Quantum Strategy of Population Initialization
in Genetic Algorithm

Jun Suk Kim
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology
Gwangju, Republic of Korea
junsuk89@gmail.com

ABSTRACT

Quantum Genetic Algorithm is a relatively new field of study to en-
hance the computational efficiency of the Darwinian optimization
process in genetic algorithms with quantum speedup techniques.
This paper introduces an application strategy of the quantum count-
ing algorithm to genetic algorithms, particularly aimed to enhance
the initial population setup at the beginning of optimization. More
specifically, our goal is to exploit a quantum algorithm to count
the number of marked items from an unstructured list quadrati-
cally faster than classical algorithms in order to detect the presence
and amount of unsuitable individuals in a stochastically generated
initial population, thereby starting optimization with a mark of po-
tential to improve the performance in the later stage. The advantage
of our method is examined via a conventional genetic algorithm
to solve the 0-1 Knapsack problem with varying cases of the con-
straints, and a comparative analysis on the optimizing performance
is made accordingly.

CCS CONCEPTS

« Theory of computation — Discrete optimization; Evolution-
ary algorithms.

KEYWORDS
quantum computing, genetic algorithm, discrete optimization

ACM Reference Format:

Jun Suk Kim and Chang Wook Ahn. 2022. Quantum Strategy of Population
Initialization in Genetic Algorithm. In Genetic and Evolutionary Computation
Conference Companion (GECCO °22 Companion), July 9-13, 2022, Boston, MA,
USA. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3520304.
3529010

1 INTRODUCTION

Quantum computing’s main features include quantum superposi-
tion and entanglement, which enable parallel computation and thus
the anticipated speedup over classical computers. [8] It is therefore
not surprising to see that quantum optimization is currently one of
the most highlighted fields in quantum computing [9]. Similarly,
efforts to solve quantum optimization problems with evolutionary

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GECCO ’22 Companion, July 9-13, 2022, Boston, MA, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9268-6/22/07.

https://doi.org/10.1145/3520304.3529010

Chang Wook Ahn
Al Graduate School
Gwangju Institute of Science and Technology
Gwangju, Republic of Korea
cwan@gist.ac.kr

processes via Quantum Genetic Algorithm (QGA) have also been
made for nearly two decades.

The main motivation of studies on QGA is to fully exploit the fea-
tures of quantum computation to boost the effectiveness of the GA’s
heuristic optimization process. So far, they have mostly focused
on utilizing Grover’s search algorithm [3], which has been both
theoretically and experimentally proven to accomplish a given task
quadratically faster than its classical counterparts [3]. The QGA
approach we introduce in this paper instead uses a quantum count-
ing algorithm (QCA) to exploit its relatively fast item-counting
capability to start optimization with more prospective individuals.
Through it, the initial population could benefit from possessing
higher fitness values that would have lasting effects for the rest of
the process.

2 QUANTUM POPULATION INITIALIZATION

One of the crucial topics in GA is the initial population setup, i.e.
properly constituting a population set to begin optimization with
[7]. Despite the stochastic nature of the population setup in GA,
apparently little differences in the initial population could often
turn to notable distinctions in optimizing performance at the end of
the task [6]. For the case of exploiting a GA to solve a discrete con-
strained optimization problem, we can safely assume that raising
the bar of the constraint would rapidly reduce the number of indi-
viduals capable of surviving the first trial of selection. Optimization
problems with higher constraints are thus more punishing with
regards to generating a desirable initial population.

We now define p, the number of individuals in the population
to satisfy the constraint. The amount of p in the initial population
has a lasting effect on the optimization convergence in the later
stages of GA applied to a constrained optimization problem. If a
desired degree of p can be secured in the initialization step, we can
technically skip the first few generations that would have otherwise
been necessitated to achieve the same degree of p. Furthermore,
since genetic algorithms are indeterministic [2] and thus do not
guarantee a exact moment of achieving a certain p, starting the first
generation with a desired degree of p can provide with considerable
probability a better trace of fitness convergence. Fitness evaluation
is a main factor that increases the overall computational cost of
GA, and performing the above process classically could turn the
whole algorithm even more ineffective, since the number of fitness
evaluations skipped by securing a desired degree of p would be
compensated by the number of fitness evaluations.

