples. These models
are not necessarily accurate for other graphs, although evi-
dence can be given as to their general structure. Automated
models have the potential for being robust to any given real-
world data.

The automatic construction of graph models is not with-
out its caveats. The most obvious being the choice of met-
rics used to determine how well the constructed graph model
fits the target network. The process that created the tar-
get network is not known a priori, so the problem is one



of graph comparison. However, this is not a graph isomor-
phism problem because the goal is not to produce the same
graph but rather an algorithm that produces a set of graphs
with similar properties as the given graph. The structure
of two graphs can be compared without checking for iso-
morphism, but if the selection of comparison metric is not
a careful one then a seemingly good match could be a poor
one in reality. Another very important consideration is that
the discovered model must not only be able to replicate the
structural properties of the given example graphs, but also
be able to replicate the manner in which it grows over time.
Overfitting to the given graph is a strong possibility.
This paper proposes the first attempt at the automatic

generation of graph models for complex networks. The fol-
lowing sections examine the feasibility of Koza-style Ge-
netic Programming (GP) for discovering graph models from
known undirected, unweighted, graphs of less than 500 ver-
tices. All target graphs have been constructed using known
graph model algorithms, allowing for an algorithmic com-
parison. Section 2 gives a brief overview of the relevant
graph models, a description of some real-world networks,
and provides some necessary definitions. Section 3 describes
the GP system used, the GP language, as well as the fitness
function and evaluation process. Finally, section 4 describes
the experimental setup and results.

2. BACKGROUND
There are a number of existing graph models that have

been proposed to model specific properties observed in real-
world networks. Some have gained a great deal of atten-
tion in the literature, and perhaps the three most ground-
breaking works have been the random graph model by Erdös
and Rényi[11], theWatts and Strogatz small-world model [23],
and the Barabási and Albert model[5]. The Erdös and Rényi
model being the first foray into the construction of graph
models and, as such, is the most well-studied. This model
is important because it shows that understanding a model
means that properties of the graphs produced by it can be
computed exactly, or estimated accurately. Understanding
a model and how it generates a given network requires an
understanding of some basic properties.

2.1 Measurable Properties of Networks
Estimations about the similarity of graphs constructed

with a graph model to real-world networks can be made by
measuring various properties within the graphs and com-
paring them to a measure of the same properties in the
real-world network. A large number of property measures
have been proposed, but some commonly used for comparing
network structure include the average geodesic path length,
the diameter of the network, the average vertex degree, the
clustering coefficient, sometimes called transitivity, and the
degree distribution[4][17].
The degree, k, of a vertex is the number of edges that

are attached to it. The average vertex degree, 〈k〉, is the
average of all vertex degrees in the network.

〈k〉 = 1

n

n∑
i=1

ki, (1)

where n is the number of vertices in the network, and ki is
the degree of vertex i.
A geodesic path is defined as the minimum distance

Figure 2: Two non-equivalent graphs with the same
degree distribution

between between two vertices and the average geodesic
path length is defined as the average of all geodesic paths
in the network. Let l be the average geodesic path length,
n be the number of vertices, and i and j be vertex pairs[17].

l =
2

n(n+ 1)

∑
i≥j

dij, (2)

The diameter of a network is the largest geodesic path
between any vertex pair. A component is a subgraph G′ ⊆
G where there exists a path between any pair of vertices
v1, v2 ∈ G′, and there does not exist a v3 ∈ G \G′ such that
there exists a path between v3 to any v ∈ G′.

The global clustering coefficient measures how con-
nected a vertex’s neighbours are to each other, i.e. it is a
measure of the number of triangles in the graph[25][17].

C =
number of triangles× 3

number of connected triples
(3)

A “connected” triple in this context means a set of three
vertices a, b, c where a is connected to b and c is connected
to b but a and b may or may not be connected[17]. For
local as well as alternate definitions of the global clustering
coefficient, see Watts and Strogatz [23], Newman[17] and
Zager[25]. The clustering coefficient is frequently a good
indicator as to which graph model fits a given network or to
check if a network may just contain random connections[2,
18, 17]. The global clustering coefficient can be computed
in O(|V |〈k〉2) where |V | is the cardinality of the vertex set,
and 〈k〉 is the average vertex degree.

