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ABSTRACT

Traffic congestion is a major issue that can be solved by suggesting
drivers alternative routes they are willing to take. This concept has
been formalized as a strategic routing problem in which a single
alternative route is suggested to an existing one. We extend this
formalization and introduce the Multiple-Routes problem, which
is given a start and destination and aims at finding up to 𝑛 different
routes that the drivers strategically disperse over, minimizing the
overall travel time of the system.

Due to the NP-hard nature of the problem, we introduce the
Multiple-Routes evolutionary algorithm (MREA) as a heuristic
solver. We study several mutation and crossover operators and
evaluate them on real-world data of Berlin, Germany. We find that
a combination of all operators yields the best result, improving the
overall travel time by a factor between 1.8 and 3, in the median,
compared to all drivers taking the fastest route. For the base case
𝑛 = 2, we compare our MREA to the highly tailored optimal solver
by Bläsius et al. [ATMOS 2020] and show that, in the median, our
approach finds solutions of quality at least 99.69% of an optimal
solution while only requiring 40 % of the time.
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1 INTRODUCTION

Traffic congestion is an increasing problem for urban areas across
the world [8]. A solution is to route drivers by proposing them
routes that reduce the overall travel time of the system, e.g., by
navigation systems. Generally, proposing the same route to all
drivers is infeasible, as this rather causes traffic congestion if the
number of drivers is too high. Instead, drivers need to disperse over
different routes, with some of them taking sub-optimal options into
consideration [29] – a cost that some drivers are willing to take [19].
We refer to this setting as strategic routing.

A well-studied domain that meets some of these requirements
is route planning [3]. Most results consider a time component of
each route, e.g., by considering flow over time [20] or predicted
congestion [13–15, 22], or they consider multiple routes, where the
alternative route needs to be substantially different [1, 24]. However,
none of these results take the overall travel time of the system or
psychological factors of the drivers into account.

A problem that does consider road capacities and psychologi-
cal models for route choices by drivers is the recently introduced
Single-Alternative-Path (SAP) problem [7], a strategic-routing
problem that aims to find an optimal alternative route to a given
route for a group of drivers. Still, the SAP problem is restricted to
a single alternative route and requires one route to be given as an
input. In this paper, we naturally extend the SAP problem to the
more general Multiple-Routes (MR) problem, which aims to min-
imize the overall travel time of all drivers in a system by proposing
a set of routes to them, with the number of routes being controlled
by a parameter. In order to account for bounded rationality and
differing preferences by the drivers [32], we assume they form a
user equilibrium on the given routes, i.e., a state in which no single
driver can improve their travel time by choosing a different route.

Since the MR problem is NP-hard, we introduce theMultiple-
Routes evolutionary algorithm (MREA) to heuristically solve it.
The MREA belongs to the class of evolutionary algorithms – nature-
inspired metaheuristics that have been applied to great success to
hard problems in various domains [12, 27], including non-strategic
routing problems, e.g., the Vehicle Routing Problem [5, 25]. The
MREA has a population size of 𝜇, uses four different mutation opera-
tors (changing a single solution), and employs crossover (combining
different solutions) to find good solutions to the MR problem.

Using real-world data for the city of Berlin, Germany, provided
by TomTom Germany, we evaluate all operators of the MREA for
different route scenarios and compare them to the naive solution
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of all drivers taking the fastest route. Our results (Table 1) show
that using more mutation operators and a larger population size
yields better solutions. All three crossover operators that we suggest
perform almost equally well, such that one can choose the fastest.
Depending on the route scenario, a best configuration of the MREA
improves the overall travel time of the system by factors between 1.8
and 3, in the median. Even using a single mutation operator (a
population size of 1 as well as no crossover) already improves
the solution by factors between 1.5 and 2.8. Further, we adapt the
MREA to the SAP problem and compare its solution quality to the
deterministic, highly problem-specific exact solver of Bläsius et al.
[7]. We find (see Figure 5) that the best configuration of the MREA,
in the median, achieves a solution quality of at least 99.69% but
only requires 40 % of the run time. Overall, our results suggest that
the MREA is a heuristic well-suited for solving the MR problem
and thus reducing traffic congestion in strategic scenarios.

The remainder of this paper is organized as follows. In Section 2,
we formalize the MR problem, and in Section 3, we introduce the
MREA. We then analyze the performance of the MREA and the
effect of its operators and population size in Section 4. In Section 5,
we apply the MREA to the SAP problem and compare it against the
algorithm of Bläsius et al. [7]. Finally, we conclude our work in Sec-
tion 6. For supplementary material, we refer to our repository [6].

2 THE MULTIPLE-ROUTES PROBLEM

Given a route network graph 𝐺 = (𝑉 , 𝐸) and a continuous flow of
𝑘 ∈ R≥0 drivers per unit of time between an origin 𝑠 ∈ 𝑉 and a
destination 𝑡 ∈ 𝑉 , we consider routing this flow among 𝑛 ∈ N+

routes such that no driver can choose a quicker route as long as
no other driver cooperatively changes their route as well and the
total number of different routes exceeds 𝑛. We call such a state an
n-restricted user equilibrium (n-UE). The Multiple-Routes (MR)
problem aims to find an optimal set of 𝑛 routes such that the overall
travel time of drivers in an n-UE is minimized.

