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We propose a framework for the systematic and quantitative generalization of Bell’s theorem using
causal networks. We first consider the multi-objective optimization problem of matching observed
data while minimizing the causal e↵ect of nonlocal variables and prove an inequality for the optimal
region that both strengthens and generalizes Bell’s theorem. To solve the optimization problem
(rather than simply bound it), we develop a novel genetic algorithm treating as individuals causal
networks. By applying our algorithm to a photonic Bell experiment, we demonstrate the trade-o↵
between the quantitative relaxation of one or more local causality assumptions and the ability of
data to match quantum correlations.

While it seems conceptually obvious that causality lies
at the heart of physics, its exact nature has been the sub-
ject of constant debate. The fundamental implications
of quantum theory shed new light on this debate. It is
thought these implications may lead to new insights into
the foundations of quantum theory, and possibly even
quantum theories of gravity [1–10].

These realizations have their roots in the Einstein-
Podolski-Rosen thought experiment [11] and the funda-
mental theorems of Bell [12] and of Kochen and Specker
[13]. A cornerstone of modern physics, Bell’s theo-
rem, rigorously excludes classical concepts of causality.
Roughly speaking Bell’s theorem states that the follow-
ing concepts are mutually inconsistent: (1) reality; (2)
locality; (3) measurement independence; and (4) quan-
tum mechanics.

In philosophical discussions, typically one rejects (1) or
(2), which together are often referred to as local causality,
though the other options have been considered as well.
In studies with an operational bent, however, one often
considers relaxations of (2) or (3) which is what we con-
cern ourselves with here. These relaxations have been
addressed from di↵erent perspectives, but only regard-
ing specific causal influences in isolation [14–23], whereas
here we wish to study all possible relaxations of the causal
assumptions implied by (2) and (3) simultaneously.

The framework of causal networks [24, 25] is wildly suc-
cessful within the field of machine learning and has led
some physicists to utilize them to elucidate the tension
between causality and Bell’s theorem. Recently, Wood
and Spekkens have shown that existing principles behind
causal discovery algorithms (namely, the absence of fine
tuning) still cannot be reconciled with entanglement in-
duced quantum correlations even if one admits nonlocal

models [9]. However, such results only hold for the exact
distributions, and would not necessarily apply to exper-
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imental data due to measurement noise, or a relaxation
of the demand of reproducing exactly the quantum cor-
relations. Clearly, the further away from the quantum
correlations one is allowed to stray, the more likely a lo-
cally causal model can be found.
Here we propose a framework for systematic and quan-

titative generalizations of Bell’s theorem by using causal
networks. The idea, depicted in Figure 1, is to consider
the multi-objective optimization problem of matching the
observed data from an experiment while minimizing the
causal e↵ect of nonlocal variables. It is in this sense of
matching experimental data that we are explaining the
quantum correlations. Our first contribution is a rigorous
lower bound for this optimization problem, demonstrat-
ing a generalization of Bell’s theorem. Theorem 1 below
establishes that there must exist a tradeo↵ between the
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Figure 1. A sketch of the concept of Pareto optimality for
demarcating the boundary between local causality and quan-
tum correlations. In this picture, Bell’s theorem rules out the
origin only. Our results rule out an entire region of possible
models in the presence of relaxations of Bell’s assumptions.
We rule out this region both rigorously with Theorem 1 and
numerically with the evolutionary algorithm that we devel-
oped specifically for this task.
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goodness of fit to experimental data and the quantitative
amount of causal influence for any model.

This theorem rules out a portion of the space allowed
by this new framework, but the bounds are not tight. To
solve the optimization problem, and hence numerically
find the optimal bounds, we develop a type of genetic al-
gorithm called a multi-objective evolutionary algorithm
(MOEA) to quantify the relaxations necessary to repro-
duce the data generated by experiments on entangled
quantum systems [26–28]. Our genetic algorithm treats
as individuals causal networks and we develop genetic op-
erators which represent the evolution of these networks.
By applying our algorithm to a photonic Bell experiment,
we show that the tradeo↵ between the quantitative relax-
ation of one or more local causality assumptions and the
ability to match quantum correlations appears linear.