The degree distribution refers to the distribution that
describes the probability of choosing a random node with a
given degree within a network[17]. The degree distribution
can reveal quite a bit about a graph’s structure, but alone
it does not give all the structural information. Consider the
two graphs in Figure 2; the graph on the left and the graph
on the right have the same degree distribution but are not
equivalent.

Despite this caveat, degree distributions can still give quite
a bit of information. In many cases it is enough informa-
tion to identify graphs produced by one model versus an-
other model, or enough information to discern which model
may be most suited to a particular network[17, 18]. The
Kolmogrov-Smirnov test (KS-test) is a good candidate for
comparing degree distributions because the only restriction
is that the distributions be continuous. The test statistic,
Dn,n′ , for a two-sample KS-test is defined as[9]: Dn,n′ =
supχ|F1,n(χ)− F2,n′(χ)|, where F1,n is the empirical distri-
bution function of the first sample, and F2,n′ is the empiri-
cal distribution function of the second sample. Minimizing
Dn,n′ minimizes the difference between the distributions.



2.2 Graph Models of Complex Networks
Intuitively, it is easy to surmise that real-world networks

have a structure that is not random. Generally speaking, the
structure and pattern of links between nodes is likely based
on the function of the network itself[1, 24, 12, 23]. Observa-
tionally, networks dealing with people have global clustering
coefficients which tend to be larger still[19, 6]. The appropri-
ate measure can actually reveal a relationship between a par-
ticular network and a particular model[4]. While real-world
networks provide an interesting and practical application for
complex network research, this paper will concentrate on
known models – the goal of this study is to demonstrate
the efficacy of a GP approach to automatic model genera-
tion and this is most evident when the true graph model is
known.

2.2.1 The Erdös and Rényi Model
The Erdös and Rényi model builds a graph by taking some

number of vertices n and connecting each vertex pair with
some probability p, producing a graph denoted Gn,p. The
model represents the ensemble of all Gn,p graphs in which
a graph having m edges appears with probability pm(1 −
p)(M−m), where M = 1

2
n(n− 1) is the maximum number of

edges[18]. In the limit of large n, keeping the mean degree
z = p(n−1) constant, the probability, pk, of a vertex having
degree k is

pk =

(
n
k

)
pk(1− p)n−k ' zke−z

k!
, (4)

with the approximation becoming exact in the limit of large
n and fixed k. The degree distribution for the random graph
is a Poison distribution[18].
If it was known that a network was constructed using the

Erdös and Rényi model, and how that model was config-
ured, then very accurate estimations could be made about
the nature of diffusive processes acting on the network or
transmissions within the network. Estimations about the
effect of removing nodes or edges could also be computed.
These estimations, made based on the model and not the
network itself, would not only apply to the current network
configuration but scale with the network if it were to grow or
shrink. This illustrates the motivation behind constructing
models of complex networks.

2.2.2 The Small-world Model
The small-world model, proposed byWatts and Strogatz[23],

focuses on modelling two important aspects of many real-
world networks – the diameter of the network remains small
despite a large number of vertices within it, and if two ver-
tices share the same neighbour then it is very likely that
they are themselves neighbours. The Watts and Strogatz
small-world model is built by creating a ring of L vertices in
which each vertex is connected to each of its neighbours up
to k spaces away from itself. Then each edge is considered
in turn and with probability p one of its ends is “rewired” to
a new vertex chosen uniformly at random. This results in a
high connectivity among a vertex’s neighbouring vertices as
well as a low upper bound on geodesic path length. While
the Watts-Strogatz model produces graphs with transitivity
values and path lengths which are similar to some real-world
networks, it fails to produce graphs with realistic degree dis-
tributions. It can be shown that the degree distribution of

small-world graphs corresponds to[17]:

pk = e−cp (cp)
k−c

(k − c)!
, (5)

where pk is the probability of a vertex having degree k, c is
the initial degree of each vertex before the rewiring process,
p is the probability of rewiring. Depending on the applica-
tion the unrealistic degree distribution may or may not be
a problem, the model was never intended to produce graphs
with distributions that matched those found in real-world
networks, only the transitivity and path length were consid-
ered. Models such as the Barabasi-Albert model attempt to
address the issue of degree distribution.