2.1 Problem Modeling

We follow the formalization by Roughgarden and Tardos [26] but
add the constraint of 𝑛 routes. Let 𝐺 = (𝑉 , 𝐸) be a directed graph,
𝑠 ∈ 𝑉 , 𝑡 ∈ 𝑉 , 𝑘 ∈ R≥0, and 𝑛 ∈ N+. Further, let P𝑠,𝑡 denote the set
of all routes from 𝑠 to 𝑡 . A traffic flow 𝑓 :P𝑠,𝑡 → R≥0 is a mapping
that assigns to each 𝑃 ∈ P𝑠,𝑡 a value representing the amount of
drivers on each edge of 𝑃 per unit of time. Note that this value may
not be integer. We call a traffic flow valid if and only if |{𝑃 ∈ P𝑠,𝑡 |
𝑓 (𝑃 ) > 0}|≤ 𝑛 and if ∑𝑃 ∈P𝑠,𝑡 𝑓 (𝑃 ) = 𝑘 . Further, if and only if 𝑓 is
an n-UE (see Section 2.2), we call the traffic flow stable.

The travel time of drivers on an edge 𝑒 ∈ 𝐸 is determined by
a latency function 𝜏𝑒 :R≥0 → R≥0. That is, for all 𝑥 ∈ R≥0, 𝜏𝑒 (𝑥)
defines the time a single driver needs to travel along 𝑒 assuming
there are 𝑥 agents entering 𝑒 per unit of time. We assume 𝜏𝑒 to be
monotonically increasing and continuous. For a traffic flow 𝑓 , the
flow 𝑓𝑒 over 𝑒 is then

∑
𝑃 ∈P𝑠,𝑡 :𝑒∈𝑃 𝑓 (𝑃 ), and the overall travel time

of drivers on route 𝑃 ∈ P𝑠,𝑡 is 𝜏𝑃 (𝑓 ) =
∑
𝑒∈𝑃 𝜏𝑒 (𝑓𝑒 ).

Last, for each traffic flow 𝑓 , we associate a cost C(𝑓 ) that denotes
the overall travel time of all drivers. Formally,

C(𝑓 ) =
∑︁

𝑃 ∈P𝑠,𝑡
𝑓 (𝑃 ) · 𝜏𝑃 (𝑓 ) . (1)

The MR problem aims to find a valid and stable traffic flow with
minimum cost among all valid and stable traffic flows. We show in
the supplementary material [6] that the MR problem is NP-hard.

2.2 The User Equilibrium

In routing games, a user equilibrium (UE), also known asWardrop
equilibrium [30], is a game state where no player has anything to
gain by changing only their own strategy [23]. In the MR problem,
we consider n-UEs, where no driver can improve their travel time by
unilaterally changing their route while the traffic flow stays valid.

Given (𝐺, 𝑠, 𝑡, 𝑘), a UE always exists [4, 10, 26]. However, note
that in contrast to UEs, an n-UE is a traffic flow with a route set
of maximum size 𝑛 where drivers are not allowed to choose a new
route if this exceeds the number of 𝑛 different routes in total. In
particular, this means that an n-UE does not have to be unique, as
it highly depends on 𝑛. Nonetheless, each valid UE is also an n-UE.

We approximate an n-UE by computing a UE under the con-
straint of using at most 𝑛 routes. To this end, we model the UE
as a convex problem [4], which we approximately solve with the
Frank–Wolfe algorithm [17], adjusted such that it makes sure
to satisfy the constraint of at most 𝑛 routes. The supplementary
material [6] contains a detailed description of the algorithm.

3 THE MULTIPLE-ROUTES EA

TheMREA (Algorithm 1) is an elitist EA for optimizing the MR prob-
lem. Given an MR instance (𝐺, 𝑠, 𝑡, 𝑘, 𝑛), it maintains a population
of 𝜇 route sets (the individuals), each of which consists of exactly 𝑛
(not necessarily different) routes from 𝑠 to 𝑡 , and each of which is
evaluated as described in Section 2.2. TheMREA generates offspring
in two different (and exclusive) ways: by (1) expanding the current
population via a crossover operation provided as an input and (2)

by employing a random number of mutation operators to a copy of
each individual. Then, the MREA reduces the population size to 𝜇

via truncation selection, breaking ties uniformly at random. Note
that to avoid a single good individual being copied via crossover
and then taking over the entire population, the offspring generated
by crossover is only considered for selection if it contains a strict
improvement over the parent population. The algorithm stops after
a user-defined termination criterion. Although the MREA operates
on sets of routes, many operators also perform changes to single
routes. To this end, the subroutine RandDijkstra is used, which
finds a shortest path on𝐺 with randomly perturbed edge weights.