The outline of the paper is as follows. In Section I
and Section II we set out the background of the causal
models we use and the mathematics required to convert
a probability distribution into a fitness function. In Sec-
tion III we provide analytic bounds on causal influence.
In Section IV we describe the experiment that provided
the input to the algorithm. Section V briefly describes
the result of applying the genetic algorithm to the exper-
imental data. Section VI describes the process by which
we convert the problem into one that can be explored us-
ing evolutionary operators and details the construction
of the algorithm. We conclude in Section VII with a
discussion.

I. CAUSAL MODELS FOR BELL
EXPERIMENTS

The formalism of causal models allows us to quantify
the relaxations necessary to avoid the contradiction in
Bell’s theorem and, more importantly, explore the trade-
o↵s necessary in minimizing the amount by which the as-
sumptions are violated. Building o↵ the work of Chaves
et al [29], we make all this concrete through a quantifica-
tion of the relaxation of each assumption in the context
of causal models. The task of minimizing the amount of
the relaxation is a multi-objective optimization problem.
Bell’s theorem is recast as the statement that all objec-
tives cannot be simultaneously minimized. We explore
the trade-o↵s through the concept of Pareto optimality.

The prototypical “Bell experiment” has two distant
parties, often named Alice and Bob. We suppose that
Alice and Bob each have devices with binary measure-
ment settings, respectively labeled x and y. Conditioned
on these measurement settings, their devices also record
binary events, labeled a (Alice) and b (Bob). Suppose it
is empirically observed that a and b are correlated. Bell
defined a locally causal model of such correlations as fol-
lows: there exists a “hidden variable” � which is the
common cause both of a conditioned on x, and of b con-
ditioned on y. We write these random variables as a | x
and b | y, respectively. Formally, the general conditional
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Figure 2. Causal networks for Bell-type experiments. On
the left is the local hidden variable model, which respects the
assumptions going into Bell’s famous no-go theorem. Such a
model cannot account for certain correlations obtained from
measuring entangled particles. The graph in the middle con-
tains a causal link between the measurement settings. Such a
model exploits the detection loophole and violates measure-
ment independence. Finally, on the right is a superluminal
model which contains a causal link between the outcomes of
the experiments.

distribution is assumed to satisfy

Pr(a, b|x, y,�) = Pr(a|x,�) Pr(b|y,�). (1)

Moreover, it is assumed that the choices of settings can be
made such that each of x and y can be set independently
of the hidden variable �,

Pr(x, y|�) = Pr(x|�) Pr(y|�) = Pr(x) Pr(y). (2)

Such an assumption is often motivated by the injection
of randomness into the measurement settings or the free-
will of Alice and Bob. Bell’s theorem can be stated suc-
cinctly as follows: the conditional distributions describ-
ing the outcomes of some experiments on quantum sys-
tems cannot be factorized as in Eqs. (1) and (2).
A causal network is a directed acyclic graph with nodes

representing random variables and edges denoting causal
relationships between variables. The defining feature of
such networks is the factorization of joint probabilities.
Generally, suppose we have nodes {x

0

, x
1

, . . . , x
K

}, each
of which represents a random variable in our model. We
will assume that each such random variable is discrete,
and without loss of generality, will assume integer labels
xi 2 {0, . . . , dimxi�1} for its possible values. The edges
in the causal network of these variables are defined such
that

Pr(x
0

, x
1

, . . . , x
K

) =
KY

i=0

Pr(xi|pai), (3)

where pai denotes the parents of node i.
Take, for example, the causal network in Figure 2a.