2.2.3 The Barabási-Albert Model
The Barabási-Albert[5] was based on the observation that

many real-world networks, such as the World Wide Web
(WWW) exhibit a degree distribution which follows a power-
law[18]. In such networks, the probability Pk =∼ k−α,
where α is some constant, is the probability that a ver-
tex chosen uniformly at random has degree k. Price had
observed a similar degree distribution in citation networks
which are directed and acyclic and had constructed his own
earlier model to which the Barabási-Albert model bears some
resemblance[20][17].

1. Growth: Starting with (m0) vertices, at each time step
a vertex with, m ≤ m0 edges, is added and attached
to m different vertices already present.

2. Preferential attachment: The probability that a new
vertex will be connected to vertex i depends on the
degree ki of vertex i, such that

Π(ki) = ki

[∑
j

kj

]−1

. (6)

It can be shown that after t time steps the scale-free net-
work will have N = t+m0 vertices and mt edges.

3. GP SYSTEM
Results were generated using RobGP[13, 14], a Koza-style

Genetic Programming (GP) system, subtree crossover and
grow-style mutation were used as genetic operators. The
initial population was generated using the grow method[16].
All operations were strongly typed. Each GP-evolved model
was executed three times each to produce three graphs per
individual, features in the produced graphs were then com-
pared to features in a target network in order to assign a
fitness value to each evolved model in the population.

3.1 GP Language
In order to produce useful trees, strong typing was used

to enforce a particular tree shape, which was evaluated in
the following manner. The root node has three branches,
each containing a list of actions. One branch for initial-
ization, one branch which defines growth actions, and one
branch which describes finalization actions. Operations in
the initialization branch were responsible for adding ver-
tices or specifying how vertices were to be added during the
graph building process. Growth operations were responsible



for adding edges to the graph, and was executed n times
per evaluation, where n is the desired number of vertices
in the generated network. Finalization operations are any
operations which needed to assume edges and vertices were
already present in the graph, edge removal, for example.
Figure 3 illustrates the tree structure.

Figure 3: The shape of the trees used by the GP

While there has been no previous research applying GP
to the problem of automatically generating graph models
for complex networks, there are quite a few proposed mod-
els that have been constructed manually[11, 5, 23]; Newman
provides a good overview[17]. The GP language was de-
signed with various existing graph models in mind. In addi-
tion to a basic set of math operators, {+,−, ∗,%}, Ephemeral
random constants (ERC), IF structures, and the relational
< operator, the language includes:

• Initialization actions:

– ADD_ALL_NODES: Initialize all nodes.

– BUILD_RING: Add all nodes and build a ring.

– SET_GROW_NODES: Specify nodes are added at each
iteration (grow).

• Growth actions:

– CREATE_TRIANGLE: Creates a triangle which in-
cludes the current node in the active graph.

– CONNECT_W_PROB(p): Connect to each node with
a specified probability, p.

– CONNECT_RAND: Connects the current node in the
active graph to some random node in the active
graph.

– CONNECT_STUB(p): Connects an edge from the
current node to a node that has previously ex-
ecuted CONNECT_STUB(p). If no suitable node has
made an edge request, then an edge request is
made. Requests are stored in a binary heap struc-
ture, heapified by the degree of the vertex which
made them. Requests are satisfied probabilisti-
cally according to priority. A request to satisfy
is selected randomly from the range p|R| starting
from the top of the heap, where |R| is the cardi-
nality of the set of edge requests. Once all edge
requests made by a node are satisfied its entry is
removed from the priority queue of edge requests.
A vertex can make more than one request and a
vertex cannot satisfy its own request. Each call
to CONNECT_STUB can only make or satisfy a single
request.

• Finalization actions:

– REWIRE_EQUAL_PROB(p): Rewire all edges with prob-
ability p.

– REWIRE_RANDOM: Randomly rewire edges.

– REMOVE_PROB(p): Remove each edge with proba-
bility p.

• Terminals:

– CURRENT_NODE_DEGREE: Returns the degree of the
current vertex in the active graph.

– AVG_DEGREE: Returns the average vertex degree in
the active graph.

– MAX_DEGREE: Returns the max vertex degree in the
active graph.

– BETWEENESS_CENTRALITY: Gives the betweenness
centrality of the current vertex in the active graph[17].