3.1 RandDijkstra

The RandDijkstra (RD) is a randomized variant of Dijkstra’s
shortest-path algorithm [16]. Given two nodes 𝑠 and 𝑡 , it returns a
random, yet still short route from 𝑠 to 𝑡 . RD works like Dijkstra’s al-
gorithm, but whenever relaxing an edge 𝑒 , its weight𝑤 is perturbed
such that𝑤 ∼ N(𝜏𝑒 (𝑥), 0.8 · 𝜏𝑒 (𝑥)), where 𝜏𝑒 is the latency of 𝑒 and
where 𝑥 is the traffic flow routed from 𝑠 to 𝑡 . Due to its extensive
use, RD contributes the most to the run time of the MREA.

3.2 Mutation Operators

In total, the MREA has four different mutation operators: NewRoute,
RandomP, LinkWP, and ExSegment, each with its own weight. When
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Algorithm 1: TheMultiple-Routes EA. Note that we use
set notation, even though the sets are multisets.
Input: MR instance (𝐺, 𝑠, 𝑡, 𝑘, 𝑛), population size 𝜇,

crossover strategy cStra, termination criterion
Output: Set of 𝑛 routes from 𝑠 to 𝑡

1 𝑃 ← ∅;
2 repeat 𝜇 times

3 ind ← new individual;
4 repeat 𝑛 times ind.addRoute(RandDijkstra(𝑠, 𝑡, 𝑘));
5 𝑃 .add(ind);
6 while termination criterion not met do
7 𝐶 ← ∅;
8 repeat

√︁
𝜇2 − 𝜇/2 times

9 ind1, ind2 ← two uniformly at random chosen
individuals in 𝑃 ;

10 𝐶 .add(cStra(ind1, ind2));
11 𝑃 ′ ← copy of 𝑃 ;
12 for every individual 𝑖𝑛𝑑 in 𝑃 ′ do
13 mutations← max(1, Pois(1.5));
14 ops← ∅;
15 repeat mutations times

16 ops.add(randomly weighted selected operator in
{NewRoute, RandomP, LinkWP, ExSegment});

17 if ops contains ExSegment then
18 ops← {ExSegment};
19 apply operators in ops to ind;
20 if no individual in 𝐶 is better than the best in 𝑃 then

21 𝐶 ← ∅;
22 𝑃 ← the 𝜇 best individuals in 𝐶 ∪ 𝑃 ′ ∪ 𝑃 ;
23 return the best individual in 𝑃 ;

mutating an individual, the MREA first decides how many muta-
tions to execute consecutively. This number is determined by a
Poisson distribution with an expected value of 1.5, but at least one
mutation is performed. Afterward, for each mutation to apply, a mu-
tation operator is chosen randomly proportionally to its weight. If
ExSegment is chosen, then all other operators are discarded for this
mutation. Last, all chosen operators are applied to the individual.

3.2.1 NewRoute. The operator chooses a single route randomly
proportionally to its inverse traffic flow and replaces this cho-
sen route with one computed by RD. The weight of NewRoute
is determined dynamically. In order to have a good exploration–
exploitation tradeoff, it is 30 for the first 10 iterations, and then
lowered linearly such that it reaches 1 in iteration 200.

3.2.2 RandomP. The operator replaces subsegments of a randomly
selected subset of routes via RD. The routes to be modified are
chosen randomly proportionally to their inverse traffic flow. For
each such route, it chooses a start node uniformly at random and
a destination node by advancing a number of steps according to
the Gaussian distribution N(0.25𝑟, 0.5𝑟 ), where 𝑟 is the length of the
route. Then, RD is applied to replace the route segment between

these two nodes. As the operator should find a different subsegment
between these two nodes, RD increases the costs of the edges of
the current route. Last, all cycles that may occur in the route after
the replacement are deleted. RandomP has a constant weight of 60.

3.2.3 LinkWP. The operator is identical to RandomP except for
the choice of delimiting nodes of the subsegment to replace, which
are chosen more specifically to the MR instance. For each node 𝑣
on a route in which a subsegment should be replaced, RandomP
calculates a metric that describes how likely it is for a meaningful
subroute to occur at 𝑣 . The metric is defined as the sum of the
capacities of all outgoing edges of 𝑣 except for the edge currently
used in the route. The start node is chosen randomly proportionally
to the metric. Then, the destination node is chosen randomly by
selecting one of the nodes on the original route that comes after
the start node, weighted using the same metric.

LinkWP has a constant weight of 30. Note that this weight is
lower than the one of RandomP in order to not introduce a too
heavy problem-specific bias into the mutation step.

3.2.4 ExSegment. The operator swaps subsegments between two
routes of the same individual. First, it chooses a pair of different
routes from the route set uniformly at random. Then, all cycles
are removed from both routes. Afterward, the nodes occurring in
both routes are determined, which we call shared points. Among
the shared points, let the divergence points be the nodes who have
a different successor in both routes. Further, let the goto points be
those shared points who have a different predecessor in both routes.
ExSegment chooses one divergence point 𝑣s uniformly at random.
Then, it chooses a node 𝑣t uniformly at random from the set of all
goto points that appear after 𝑣s. The route segments between 𝑣s
and 𝑣t from both chosen routes are then swapped.