In general, we can decompose the joint distribution
Pr(a, b, x, y,�) in terms of conditional distributions as

Pr(a, b, x, y,�) =

Pr(a|b, x, y,�) Pr(b|x, y,�) Pr(x|y,�) Pr(y|�) Pr(�).
(4)
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Using the causal network to eliminate conditionals, (3)
implies

Pr(a, b, x, y,�) =

Pr(a|x,�) Pr(b|y,�) Pr(x) Pr(y) Pr(�),
(5)

which are identical to Bell’s assumptions on local hidden
variable models. Thus, Bell’s theorem is equivalent to
the statement that certain quantum correlations cannot
be realized by the causal network in Figure 2a.

II. RELAXING BELL’S ASSUMPTIONS

It is known that quantum mechanical correlation aris-
ing in a Bell-type experiment can however be explained
by adding a new causal link to the local hidden variable
network [15, 18]. Two examples are shown in Figure 2. In
many practical cases, these causal links are not entirely
unphysical from the standpoint of respecting relativity
and free-will, for example. The reason being that ex-
periments do not actually conform to the exact assump-
tions Bell made—there are noisy detectors, non-random
number generation, losses, inability to space-like separate
“Alice” and “Bob,” and so on. When this is the case,
such causal models are said to be exploiting loopholes.

In Figure 2b, a causal model that allows correlations
between the measurement settings is shown. In the same
spirit, we could have had either x or y be causally de-
pendent on � or another hidden variable. Such mod-
els are often called superdeterministic and are ruled out
by the assumption that Alice and Bob are not collud-
ing and have free-will or access to independent random-
ness. If the experiment only approximately satisfies these
assumptions—perhaps due to low detection e�ciency—
one can still model the data with a local hidden variable
said to be exploiting the detection loophole [30]. The
question of quantifying the amount of independence of
the measurement settings necessary has been addressed

from multiple perspectives and has practical quantum
cryptographic consequences [15–22].
In Figure 2c, a causal model which allows correla-

tions between the measurement outcomes is shown. This
is, and similar models are, called nonlocal and could
potentially even allow for superluminal signaling. A
quintessential example of a nonlocal model which repro-
duces the predictions of quantum theory is Bohmian me-
chanics. Toner and Bacon studied the amount of nonlo-
cality necessary to simulate quantum correlation in the
context of classical communication costs [14, 23], while
Wolf has expressed nonlocality in terms of the compress-
ibility of experimental observations [31].
The current studies, mentioned above, quantifying the

relaxations of the causal assumption necessary to repli-
cate quantum correlations are rather disjoint. Recently,
Chaves et al. placed the question in context of causal net-
works and found that some measures of these relaxations
can be cast as e�ciently solvable linear programs [29].
We build on this idea and consider a completely abstract
framework amenable to any set of random variables using
a single measure of the causal influence of one variable
on another. This allows us to consider all possible re-

laxations simultaneously and thus explore the trade-o↵s
necessary to simulate quantum correlations with hidden
variable models.
We will now state our model more technically. For

consistency we formulate the problem in the context of
the two-party Bell experiment, but we emphasize that
this approach generalizes in an obvious way to any set
of random variables. A model, M , is specified by a joint
distribution

Pr(a, b, x, y,�|M). (6)

We label the empirical frequencies F (a, b, x, y) and de-
note the total variational distance (TVD) of a model to
these frequencies by

TVD(M) = kPr(a, b, x, y|M)� F (a, b, x, y)k
1

, (7)

where the vector being normed is labeled by (a, b, x, y).
Here the 1-norm of a vector x is simply kxk

1

=
P

i |xi|.

The causal influence is defined for a general graph as follows:

Cxi!xj (M) := max*
xi,x0

i,paj
kPr(xj |x0

i, paj \ pa2j ,M)� Pr(xj |xi, paj \ pa2j ,M)k
1

, (8)

where paj \ pa2j is the set of parents of xj that are not also grandparents of xj , and where max* indicates that the
maximization over xi, x0

i and paj is restricted to feasible assignments. That is, the maximization does not consider
assignments outside the support of M . In words, the causal influence is non-zero when changing xi leads to a change
in xj . It is quantified by maximizing over latent variables of the target that are not also latent variables of the control.