– CLOSENESS_CENTRALITY: Gives the closeness cen-
trality of the current vertex in the active graph[17].

– TOTAL_VERTEX_COUNT: Returns the vertex count of
the active graph.

– TOTAL_EDGE_COUNT: Returns the edge count of the
active graph.

Probabilities are automatically selected from a pre-generated
list, P of probabilities where,

P = {0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.

All functions that take probabilities as an argument take
a floating point number, a, as a parameter. The value a
is mapped to an index, i = a MOD |P |. The probability
p = Pi is then passed to the function.

3.2 Fitness Function and Evaluation
The objective of the GP is to evolve graph models that

produce graphs having similar characteristics to some target
network. Because the model which produced the target net-
work is unknown to the GP system, the target network itself
must be compared to the graphs produced by the evolved
models, called the active models. This gives an indirect mea-
sure of the fitness of the model. Comparing graphs for iso-
morphism is known to lie somewhere between the P and NP
complexity classes[8]. However, this is not the goal in this
work. Reasonable graph models have been benchmarked in
the past by comparing how well they reproduce a particular
feature of a set of complex networks[5, 23, 17]. The goal
is not to reproduce a graph identical to the target network,
rather to determine a graph generation algorithm able to
produce graphs that are similar in some way or set of ways.
The GP used in this work used a multi-objective, weighted
and normalized, summed-ranks strategy[7]. The raw fitness
objectives are defined as:

F1Raw = |l(tgt)− 1
3

∑3
i=1 l(actv)i|,

F2Raw = [C(tgt)− 1
3

∑3
i=1 C(actv)i]

2,

F3Raw = 1
3

∑3
i=1 Dtgt,actvi

(7)

The raw fitnesses are used during evolution in order to com-
pute the ranks of each model. For presentation, they are



adjusted to values in the range [0, 1] with a value of 1 being
the most desirable. These adjusted fitnesses are computed
as follows:

F1 = [1 + (F1Raw
n

)]−1,

F2 = [1 + |C(tgt)− 1
3

∑3
i=1 C(actv)i|]−1,

F3 = 1− F3
n

(8)

where i corresponds to one of each of 3 active graphs pro-
duced by each model, l(target) is the average geodesic path
length of the target graph, l(actv) is the average geodesic
path length of an active graph, C(tgt) and C(actv) are global
clustering coefficients of the target and an active graph re-
spectively, and Dtgt,actvi is the KS-test statistic compar-
ing the degree distribution of the target graph to an active
graph.
The objective weights were empirically determined, and

set at 1
4
, 1

4
, 1

2
, for F1Raw, F2Raw, and F3Raw, respectively.

It was found via preliminary experimentation that the KS-
test statistic was much harder to minimize than the average
path length or clustering coefficient. Objective weighting
was the simplest way to keep the GP from trading off small
gains in the differences in average path length and clustering
coefficient at the expense of the fit of the degree distribu-
tion. The decision for using a squared difference versus an
absolute difference was established empirically for F1Raw
and F2Raw.
The degree distribution yields a large amount of infor-

mation regarding the structure of a graph and the KS-test
statistic was used to incorporate some of that information[17].
The average geodesic path length and the clustering coeffi-
cient have also been shown to be extremely useful measures
for estimating graph structure[4].
Before the fitness values are computed for any graph pro-

duced by an evolved model, the generated graph was first
simplified to remove any self-loops or multi-edges. When
calculating the average geodesic path length, if there was no
path between a vertex pair the length of the path was re-
turned as the size of the vertex set, a value larger than any
possible path. If the graph was empty, the worst possible
fitness values were assigned.

4. EXPERIMENTATION AND RESULTS
The objective of the experiments conducted was to see if

the GP system could automatically reproduce reasonable ap-
proximations of the Erdös-Rényi model, the Barabási-Albert
model, and the Small-world model given a sample graph
produced by each algorithm as a target. All experiments
used the parameters described in Table 1. During prelimi-
nary experimentation a population size of fifty was found to
produce results similar to larger populations. Erdös-Rényi
target graphs were produced with an edge probability of,
p = 0.05. Barabási-Albert target graphs were always cre-
ated using linear preferential attachment, a power of α = 1,
and by adding one vertex per iteration. Small-world target
graphs were always created using 6 neighbours, 3 on each
side, and a rewiring probability of 0.2.
All GP trees presented here were collected and converted

into a more readable pseudocode. The functions described
in Section 3.1 represent the GP language being used.
In the first experiment the GP system was initially used

to evolve three populations of algorithms meant to approxi-

Table 1: GP parameters.