The main idea that our method proposes is to exploit QCA to
count the number of the satisfactory individuals p in the initial pop-
ulation at the beginning of GA, thereby securing the p individuals

https://doi.org/10.1145/3520304.3529010
https://doi.org/10.1145/3520304.3529010
https://doi.org/10.1145/3520304.3529010

GECCO ’22 Companion, July 9-13, 2022, Boston, MA, USA

within a computational complexity limit that would not harm the
overall performance of the algorithm. After generating the quan-
tum population, we proceed to evaluate the fitness of individuals
for a given constraint optimization problem, or more specifically a
0-1 Knapsack problem in our context,

n
maximize f(x) = Z Xiw;
i=1
. W
subject to Z xiw; < C
i=1

where x; and w; are the i*? binary gene of the individual x and
its corresponding item weight, with a capacity constraint C. The
evaluation on each individual is done based on the metric

n oyn
Zi:l XiWi, lfzi=1 xiw; < C,

0, otherwise

fx) = { @
so that every individual that does not satisfy the constraint condi-
tion is guaranteed to be abandoned during the succeeding evolution.
(2) implies that it is feasible to distinguish suitable and unsuitable
individuals in a Boolean manner. This fact is especially important
with regards to QCA, since marking the desired states in QCA is
led by effectively mapping them in the quantum oracle, which can
be structurally simpler and thus more cost-effective if the input
question calls for Boolean answers [1].

The target problem function for QCA is encoded in its Grover’s
oracle, where it is reconstructed with quantum gates to return the
same evaluation output as the classical circuit. We can setup the
oracle O as follows to determine whether each individual satisfies
the constraint condition or not,

oy [P0 S <€
) = +|x), otherwise

®)

for each quantum individual state |x). The oracle can return the
result for all the superposed quantum states simultaneously, regard-
less of their number. Single QCA implementation requires ©(VN)
oracle calls to properly count the number of the desired items,
marked with negative signs in the oracle, out of N items [5]. This
complexity indicates that the counting procedure with QCA can be
done quadratically faster than the classical setup.

We can set p as a hyperparameter to determine whether, once
the counting is finished, the certain number of individuals in the
initial population satisfies the constraint condition to proceed be-
yond the initialization step. If not, then the generated population is
disposed, and the initializing and counting procedure is performed
repetitively until the preset number of p is met. Undesirably low p
would fail to distinguish the advantage of our method from the con-
ventional process in terms of performance, while undesirably high
p would require an excessive number of QCA iterations especially
when the constraint is severe.

In Algorithm 1, the procedure of our proposed method to exploit
QCA in GA is written as a pseudocode. Under a GA designed to
contain a population of n individuals and to optimize its given
task via g generations, the total number of fitness evaluations done
throughout the whole procedure, counting the evaluation over
m genes in each individual as single run, can be represented as

Kim and Ahn

O(ng). Our goal then is to design a quantum population initializer
that would keep the said computational complexity polynomially
equal, i.e. O(tng) for a fixed integer ¢ > 0. Suppose that we want a
strict upper bound for the complexity, O(2ng), allowing us to spend
O(ng) for the population initialization alone. We assume an ideal
quantum scenario, where our quantum initializer would return
exact results without errors caused by the physical deficiencies of
a noisy quantum machine, such as quantum decoherence [8].