For example, if we want to minimize the causal influ-
ence between two variables a to b in Figure 2c we consider

Ca!b(M) := max*
a,a0,y

kPr(b|a, y,M)�Pr(b|a0, y,M)k
1

. (9)

We include the conditions Pr(a),Pr(a0) 6= 0 to prevent
the causal influence being maximized by an assignment
outside the support of the random variable A; the maxi-



4

mization should be taken over all feasible assignments.
Intuitively, this definition represents how distinguish-

able the di↵erent settings of a are when viewed through
measurements of b. That is, if a does not causally a↵ect
b, then it is not possible for a change in a to be detectable
through b alone. We adopt this definition in lieu of the
traditional approach of using interventions, wherein an
external agent imposes a particular value of a while hold-
ing all else fixed, e↵ectively cutting out any causal links
incident on a other than one originating from the exper-
imentalist themselves. Though some novel experiments
have been performed using intervention to reason about
quantum mechanics [32], we cannot intervene on quan-
tum mechanical models in general, such that we must in-
stead maximize over conditions for the experiment, here
represented by the maximization over a and y.

The task then is to find a model M which minimizes
TVD and C↵!� for each ↵ ! � ruled out by local causal-
ity and measurement independence. If the empirical fre-
quencies contain some causal dependence between two
variables, then either the model must also contain such
causal dependence or the observed frequencies from the
model must be di↵erent from the empirical frequencies.
Perhaps interestingly, one might be able to “trade” un-
wanted causal influence between one pair of variables for
another, while maintaining the same TVD. Thus, the
problem of determining “how much” relaxation of Bell’s
causal assumptions is necessary to match an empirical
observed frequency becomes much more interesting and
nuanced.

Suppose two models M
1

and M
2

both match the data
equally well—i.e. TVD(M

1

) = TVD(M
2

)— but M
2

has
some unwanted casual influence a ! b, say, and M

1

does
not—that is, 0 = Ca!b(M1

) < Ca!b(M2

). Clearly, M
1

is preferred and we say M
2

is dominated by M
1

. For
many objectives, the situation is more complex but can
be handled by the concept of Pareto optimality.

LetM be the set of all models. Let each model’s fitness
be represented by the function f : M ! Rn, where n
is number of objectives. Define the partial order � as
follows:

M < M 0 , f(M)k � f(M 0)k, (10)

for all k 2 {0, n� 1}. If M < M 0, we say M 0 dominates
M (or is equivalent to M , if M 0 < M holds as well). The
set P ⇢ M of Pareto optimal models is now defined as
follows:

P = {M 2 M : {M 0 2 M : M < M 0,M 0 6= M} = ;}.
(11)

This says that a model is Pareto optimal if the set of other
models which dominate it is empty. In other words, the
Pareto optimal is the set of non-dominated models.

III. ANALYTICAL BOUNDS

In this section, we provide analytical bounds which
relate the amount of causal influences exhibited by any
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Figure 3. Photon paris at 808 nm are emitted via spontaneous
parametric down-conversion from a 404 nm pumped bismuth
triborate (BiB0) crystal and we prepare polarization enabled
photons, labelled “Alice’s Qubit” and “Bob’s Qubit”. The
components used are: half wave plates (HWP), quarter wave
plates (QWP), polarizing beam splitters (PBS), polarization
maintaining fibers (PMF) and an optical delay line (ODL).
Once the state is prepared a polarization tomography setup
enables projection of each qubit onto any pure polarization
state, which is su�cient to perform two-qubit tomography.

model M to its agreement with the empirical frequen-
cies F (a, b, x, y). For the sake of simplicity, we restrict
ourselves to analyzing the causal influence between the
variables a and b—see Figure 2c. However, we emphasize
that analogous statements are valid for causal influences
between any two variables. For the variables a and b, the
empirical frequencies themselves admit a causal influence

Ca!b(F ) = max*
a,a0,y

kF (b|a, y)� F (b|a0, y)k
1

(12)

which is defined in complete analogy to (9). To state
our theorem, we must define two more quantities. Let
M⌧ = M⌧ (F ) be the set of models having TVD(M)  ⌧
with respect to the empirical frequencies F , and denote
by f? = mina F (a) the minimum empirical marginal fre-
quency.