The weight of ExSegment is determined dynamically. If ExSeg-
ment was applied within the last 6 iterations, its weight is 0, as
this operator is expensive and a too rapid succession of uses is
unlikely to change much. If ExSegment was applied more than 6
iterations ago, its weight is determined as follows. It starts at 15
and is increased linearly to 30, depending on the iterations without
improvement. The point in time when it reaches exactly 30 depends
on the used convergence criterion (see Section 4 for more details).

3.3 Crossover Operators

We present three different binary crossover operators. Note, in
contrast to the mutation operators, the MREA only uses a single
crossover operator, specified by the input. This is due to there
being a large tradeoff between run time cost and improvement in
solution quality when considering different operators and due to
the operators all being versions of the same idea.

Regardless of the operator chosen, the MREA creates
√︁
𝜇2 − 𝜇/2

offspring in each iteration. Note that this number is the square root
of all possible

(𝜇
2
)
2-combinations of 𝜇 individuals. By the Birthday

Paradox, the possibility of a combination of two individuals being
chosen at least twice becomes over 50% once in the order of this
value. Thus, when creating

√︁
𝜇2 − 𝜇/2 offspring, we aim to create

as many individuals as possible without getting many doubles.
All of our proposed operators consider a score 𝐷 that reflects

how similar the routes of an individual are. The assumption is that
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Table 1: The median best fitness (lower is better) of the 75 runs (see Section 4.1) for each of the settings from Sections 4.2 to 4.4

for all 11 scenarios. The column 𝑘-Dijkstra states the best possible fitness if all drivers choose the fastest routes, accounting

for delays caused by all drivers using the same street, using Dijkstra’s algorithm. This fitness is beaten by any of the MREA

configurations. Already the fitness values of the weakest configuration rponly are between 35% and 63% of those of 𝑘-Dijkstra.

In general, the fitness improves with better configurations (i.e., with entries further to the right, for the columns Mutation

Operators and Population Size). The column Crossover Operators shows that the choice of the crossover operator has almost

no impact regarding the median. Note that the column wexseg is the same as 𝜇 = 1 and that 𝜇 = 4 is the same as no_heur
due to how we conduct the experiments. Bold numbers indicate a significant change to the previous column (ignoring the

deterministic 𝑘-Dijkstra), using the Mann–Whitney 𝑈 test [21] with a 𝑝-value of 0.05. We refer to the respective sections for

more information.

Mutation Operators (see Section 4.2) Population Size 𝜇 (see Section 4.3) Crossover Operators (see Section 4.4)

ID Scenario 𝑘-Dijkstra rponly wnewroute wlinkp wexseg 𝜇 = 1 𝜇 = 2 𝜇 = 4 𝜇 = 8 no_heur heur-all heur-greed heur-greed-rand

0 Babelsberg – Lichterfelde 153530661 68566307 64240948 64662372 64240948 64240948 61980563 59016819 58128546 59016819 58369109 58128546 59016819

1 Griebnitzsee – Ahrensfelde 186995924 90878267 74610652 74610652 74610652 74610652 74602749 74541545 74541545 74541545 74541545 74541545 74541545

2 KaDeWe – East Side Gallery 28713342 12364817 12292827 12237029 12223856 12223856 12201922 12201922 12201922 12201922 12201922 12201922 12201922

3 Lichterfelde – Prenzlauer Berg 92721673 58477361 50558429 51197745 52541858 52541858 49713176 49071681 48625397 49071681 49071681 49071681 49044459

4 Lichterfelde – Steglitz 86902859 50225754 44211386 44910249 44188815 44188815 43540844 41699314 41699314 41699314 41699314 41699314 41699314

5 Moabit – Birkenwerder 103023491 38395379 37639244 37344703 37387321 37387321 37174180 37174180 37174180 37174180 37174180 37174180 37174180

6 Olympiastadion – Rotes Rathaus 101643446 36504804 36353121 36266833 36347074 36347074 36259504 36259504 36259504 36259504 36259504 36259504 36259504

7 Potsdamer Platz – Pergamonmuseum 40930113 18904046 18764355 18764355 18764355 18764355 18764355 18636335 18558820 18636335 18636335 18716682 18636335

8 Potsdamer Platz – Tempelhofer Feld 12014974 6860945 6407381 6407381 6407381 6407381 6407381 6407381 6407381 6407381 6407381 6407381 6407381

9 Teltow – Hoppegarten 394317060 160818584 141236603 140966107 142441589 142441589 134170060 131325658 130535412 131325658 131157891 131088667 131325658

10 Wannsee – Schönefeld 57461353 24477839 22899049 22876414 22899049 22899049 22876414 22876414 22876414 22876414 22876414 22876414 22876414

a more disjoint route set usually leads to a lower overall travel time
due to less congestion on single roads. For an individual 𝑆 and an
edge 𝑒 ∈ 𝐸, let 𝑐𝑆𝑒 denote the count how often the edge appears in 𝑆 .
The score 𝐷 of 𝑆 is defined such that larger values are worse:

𝐷(𝑆) =

∑
𝑒∈{𝑒∈𝐸 | 𝑐𝑆𝑒 >1 } 𝑐

2
𝑒

max
(
1,∑𝑒∈{𝑒∈𝐸 | 𝑐𝑆𝑒 =1 } 𝑐𝑒

) .
3.3.1 Exhaustive Crossover. The operator considers all

(2𝑛
𝑛

)
route

sets possible from the routes of the two parents and returns the
combination with the highest diversity score.