Parameter Value
Generations 70
Population Size 50
Initialization Method Grow
Grow Min 3
Grow Max 5
Selection Tournament, k=3
Graphs per evaluation 3
Crossover Subtree Crossover, 0.90
Mutation Grow, 0.1, linearly decreasing

min depth = 1,max depth = 4
Runs 30

Algorithm 1 ER200 algorithm

P [] = {0.01, 0.02, 0.05, 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0};
BUILD_RING(); {Add all nodes and connect in a ring.}
for each node n do
CONNECT_W_PROB(P [TOTAL_EDGE_COUNT() MOD 13]);

end for

mate the Erdös-Rényi model. Data was collected using 200,
300, and 400 vertex target graphs, respectively. The second
experiment was meant to evolve individuals which approxi-
mated the Barabási-Albert model, a 200 vertex graph gen-
erated by the Barabási-Albert model was used as a target.
The third experiment evolves individuals to approximate the
Small-world model, a 200 vertex graph was used as a target.
The best individuals from each experiment were collected by
comparing their fitness values, and by inspection of the av-
erage degree distribution plot vs the degree distribution plot
of the target models. The best of these evolved algorithms
were called ER200, ER300, ER400, SW200, and BA200. The
first two letters of their names indicate the type of target
model which was used to evolve the individual, and the nu-
meric part indicates the size of that target model.

The fourth and final experiment, was conducted in or-
der to examine how well the evolved models predicted the
growth of their target graphs. Once the individuals are col-
lected, they are each used to generate thirty graphs at sizes
of 200, 400, 600, 800, and 1000 vertices. Graphs of the same
number of vertices were then generated by the Erdös-Rényi,
Barabási-Albert, and Small-world models. The graphs pro-
duced by ER200, ER300, ER400, SW200, and BA200 were
compared to graphs of the same size produced by the model
they were to approximate. The fitness functions were ap-
plied in order to compare the graphs produced by the evolved
models to the graphs produced by the original algorithms.
The average fitness values, µ, and the standard deviations,
σ, were recorded. Being able to predict future trends with
the model is enormously important and informative, and it
is a major motivation for this work. That is, producing only
graphs of the same size as the target is of very limited use
and we show here the ability of the evolved graphs to capture
the growth dynamics of the given algorithms.

4.1 Results
The ER200 algorithm in Algorithm 1 bears a strong sim-

ilarity to the Erdös-Rényi model given in Section 2.2.1. It



Algorithm 2 ER300 algorithm

ADD_ALL_NODES();
for n in 1..N do
CONNECT_W_PROB(0.01);
CONNECT_RAND(); {Connect node n to a random node.}
CONNECT_STUB(TOTAL_VERTEX_COUNT()); {Satisfy an
edge request in the first P [|V |] ∗ |queue| portion of the
request queue or make a request if there are none to
satisfy.}
CONNECT_W_PROB(0.01);

end for
REWIRE_RANDOM(); {Randomly rewire all edges.}

Algorithm 3 ER400 algorithm

P [] = {0.01, 0.02, 0.05, 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0};

ADD_ALL_NODES();
for n in 1..N do
CONNECT_W_PROB(P [TOTAL_EDGE_COUNT() MOD 13]);
CONNECT_STUB(CLOSENESS_CENTRALITY() MOD 13);
CONNECT_W_PROB(P [TOTAL_EDGE_COUNT() MOD 13]);
CONNECT_RAND();
CONNECT_STUB(BETWEENNESS_CENTRALITY() MOD 13);

end for
REWIRE_RANDOM();

makes use of the CONNECT_W_PROB function. However, the
BUILD_RING function adds some additional structure, guar-
anteeing a connected graph exists, the Erdös-Rényi model
makes no such guarantee. However, the target graph does
contain a very large connected component which seems to
have led to this outcome.
The ER300 algorithm is more similar to the Erdös-Rényi