Theorem 1. For all models M 2 M⌧ and ⌧ < 2f?
,

|Ca!b(F )� Ca!b(M)|  2⌧(4f? � ⌧)

f?(2f? � ⌧)
. (13)

We point out that the bound (13) becomes loose and
eventually diverges if the minimum empirical marginal
frequency f? approaches zero or if the TVD of the class
of models becomes too large relative to f?.
The proof of Theorem 1 can be found in Appendix A.

IV. BELL EXPERIMENT AND DATA

As input for the MOEA we use data from a polariza-
tion photonic Bell experiment, shown in Figure 3 [33]. In-
distinguishable horizontally polarized (|Hi) photon pairs
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Figure 4. (a) The real component of experimentally measured
density matrices for a range � values measured via two-qubit
state tomography. (b) the results of the MOEA (run as an
EA) on a local model (see Figure 2a) to generate the best
achievable TVD for various values of � from a Bell-like ex-
periment described in Section IV. As theoretically predicted
above a certain threshold (� =

p
2 � 1) the local model can

no longer explain the measurement results with zero TVD.
This threshold corresponds to violating the CHSH inequality
in (15). The linear increase in TVD corresponds to the linear
increase in S as discussed in Section IV.

are generated via type-1 spontaneous parametric down-
conversion. Both polarization qubits are rotated into a
diagonal state 1p

2

(|Hi+|V i) by a half wave plate (HWP)

with fast axis at ⇡
8

from vertical, where |V i denotes verti-
cal polarization. A polarization phase rotation is applied
to photon 1 by two quarter wave plates (QWPs) and a
HWP, while photon 2 has its state optimized by a po-
larizing beamsplitter (PBS). Both photons are collected
in polarization maintaining optical fiber (PMF) and are
incident on the two input faces of a fibre-coupled PBS,
which transmits |Hi and reflects |V i, preparing Alice’s
and Bob’s qubits. The configuration of the optical fibres
results in a �x operation applied to Alice’s qubit. By
measuring in the coincidence basis, we post-select the
state

⇢ =
1 + �

2
|�+i h�+|+ 1� �

2
|��i h��| , (14)

where |�±i are the Bell states 1p
2

(|HAVBi ± |VAHBi)
with subscript A (B) corresponding to Alice’s (Bob’s)
qubit. The parameter � defines the coherence of the state
which depends on the overlap of the two photons after the
fibre-coupled PBS and is controlled by the optical delay
line (ODL). The state prepared when � = 1 is a maxi-
mally entangled Bell state |�+i and when � = 0 is an in-
coherent mixture 1

2

(|HAVBi hHAVB |+ |VAHBi hVAHB |).
The polarization tomography setup in Figure 3 enables
projection onto any pure state and can be used for
two-qubit state tomography [34]. The photons are de-
tected with silicon avalanche photo-diodes and coinci-
dence counts recorded by a timing card.

Our input for the MOEA is a normalized frequency
distribution F (a, b, x, y) across binary measurement set-

tings for Alice (x = {x
1

, x
2

}) and Bob (y = {y
1

, y
2

}),
and binary measurement outcomes a = {|HAi , |VAi} and
b = {|HBi , |VBi} respectively. The measurement set-
tings are controlled by wave plate angles in the tomogra-
phy and the measurement outcome is the collapse of the
state onto one of the four basis state |HAHBi, |HAVBi,
|VAHBi or |VAVBi. A single measurement is the number
of photon pairs recorded for a fixed integration time and
can be written as Nxy