Algorithm 1 Quantum Population Initialization

1: Input

2 f target problem function

3 n size of population

4 m size of individual

5: p threshold of satisfactory individuals

6 g number of total generations

7 € hyperparameter to control degree of error

8 k hyperparameter to control counting iteration

9: Output
10: pop population w/ p or more satisfactory individuals

11: iter « kgv/n
2. Construct quantum circuit QCA w/ embedded f and chosen €
13: forh=1,2,...,iter do

—_

14: Nsat < 0 > number of satisfactory individuals
15: pop — Opxm > classical binary population
16: Randomly generate individuals to fill pop

17: Encode pop into superposed quantum states [pop)

18: Load |pop) onto QCA to implement quantum counting

19: Measure qubits on QCA to count ngg;

20: if ngqr > p then

21: break

22: end if

23: end for

24: return pop

A fully functional quantum counting algorithm will return the
desired result within O(+/n) queries from the initial population of
n individuals, leaving us with up to O(y/ng) iterations available to
meet the upper bound standard. In other words, if we want a strict
upper bound, i.e. a choice that will spoil the algorithm’s overall
performance the least, we will iterate the quantum initialization
procedure up to y/ng times and stop, even if the desired p hasn’t been
achieved. If one wants a more lenient upper bound, it is allowable
to set the repetition limit to k+/ng, where k is a constant integer to
be manually chosen. The accuracy of the counting result depends
on the number of qubits used to construct the QCA circuit. More
precisely, the degree of error |[AM| in the final estimate of QCA is

N
2t+1

|AM]| < (V2MN + Y2t (4)
where N is the number of items in total, M is the number of the
desired items, and t = m — [log(Z + %)] with € as our choice [5]. In
other words, one would like to add more qubits to the QCA circuit
if higher accuracy of the result is desired.

Quantum Strategy of Population Initialization
in Genetic Algorithm

3 EXPERIMENT

The objective of the experiment was to compare the optimization
performances of a plain, original GA and a GA loaded with the
quantum population initializer (QPI). We choose a 0-1 Knapsack
problem with varying degrees of the capacity constraint to observe
the changes in the proposed method’s performance with respect to
different constraining conditions. The 200-sized dataset from Kaggle
knapsack 2020 competition [4] was loaded to set up the problem for
the experiment. Within it, 200 items have the total value of 142318
and the total weight of 99618. We set five scenarios for different
capacity limits, which are C; = 35000, Ca = 38000, C3 = 39000, C4 =
39500, and Cs = 40000. Each comparison run was iterated 10 times
to evaluate the average of the difference, or the gap, in their per-
formance and the number of the Grover oracle iterations called for
QPL A simple genetic algorithm with tournament selection was
used as the basis with its hyperparameters and the corresponding
values listed in Table 1. We set a strict upper bound for the number
of QPI iterations, which is 1100 ~ 14/ng = 1131.37. Under this
setting, we can safely claim that the total time complexity of fitness
evaluations would not exceed O(2ng) = O(ng).

Table 1: Hyperparameter values for GA

Hyperparameter Value
size of population 128
size of individual 200

number of generations 100
number of iterations 10
crossover probability 0.9
mutation probability 0.005

We manually set comparatively low values of p, i.e. p = 1,2, and
4 to observe how the performance changes accordingly. Overall,
we prepared 15 scenarios with different constraint capacities C in
35000, 38000, 39000, 39500, and 40000, and the satisfaction thresh-
olds p in 1, 2, and 4. Observing the differences in the convergence
tendency among these scenarios would allow to acknowledge and
trace the impact of the corresponding constraints and satisfaction
conditions upon the performance of the proposed method.

Figure 1 lists the plots of the optimization results for the 0-1
Knapsack problem, in the 15 scenarios with varied combinations
of C and p. They graphically show the average fitness values from
the satisfactory individuals, excluding the unsatisfactory ones, over
100 generations, and each plot is an average result of 10 iterations
under the identical conditions. We also organized the results into
a statistical chart of the average gap of the fitness values between
the two GAs over the series of generations and the number of
iterations performed for QPI in each scenario, as shown in Table 2.
The numbers shown are the mean and the corresponding sample
standard deviation evaluated from the iterative runs. Negative gaps
indicate that the plain GA has achieved higher fitness values on
average in the corresponding scenarios.