3.3.2 Greedy Crossover. The operator greedily constructs a new
route set, guided by the metric𝐷 . It randomly chooses one of the 2𝑛
routes of the parents, proportionally to their inverse traffic flow.
Each of the following 𝑛 − 1 routes is chosen such that it optimizes
the diversity metric of the thereby created partial route set.

3.3.3 Randomized Greedy Crossover. This operator takes the same
approach as Greedy Crossover, but instead of greedily choosing
the route that maximizes the diversity of the route set, it randomly
selects one of the 2𝑛 routes, proportionally to the inverse of its
diversity score. That is, the more diverse the route set with that
route is, the more likely the route is to be chosen.

4 PARAMETER EVALUATION

We empirically analyze the utility of the operators of the MREA on
the street network of Berlin, Germany. For each operator, we inves-
tigate how much the solution quality of the MREA changes when it
is added to the algorithm. In Section 4.2, we begin by evaluating the
mutation operators, excluding crossover. In Section 4.3, we analyze
the impact of the population size 𝜇. Last, in Section 4.4, we add

crossover to the MREA, and we compare the quality achieved by
the three different crossover operators with each other.

Our evaluations show that using more mutation operators, a
larger population size, and crossover are all beneficial for improving
the best fitness of the MREA. The largest improvement is made by
adding the mutation operators RandomP and NewRoute. Nonethe-
less, adding more operators generally decreases the spread of the
results, in addition to improving them. Table 1 shows a summary
of the median best fitness of all our parameter settings.

4.1 Experimental Setup

We consider MR instances with the graph 𝐺 being the street net-
work of Berlin, Germany, provided by TomTom Germany, and with
𝑘 = 3 000, which is a reasonable choice [7]. Further, we choose 𝑛 = 2
in order to model proposing a driver with a small choice of fast
routes. Choosing larger values makes this choice more troublesome
for the driver, and it makes it also more unlikely to find that many
different and fast routes. We choose the following 11 highly diverse
scenarios (see also Table 1):

(0) outside the inner-city; country road, non-obvious deviation
(1) very long; fastest route uses Autobahn (AB; express high-

way), second fastest route goes through the inner-city
(2) short, inner-city; lots of possible detours
(3) long, south to north; covering AB and inner-city side streets
(4) very short, inner-city; direct route is using side streets, but

highway and AB are nearby
(5) long, start in the city center; choice for highway or AB
(6) long, inner-city; can be driven almost entirely on a highway
(7) short, inner-city; different highways or side streets that are

reasonable, in a Manhattan-like layout
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Figure 1: Boxplots (see Section 4.1) of the normalized best fitness of theMREAwith 𝜇 = 1 after 150 iterations for the 11 scenarios,
with 75 runs per scenario. Each of the four colors, from left to right, represents one of the algorithm configurations explained

in Section 4.2. Per scenario, the fitness is normalized to the median of rponly. In general, configurations with more mutation

operators (more to the right per scenario) result in a better final fitness. Please refer to Section 4.2.1 for more details.

(8) medium-long, inner-city; bottleneck at a bridge, but oppor-
tunity to split up onto two highways

(9) long, south-west to east; either long detour using AB or a
more direct inner-city highway

(10) route where the 𝑘-Dijkstra shortest route detours to use AB
For the latency functions, we follow the recommendation of

the US Bureau of Public Roads [28], that is, we choose 𝜏𝑒 (𝑥) =
(ℓ𝑒/𝑠𝑒 ) · 1.15(𝑥/𝑐𝑒 )2 where 𝑠𝑒 , 𝑐𝑒 , and ℓ𝑒 denote free-flow speed,
capacity, and length of 𝑒 , respectively [7].

For the experiments, we consider various settings. For each, the
termination criterion of theMREA is to stop after 150 iterations. The
weight of ExSegment (Section 3.2.4) is chosen such that it reaches a
value of 30 if there was no improvement in the last 20 % · 150 = 30
iterations. Last, we start 75 independent runs of the MREA on all 11
scenarios per setting. We refer to our repository [6] for details.

Boxplots. When visualizing our results with boxplots, the box
denotes the mid-50% of the 75 runs, and the whiskers denote the
mid-90%. All remaining data points are depicted as diamonds.

Solution space size. Our results indicate that many runs with
different settings have equal fitness. This suggests that the solution
space is small, highlighting the impact of adding a new operator.