ab = N ⌧ hab|Uxy⇢Uxy† |abi for mea-
surement settings x, y and measurement outcomes a, b.
N is the total photon flux, ⌧ is the integration time and
Uxy is the operation of the wave plates. We calculate
F (a, b, x, y) by measuring all combinations of x, y, a and
b, and normalizing by the total number of photon pairs
recorded. We note that this experiment is not performed
in a loophole-free way, but nonetheless provides us with
the quantum correlations we wish to analyse.
Typically, Bell experiments aim to violate the CHSH

inequality [35], confirming that quantum mechanical sys-
tems cannot be described with local hidden variable mod-
els. The CHSH inequality is calculated as

|S|  2, where (15a)

S = E[x
1

y
1

]� E[x
2

y
1

] + E[x
1

y
2

] + E[x
2

y
2

], (15b)

where E[xy] defines the correlation between Alice’s (x =
{x

1

, x
2

}) and Bob’s (y = {y
1

, y
2

}) measurements, given
as

E[xy] =
Nxy

HAHB
�Nxy

HAVB
�Nxy

VAHB
+Nxy

VAVB

N ⌧
. (16)

While the CHSH inequality holds for systems which re-
spect local causality, a pair of quantum entangled par-
ticles can achieve a maximum value of |S| = 2

p
2. By

tuning the � parameter in (14), then for measurement
settings fixed to be optimal for the case � = 1, we
can prepare states that obey the CHSH inequality when
� 

p
2�1 and states that violate it. In order to achieve

the maximum violation of the CHSH inequality, it is nec-
essary to chose specific wave plate angles for x and y.
Here, we are not interested in violating the CHSH in-
equality; however, we can use it to benchmark our results
from the MOEA.

V. EDGE OF REALITY

Using the experimental data (where � = 0.984), we
searched for the Pareto optimal models by developing
a multi-objective evolutionary algorithm to find the best
underlying probability distributions for a causal network.
Since this represents a trade-o↵ between a local realistic
model and real-world correlations, we call the Pareto op-
timal surface the “edge” of reality.
An individual of the population is a probability distri-

bution over the nodes of a given causal network (each
such individual is a causal model, M) and its multi-

objective fitness depends on how close the model can re-
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Figure 5. The Pareto front for the causal network in Figure 2c
using the data from a photonic Bell experiment. The vertical
axis labels the causal influence (9) while the horizontal axis
labels the closeness to experimental data (7). The blue cir-
cles are the values for the non-dominated models found by
the evolutionary algorithm. For comparison purposes, the
straight line is a linear fit to these data.
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Figure 6. The Pareto front for a local causal network with
added a ! b and x ! � edges using the data from a pho-
tonic Bell experiment. The vertical axis labels the closeness
to experimental data (7). The two horizontal axes label the
causal influences (9) for the added edges. The blue circles are
the values for the non-dominated models found by the evo-
lutionary algorithm. The flat surface is a linear fit to these
data.

produce the experimental data and the amount of causal
influences between nonlocally separated variables.

As an initial step, we examined relaxing one casual
edge at a time, beginning with a causal influence from
a to b—that is, Alice’s outcome is allowed to influence
Bob’s. The Pareto front (the numerical approximation to
the Pareto optimal) is shown below in Figure 5. Like the
theoretical bounds (which while not linear, are nearly so

in the considered domain), the front appears to be linear
(Pearson’s ⇢2 value of 0.997, with bisquare robust fitting).
That is, increasing locality violations allows observed
(quantum) correlations to be more exactly matched, the
trade-o↵ being approximately linear in nature. Next, we
relax the causal edges a ! b and x ! � simultaneously.
The found Pareto front is shown in Figure 6. Again, we
see that the front appears linear (⇢2 = 0.9902). We have
also used our algorithm to test other causal networks and
found the results to be quantitatively identical to these
two cases.