model, as shown in Algorithm 2. It adds all vertices to
the graph, then systematically adds edges. Note that in
the case of a 300 node graph the probabilistic section adds
nodesp = 0.01∗300∗2∗300 = 1800 nodes. The CONNECT_STUB
function adds 150 edges – one edge for each vertex pair. This
gives a total of 1800+150 = 1950 edges. The edges are then
rewired uniformly over the entire graph. This is similar to
the idea of adding a set number of edges randomly to a
graph which contains only vertices. In fact, the algorithm
automatically discovered a different formulation of the Erdös
and Rényi model. The probability of adding an edge in the
evolved model becomes[17]:

p = m

(
n
2

)−1

= 1950

(
300
2

)−1

= 0.0435, (9)

which is very close to the probability parameter used to con-
struct the target graph.
The ER400 model in Algorithm 3 also uses ADD_ALL_NODES

initialization function. Note the use of the REWIRE_RANDOM

function, which destroys any initial structure to the graph.
The sum result of these operations is to assure the correct
number of edges are in the model – similar to the behaviour
observed in ER300.
The BA200 model in Algorithm 4 utilizes the GROW_NODES

function, the Barabási-Albert algorithm also adds nodes on
each iteration as opposed to all at once. Although the
BA200 algorithm shows no solid mechanism for preferen-

Algorithm 4 BA200 algorithm

SET_GROW_NODES(); {Create an empty graph, add a new
node at each iteration.}
for n in 1..N do
CONNECT_RAND();

end for

Algorithm 5 SW200 algorithm

BUILD_RING();
for n in 1..N do
CONNECT_RAND();
CREATE_TRIANGLE();
CREATE_TRIANGLE();

end for
REMOVE_PROB(TOTAL_VERTEX_COUNT() MOD 13);
REMOVE_PROB(TOTAL_VERTEX_COUNT() MOD 13);

tial attachment. Using GROW_NODES in conjunction with the
CONNECT_RAND function means that nodes added earlier on in
the construction of the graph will have higher opportunity
to gather edges. The Barabási-Albert model produces many
nodes of low degree and only a small number of nodes of high
degree, and thus the evolved model is capturing some of this
preferential attachment behaviour. However, objective F3

will not heavily penalize models which do not produce node
degrees that occur with low frequency. Future research will
propose methods capable of addressing this issue.

The SW200 model, shown in Algorithm 5 is strikingly sim-
ilar to the actual Small-world algorithm which produced its
target graph. The SW200 algorithm creates a ring, creates
two triangles – the connection pattern which contributes to
a high clustering coefficient – and adds one random edge,
creating shortcuts across the ring and a short average path
length. It finally removes some number of edges probabilis-
tically, breaking up some of the structure introduced by the
triangles. A similar effect to rewiring some edges with equal
probability as occurs in the target model.

Figures 4, 5 show comparisons of the average histogram
produced by thirty 1000 vertex evolved graphs per model to
a target graph of the same size of the corresponding target
algorithm. The error bars represent one standard deviation.
The plots show that the distributions are approximately the
same shape and that they overlap considerably. Figure 6
shows a 200 node graph generated by the BA200 evolved
model and the corresponding target graph produced by the
Barabási-Albert model is shown in Figure 7. They display
a similar branching structure, but the graph produced by
the evolved model does not contain a similar number of high
degree vertices. As previously indicated, this will be resolved
in subsequent research.

Table 2 shows the average results, µ, and the standard
deviations, σ, of the comparisons of graphs produced by the
evolved models to target graphs of various sizes which were
produced by the algorithms the individuals were evolved to
emulate. A fitness value of 1 is the best possible, and 0 is
the worst.

Also, Table 2 shows how the evolved models performed
when they were used to generate graphs much larger than
the initial target graphs. Each evolved model generated
thirty graphs of each size and the graphs they produced



Figure 4: The average ER400 histogram of thirty
1000 vertex graphs to the histogram of a 1000 node
Erdös-Rényi graph.

Figure 5: The average SW200 histogram of thirty
1000 vertex graphs to the histogram of a 1000 node
Small-world graph.

Figure 6: A 200 node graph produced by the BA200

model.