4.2 Analysis of the Mutation Operators

We analyze the utility of the MREA’s four mutation operators (Sec-
tion 3.2) by considering howwell each operator improves the fitness
of the overall best solution (Section 4.2.1) and how quickly the al-
gorithm finds such a solution (Section 4.2.2). To this end, we do not
employ crossover, and we choose a population size of 𝜇 = 1 in order
to see how much a single solution can be improved by mutation
only. Further, we consider four different algorithm configurations,
starting with a single operator and then adding more operators:

(1) the MREA has only access to RandomP (rponly),
(2) rponly but adding NewRoute (wnewroute),
(3) wnewroute but adding LinkWP (wlinkp),
(4) using all four operators (wexseg).

4.2.1 Best overall fitness. We study the impact of each configu-
ration on the best fitness achieved after our termination criterion
of 150 iterations. Our results are depicted in Figure 1.

Adding NewRoute yields the largest improvement, with a sta-
tistical significance for all scenarios, except for scenario 2. This
could be due to it being very short. Thus, RandomP and NewRoute
become very similar operations. Averaged over all 11 scenarios,
84 % of the wnewroute runs are better and 87 % are better or equal
to the median of the rponly runs. For scenarios 4 and 8, all runs
of wnewroute are better than the median of rponly. This is likely
a result of scenarios 4 and 8 requiring two almost disjoint routes,
which are more easily found by NewRoute, whereas other scenarios
require two nearly identical routes.

Interestingly, in scenarios 3 and 5, LinkWP as well as ExSegment
increase the median best fitness. For LinkWP, recall that it prefers
edges with a high capacity. If the best routes do not use such edges,
LinkWP has no benefit. Nonetheless, averaged over all scenarios,
84% of the wlinkp runs are better and 88% are better or equal to
the median of the rponly runs.

For ExSegment, recall that it swaps segments locally optimally,
with respect to the segments randomly chosen. Escaping from such
a local optimum can prove hard in certain scenarios, especially since
we only consider a population size of 1. Still, on average, 38 % of the
wexseg runs are better and 56% are better or equal to the median
of the wlinkp runs, showing a general benefit of ExSegment.

4.2.2 Speed of convergence. In order to analyze how quickly the
MREA reaches a local optimum from which it cannot escape within
its budget of 150 iterations, we consider the last iteration in that
the MREA changed the fitness of its best individual. The results are
depicted in Figure 2. Note that this analysis does not consider the
fitness of each run, only whether it changed in subsequent iterations
or not. For a more complete picture, please also refer to the results
from Section 4.2.1, which show that, on average, configurations
with more operators have a better median performance.

The speed of convergence is dependent on the scenario, and
there is no clear trend among the four configurations. The mid-90%
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Figure 2: Boxplots (see Section 4.1) of the last of, in total, 150 iterations in which the MREAwith 𝜇 = 1 improved its best fitness,

for the 11 scenarios. Each of the four colors, from left to right, represents one of the algorithm configurations explained in

Section 4.2, and each configuration was run 75 times per scenario. Regardless of the scenario, there is a large spread between

runs that get stuck quickly and runs that do not converge within 150 iterations. Please refer to Section 4.2.2 for more details.
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Figure 3: Boxplots (see Section 4.1) of the normalized best fitness of the MREA after 150 iterations for the 11 scenarios, with 75
runs per scenario. Each of the four colors, from left to right, represents a different population size 𝜇. Per scenario, the fitness

is normalized to the median of 𝜇 = 1. In general, a higher population size seems more beneficial, but the gain is diminishing.

Please refer to Section 4.3 for more details.

are generally close to the extreme values of 0 and 150. Runs close
to 0 show that the scenarios are hard, as the MREA gets stuck very
quickly. In contrast, runs close to 150 show that the budget of 150
iterations was insufficient for the MREA to converge.

4.2.3 Conclusion. Averaged over all scenarios, more mutation op-
erators lead to a better performance. However, this effect is not
very well pronounced for the addition of LinkWP, indicating that it
should possibly be merged with the similar operator RandomP. Still,
using both operators is overall better than just using RandomP.

The large spread in the speed of convergence among all config-
urations and scenarios suggests that the initialization has a large
impact on how easy it is to find improvements, more or less re-
gardless of what configuration is run. This indicates that a larger
population size may be beneficial, as it increases the initial diversity.

4.3 Analysis of the Population Size

We analyze to what extent the MREA benefits from having a popu-
lation size larger than 1. Since Section 4.2 suggests that local optima
pose a problem for the MREA, a larger population size may help to
have alternative solutions to those stuck in local optima. We do not
employ crossover but use all four mutation operators, that is, we
use the wexseg configuration. Our results are depicted in Figure 3.
Note that a higher population size also means more fitness evalua-
tions, as we let each configuration run for 150 iterations. This likely
explains the high significances between different configurations.