GECCO ’22 Companion, July 9-13, 2022, Boston, MA, USA

Table 2: Average fitness gap over generations and number of
QPI iterations per scenario

Scenario (C/p) Avg. Fitness Gap QPI Iteration
35000/1 41295.98 + 2742.11 60.90 + 55.88
35000/2 2383.62 + 6609.35 997.50 + 324.13
35000/4 -7623.97 £ 11603.66 1100.00 + 0.00
38000/1 8672.41 + 5701.13 4.70 + 3.30
38000/2 10994.14 + 7267.72 49.70 + 45.45
38000/4 -1276.50 + 3285.62 1100.00 £ 0.00
39000/1 5122.43 + 5245.89 1.10 + 1.20
39000/2 5958.11 + 396.83 11.50 = 10.95
39000/4 2593.67 £ 3592.98 446.60 + 307.21
39500/1 845.64 + 2880.91 0.80 + 1.03
39500/2 868.85 + 2731.67 3.20 = 4.89
39500/4 6860.41 + 1521.55 202.00 + 157.37
40000/1 358.47 + 2425.82 1.00 + 1.05
40000/2 488.43 + 2561.34 2.20 = 2.25
40000/4 836.49 + 3137.56 45.50 + 42.02

4 DISCUSSION

The performance tendency of the method with varying C and p
in the actual experiment appears to support our expectation that,
with a considerably high degree of constraint, even a small number
of p would create a noticeable performance gap between the two
competitors. Note that the scenario 35000/1 achieves the great-
est gap in the fitness values throughout the generations, with the
mean of 41295.98, which hardly narrows until the end. Although
not as dramatic, the scenarios 38000/1, 38000/2, and 39000/2 also
show considerable differences in the fitness that last throughout
the whole generations. On the other hand, the scenario 35000/4
shows that the QPI-loaded GA underperforms the original after the
32nd generation.

As for the scenarios with C = 40000, the overall differences in
the fitness are virtually negligible. From the extremely low numbers
of QPI iterations for all the three cases, we infer that the constraint
limit C = 40000 is rather a generous condition for the given dataset,
under which both algorithms could easily find multiple copies of
the satisfactory individuals. It is also worth mentioning that the
scenario 39500/1 and 39500/2 share the similar outcome, perhaps
for the same reason. Nonetheless, the scenario 39500/4 achieved a
notable difference, probably because securing 4 satisfactory initial
individuals was adequate to assist the early stage of optimization
under the constraint with comparatively low generosity.

In the last section, we stated that the "zero" individuals that
fail to satisfy the constraint condition are omitted in evaluating
the average fitness, and therefore their existence is not reflected
in the results shown in Figure 1 and Table 2. In other words, the
fitness traces in Figure 1 represent the average fitness values of the
satisfactory individuals only. Had the unsatisfactory individuals
been involved, all the plots of the QPI-loaded GA would have shown
a substantial increase at the beginning, since they initially possess
only a few suitable individuals in the population. We decided to
omit the unsatisfactory individuals in order to more clearly show
the effect of QPI upon the optimization performance.

GECCO ’22 Companion, July 9-13, 2022, Boston, MA, USA

C =38000,p =1

,:___“_____._—-——'—'—"—'_‘._ 50004

C = 35000, p = 1

C=35000,p=2

C =38000,p=2

e —

7
—

v pr

C =35000,p=4

C = 38000, p =4

e

C =39000,p = 1

C=39000,p =2

C = 39000, p = 4

Kim and Ahn

C =40000,p =1

C=39500,p =1

—

C=39500,p =2

C=40000,p =2

e - —

——

C =39500,p=4

C =40000,p = 4

Figure 1: Optimizing performances of a GA with QPI (blue) and a normal GA (yellow) for the 0-1 Knapsack problem in 15
scenarios of different C and p. The x-axis contains the generation counts from 1 to 100, and the y-axis represents the fitness
values averaging over 10 iterations. Every plot is drawn to the same scale in terms of the y-axis, which is in a range of 60000.