Figure 7: A 200 node graph produced by the
Barabási-Albert model.

were compared to target graphs of the same size using fitness
functions F1, F2, and F3. The averages and standard devi-
ations from the comparisons are shown in the table. Each
model does very well at each target size, and the standard
deviations show there is very little variation in the kinds of
graphs the evolved models produce.

5. CONCLUSION
This paper presented the first attempt to automating the

discovery and design of complex network graph models. Ge-
netic programming was employed to with the goal of recon-
structing known and common graph models. This allowed
for a more direct evaluation of the efficacy of the approach.
The quality of the evolved models was ascertained by not
only comparing to the target model, but also respective fu-
ture manifestations that were unknown during the GP evo-
lution phase. This also allows to determine whether the re-
sulting evolved models are over-fitting to the target graph.

Our results focused on undirected and unweighted graphs
of 200 to 500 vertices in size. We find that the proposed GP
language is capable of reasonably discovering the underlying
model algorithm of each of the Erdos-Renyi, Watts Strogatz
and Barabasi-Albert target graphs. An interesting result
was obtained for the Erdos-Renyi case, where an alternate
formulation of the graph model was discovered. In all cases
the evolved models also performed admirably when tested
into the future. These results are extremely promising.

This research direction has just commenced, and as such
there remains a large number of open questions to be ad-
dressed. Further evaluation and expansion of the basic GP
language presented here is the most obvious first step. How-
ever, considering other graph models and graphs of much



Table 2: Comparison of graphs produced by evolved models to graphs produced by real algorithms

Model Obj
Size, n

n = 200 n = 400 n = 600 n = 800 n = 1000
µ σ µ σ µ σ µ σ µ σ

F1 0.997 7.34× 10−5 0.999 2.02× 10−5 0.999 2.65× 10−5 0.999 8.75× 10−6 0.999 5.01× 10−6

ER200
F2 0.978 2.93× 10−3 0.973 1.22× 10−3 0.974 8.32× 10−4 0.974 7.98× 10−4 0.973 6.41× 10−4

F3 0.810 0 0.844 1.26× 10−3 0.875 6.42× 10−3 0.889 1.11× 10−2 0.898 5.28× 10−3

ER300

F1 0.997 1.91× 10−4 0.999 3.41× 10−5 0.999 1.35× 10−5 0.999 6.19× 10−6 0.999 6.03× 10−6

F2 0.986 6.56× 10−3 0.975 1.23× 10−3 0.975 1.24× 10−3 0.975 7.33× 10−4 0.974 4.76× 10−4

F3 0.857 9.80× 10−3 0.867 1.12× 10−2 0.883 6.98× 10−3 0.894 6.85× 10−3 0.903 6.23× 10−3

ER400

F1 0.999 1.02× 10−4 0.999 2.95× 10−5 0.999 1.48× 10−5 0.999 7.72× 10−6 0.999 4.61× 10−6

F2 0.993 3.38× 10−3 0.997 1.34× 10−3 0.996 9.08× 10−4 0.995 6.71× 10−4 0.994 3.89× 10−4

F3 0.928 1.80× 10−3 0.964 7.51× 10−3 0.961 7.44× 10−3 0.960 4.85× 10−3 0.955 4.53× 10−3

BA200

F1 0.988 0 0.991 0 0.995 2.28× 10−4 0.995 8.53× 10−5 0.998 8.14× 10−5

F2 1 0 1 0 1 0 1 0 1 0
F3 0.95 0 0.81 0 0.860 8.03× 10−3 0.826 1.75× 10−3 0.832 1.01× 10−2

SW200

F1 0.998 1.63× 10−4 0.999 8.34× 10−5 0.999 3.78× 10−5 0.999 2.28× 10−5 0.999 2.04× 10−5

F2 0.957 5.07× 10−3 0.949 2.99× 10−3 0.968 2.59× 10−3 0.952 1.75× 10−3 0.971 1.49× 10−3

F3 0.932 2.28× 10−2 0.920 1.18× 10−2 0.949 1.33× 10−2 0.956 9.12× 10−3 0.927 1.50× 10−2

larger size is also an important direction. Similarly, consid-
ering directed and weighted graphs, as well as more dynamic
graph models is enormously interesting. The application
to real-world problems and comparing to best-known hu-
man approximations is also research of utmost importance
to truly ascertain the degree of human-competitiveness this
approach can attain.
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