A larger number of individuals improves the median best fitness
and reduces the spread. Although the impact of a larger population
size is different among the scenarios, our results suggest that the
improvement for 𝜇 = 2 and 𝜇 = 4 provide a large improvement over
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Figure 4: Boxplots (see Section 4.1) of the normalized best fitness of the MREA after 150 iterations for the 11 scenarios,

with 75 runs per scenario. Each of the four colors, from left to right, represents one different crossover operator (including

no crossover). Per scenario, the fitness is normalized to the median of no_heur. The configuration heur-all performs best, but

only slightly. There is no clear difference between heur-greed and heur-greed-rand. In general, using crossover reduces the

spread of the results. Please refer to Section 4.4 for more details.

𝜇 = 1. For 𝜇 = 8, the improvement in comparison to 𝜇 = 1 in median
and spread is somewhat smaller. Throughout all scenarios, 61 % of
the runs with 𝜇 = 2 are better and 77% are better or equal to the
median of 𝜇 = 1; for the runs with 𝜇 = 4, these numbers increase
to 80 % and 93 %, respectively. For 𝜇 = 8, the increase from 𝜇 = 4 is
smaller, reaching 88 % better runs and 98 % better or equal runs.

When comparing to the configuration with 𝜇 = 2, 40% of the
runs with 𝜇 = 4 are better than the median and 85 % of the runs are
better or equal; for 𝜇 = 8, these numbers increase to 49 % and 96 %.

4.3.1 Conclusion. Using a larger population size improves the qual-
ity of the best fitness and also decreases the spread among the differ-
ent runs per scenario. However, the computational effort increases
with the number of individuals, and the quality gain in fitness from
using more individuals varies among the different configurations.
Our experiments suggest a sweet spot at 4 individuals.

4.4 Analysis of the Crossover Operators

We analyze the utility of the MREA’s three crossover operators
(Section 3.3), measuring the overall best fitness for each operator.
To this end, we use all mutation operators, choose 𝜇 = 4, and
consider the following configurations:

(1) using no crossover (no_heur),
(2) using Exhaustive Crossover (heur-all),
(3) using Greedy Crossover (heur-greed), and
(4) using Randomized Greedy Crossover (heur-greed-rand).

Our results are depicted in Figure 4. The advantage of crossover
strongly depends on the scenario and none are significant. However,
averaged over all 11 scenarios, the median best fitness as well as
the spread is always reduced when using a crossover operator in
comparison to using no crossover. This is also true for the minimum
and maximum normalized fitness, highlighting the reduction of
outliers. Interestingly, heur-all does not have a large benefit over
the two greedy operators. Considering the two greedy strategies, on

average, 19 % of the heur-greed runs are better and 72 % are better
or equal to the median of no_heur; for heur-greed-rand, we get
18% and 74%, respectively. There is no clear tendency whether
heur-greed or heur-greed-rand performs better.

4.4.1 Conclusion. In general, crossover improves the result quality
of the MREA and also reduces its spread. Among the different
crossover operators, Exhaustive Crossover performs best but only
slightly. Considering its high computational cost compared to the
other two operators, it should not be chosen. Greedy Crossover
and Randomized Greedy Crossover provide very good alternatives,
each of which performs roughly equally well.

5 APPLICATION TO THE SAP PROBLEM

We apply the MREA to the Single-Alternative-Path (SAP) prob-
lem [7] and empirically investigate its performance in terms of
solution quality and run time. The SAP problem is a special case
of the MR problem that fixes a route between 𝑠 and 𝑡 and aims to
find a single alternative route such that the overall travel time is
minimized. Although the problem remains NP-hard, Bläsius et al.
[7] propose a highly specialized algorithm that solves it optimally –
the SAP baseline (SAP-B) –, which we compare the MREA against.

Since the SAP problem is a special case of the MR problem, the
complexity of the MREA reduces in certain aspects. In addition,
we use the insights gained from Section 4 to further improve the
MREA. We call the resulting algorithm the SAP-EA.

5.1 The SAP-EA

The SAP-EA is a specialization of the MREA for the SAP problem
with some modifications to its mutation operators. Since the SAP
problem aims to find a single alternative route, an individual in the
SAP-EA corresponds to a single route. Further, since determining
a user equilibrium for the SAP problem simplifies to equalizing
the cost functions of the given and the alternative route, which
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results in solving a quadratic equation, the SAP-EA does not use
the Frank–Wolfe algorithm for fitness evaluation.

Regarding the operators proposed in Sections 3.2 and 3.3, the
SAP-EA does not employ crossover, as these operators exchange
existing routes, which is pointless for a single route. For the same
reason, ExSegment is not used. Out of the remaining operators,
NewRoute is used unmodified, and RandomP and LinkWP are com-
bined into the new operator RandomPwD. This is due to our results
from Section 4.2 showing that LinkWP only provides a small benefit
when added but still has its merits for certain scenarios. Last, the
SAP-EA always performs exactly one mutation on each individ-
ual, using a parameter 𝑝 ∈ (0, 1) instead of operator weights. With
probability 𝑝 , NewRoute is performed, otherwise RandomPwD.