The running time, in terms of the number of evaluations, of the
GA with the proposed method was (1100 X v/n) + ng ~ 25300, as
opposed to the plain GA that took ng = 12800. While we admit
such deficiency, the main objective of our study in this paper is
to apply the quantum enhancement to the excessively resource-
consuming computation procedures, thereby surveying the feasibil-
ity of prospective approaches that have been considered undesirable
in classical computing and bringing them to the region of actual
practicality. Due to the heavy loads of computation required for the
real-world problems, we expect that there are diverse aspects in
GA or any other heuristic optimization methods that the quadratic
or exponential speedup of quantum application could be beneficial.

5 CONCLUSION

The experiment results demonstrate the effectiveness of repetitively
counting the number of suitable individuals at the initial population
setup as to the matter of optimization, especially under harsh con-
straint environments in GA. Our proposed strategy is to accelerate
the procedure by means of quantum computation, and although
there are a number of concerns to address, including properly select-
ing the values of p with respect to various constraints, we expect
that future studies can be conducted to resolve such matters.

REFERENCES

[1] Michel Boyer, Gilles Brassard, Peter Hayer, and Alain Tapp. 1998. Tight Bounds
on Quantum Searching. Fortschritte der Physik 46, 4-5 (Jun 1998), 493-505. https:
//doi.org/10.1002/(sici)1521-3978(199806)46:4/5<493::aid- prop493>3.0.co;2-p
David E. Goldberg. 1988. Genetic Algorithms in Search, Optimization and Machine
Learning (13 ed.). Addison-Wesley Professional.

Lov K. Grover. 1996. A Fast Quantum Mechanical Algorithm for Database Search.
In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Com-
puting (Philadelphia, Pennsylvania, USA) (STOC *96). Association for Computing
Machinery, New York, NY, USA, 212-219. https://doi.org/10.1145/237814.237866
Kaggle. 2020. knapsack 2020 | Kaggle. https://www.kaggle.com/c/knapsack-
2020/submissions/final.json?sortBy=date&group=all

Michael A. Nielsen and Isaac L. Chuang. 2004. Quantum Computation and Quantum
Information: 10th Anniversary Edition (1 ed.). Cambridge University Press.
Weifeng Pan, Kangshun Li, Muchou Wang, Jing Wang, and Bo Jiang. 2014. Adaptive
Randomness: A New Population Initialization Method. Mathematical Problems in
Engineering 2014 (2014).

Shahryar Rahnamayan, Hamid R. Tizhoosh, and Magdy M.A. Salama. 2007. A
novel population initialization method for accelerating evolutionary algorithms.
Computers Mathematics with Applications 53, 10 (2007), 1605-1614. https://doi.
0rg/10.1016/j.camwa.2006.07.013

Noson S. Yanofsky and Mirco A. Mannucci. 2008. Quantum Computing for Com-
puter Scientists (1 ed.). Cambridge University Press.

Leo Zhou, Sheng-Tao Wang, Soonwon Choi, Hannes Pichler, and Mikhail D. Lukin.
2020. Quantum Approximate Optimization Algorithm: Performance, Mechanism,
and Implementation on Near-Term Devices. Phys. Rev. X 10 (Jun 2020), 021067.
Issue 2. https://doi.org/10.1103/PhysRevX.10.021067

[2

(3]

https://doi.org/10.1002/(sici)1521-3978(199806)46:4/5<493::aid-prop493>3.0.co;2-p
https://doi.org/10.1002/(sici)1521-3978(199806)46:4/5<493::aid-prop493>3.0.co;2-p
https://doi.org/10.1145/237814.237866
https://www.kaggle.com/c/knapsack-2020/submissions/final.json?sortBy=date&group=all
https://www.kaggle.com/c/knapsack-2020/submissions/final.json?sortBy=date&group=all
https://doi.org/10.1016/j.camwa.2006.07.013
https://doi.org/10.1016/j.camwa.2006.07.013
https://doi.org/10.1103/PhysRevX.10.021067

	Abstract
	1 Introduction
	2 Quantum Population Initialization
	3 Experiment
	4 Discussion
	5 Conclusion
	References