5.1.1 RandomPwD. Similar to RandomP, given a route 𝑅 of len-
gth𝑚, RandomPwD replaces a segment of 𝑅 between two nodes 𝑎
and 𝑏 that are 𝑘 apart via RandDijkstra. To this end, RandomPwD
uses a parameter 𝛿 ∈ [0, 1], which it automatically adjusts. It de-
termines 𝑘 ∼ N(𝛿 ·𝑚, (0.05 ·𝑚)2), rounding to the closest whole
number, chooses 𝑎 uniformly at random, and chooses 𝑏 such that it
is 𝑘 nodes after 𝑎. If there are fewer than 𝑘 nodes after 𝑎, then 𝑏 = 𝑡 .

RandomPwD adjusts 𝛿 according to two parameters 𝛼 ∈ [0, 1]
and 𝛽 ∈ N>0 in the following way: whenever the SAP-EA does not
improve for 𝛽 iterations, we update 𝛿 ← 𝛼 · 𝛿 .

5.1.2 Comparison to the SAP-B. Although the SAP-EA is special-
ized for the SAP problem, it is still a general heuristic applicable
to different fitness functions. In contrast, the SAP-B is explicitly
tailored to solving the SAP problem with monotone cost functions
per edge, such as the flow of traffic, as in our setting. Thus, the
SAP-B fails for other costs, for example, when optimizing for overall
low CO2 emissions of strategic drivers in a street network. In such
a setting, the SAP-EA is still applicable without change.

5.2 Empirical Investigations

We compare the SAP-EA to the SAP-B on the street network of
Berlin, Germany, with respect to best fitness as well as run time.
Recall that the SAP-B is an optimal algorithm. Thus, the SAP-EA
cannot outperform it in regard to best fitness.

5.2.1 Experimental Setup. We use the same setup as in Section 4.1,
with the following differences. We consider 25 scenarios chosen
uniformly at random from the set of cluster centers of 𝑠–𝑡 pairs, com-
puted by the BIRCH [31] algorithm. The clustering is based on real-
world traffic density data provided by TomTom Germany. Per sce-
nario, we choose 𝑘 ∈ {500, 1000, 1500, 2000} and 𝑝 ∈ {0.0, 0.01, 0.05,
0.1, 0.2, 0.3, 0.4}, and we perform 20 runs per value of 𝑘 and 𝑝 . The
SAP-EA terminates after 1000 iterations or whenever it does not im-
prove for 100 iterations. Last, we choose 𝜇 = 1. We used a machine
with two Intel Xeon Gold 5118 CPUs and 64GiB of memory.

5.2.2 Experimental Evaluation. Our results are depicted in Figure 5.
The maximum of all medians in the score ratio is 1.009, for 𝑝 = 0,
which is already very close to an optimal fitness. The median de-
creases up to 𝑝 = 0.2 and increases afterward. Further, the spread is
smallest for 𝑝 = 0.2, making this configuration preferable. However,
the run time ratio increases for higher values of 𝑝 both in median
and spread, as RandomPwD is computationally more expensive

Figure 5: The ratio of the best fitness (left) and the run time

(right) of the SAP-EAwith 𝜇 = 1, 𝛼 = 0.4, 𝛽 = 35, and different

values of 𝑝 compared to the SAP-B. The run times of SAP-B

range from 0.3 seconds to 30minutes, with better time ratios

for higher SAP-B run times. Each boxplot contains the data

of all 20 runs per value of 𝑘 and per each of the 25 scenarios,
totaling to 2000 points per box. The orange line depicts the

median, the box the mid-50% of the data, and the whiskers

the mid 95%. A higher value of 𝑝, i.e., an increased use of

RandomPwD, yields generally better solutions and a smaller

spread but also increases the run time. A sweet spot seems

to be around 𝑝 = 0.05. Please also refer to Section 5.2.2.

than NewRoute. Since the configuration with 𝑝 = 0.05 is very close
to the best configuration both in score and time, we deem it the
best configuration out of all.

6 CONCLUSION

We introduced and empirically analyzed theMultiple-Routes EA,
an evolutionary algorithm designed to suggest alternative routes for
street networks with a high flow of traffic with the aim to reduce the
overall travel time of all drivers. To this end, we introduced the NP-
hardMultiple-Routes problem, allowing for a precise modeling
of our setting. For the MREA, we proposed four mutation and
three crossover operators, and we showed that using all mutation
operators yields the best results. Further, each crossover operator
reduces the spread of the results. Last, we applied the MREA to
a more specific setting, aiming to find a single alternative route
to a given route, and compared it to a highly specialized optimal
algorithm. Although the MREA is more general, it is capable of
competing with the tailored algorithm while often being faster.

Overall, our results suggest that the MREA is well-suited for the
highly complex problem of distributing traffic. For future work, we
propose to extend the MREA to island models [9], a parallelization
method well suited for EAs [2]. Another direction is to use data
sets that measure other criteria, for example, the emission of cars.
We believe that the MREA is well suited for such settings.
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