VI. THE EVOLUTIONARY ALGORITHM

In order to find the Pareto front of solutions, it is
necessary to find feasible probability distributions that
give rise to the required TVD with the required causal-
violations(s). There is no known way of doing this ana-
lytically. Even in simple single edge causal models the
search space is prohibitively large and objective non-
convex. This search space grows rapidly with additional
causal edges. Evolutionary Algorithms are known meth-
ods for finding such Pareto fronts where there is only lim-
ited knowledge of the underlying search landscape. We
wish to numerically find the Pareto optimal set of mod-
els representing Bell experiment data. To do so, we use
evolutionary computation [36].
Such algorithms are generally well studied for functions

of the form f : Rm ! Rn. However, here the domain of
our objective function f is M, i.e. the probability dis-
tributions on the causal network. Consequently, there
are implicit constraints on the relative values these dis-
tribution can take (for instance, in each node they need
to sum to 1) and so we have devised a set of evolution-
ary operators that allow the probability distribution of
an arbitrary causal network to be evolved. With this we
combine several evolutionary computation strategies to
evolve and explore the Pareto front of a given arbitrary
network.

A. Evolutionary Algorithm Overview

As the cornerstone of our multiobjective evolution-
ary algorithm (MOEA) we utilize the well-known and
well-understood NSGA-II algorithm [39]. Although the
NSGA-II algorithm specifies both the generation and se-
lection procedures, we utilize the the DEAP software li-
brary [37] which provides the NSGA-II algorithm only for
the “select” stage. The method by which we proceed is to
use the (µ+�) algorithm (detailed in Algorithm 1) where
we set � = µ to be the population size. For the purposes
of avoiding confusion we note that the (µ + �) is more
properly an algorithm used with a subset of evolutionary
algorithms known as evolutionary strategies, and thus is
not part of the toolkit of the seperate branch known as
genetic algorithms. Consequently, our algorithm is not
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Algorithm 1 Evolutionary Algorithm
Input: Population sizes µ,� 2 N, crossover and mutation

probabilities p⇥, pµ
Input: an initial population P

0

, a number of generations
N

gen

.
Input: A genetic operator Evaluate(I) that annotates in-

dividuals with their fitness ~

f(I).
Input: A genetic operator Mutate(I) that mutates an indi-

vidual in-place.
Input: A genetic operator Crossover(I

1

, I

2

) that crosses
over two individuals in-place.

Input: A genetic operator Select(P, µ) that selects µ indi-
viduals from the population P .

Output: A Pareto front P⇤ of individuals with respect to the
fitness functions implemented by Evaluate.
. In this Algorithm, we follow the DEAP [37] convention
of storing an individuals’ fitness as metadata. This prevents
having to re-evaluate fitnesses for every comparison.
P  P

0

P⇤  KDTree({}) . Initialize the Pareto front to an
empty k-d tree [38].
Evaluate(P ) . Evaluate each individual in the initial
population.
for i

gen

 1, . . . , N
gen

do
P

o↵spring

 {}
while |P

o↵spring

| < � do
Draw two individuals uniformly at random from P

and copy them as I
1

and I

2

.
switch u ⇠ Uni(0, 1)

case u 2 [0, p⇥)
Crossover(I

1

, I
2

)
case u 2 [p⇥, p⇥ + p

µ

)
Mutate(I

1

)
case u 2 [p⇥ + p

µ

, 1]
. Leave I

1

and I

2

unmodified.
end switch
P

o↵spring

 P

o↵spring

[ {I
1

}
end while
Evaluate(P

o↵spring

)
P  Select(P [ P

o↵spring

, µ) . Using the NSGA-
II crowding operator, order the individuals and select the
next generation from this one and the new o↵spring.

for I 2 P do
if there does not exist I 0 2 P⇤ such that I 0 ⌫ I then

. Average time complexity O(log |P⇤|) for k-d trees.
P⇤  P⇤ [ {I}

end if
end for
if any individuals were added to P⇤ this generation

then
P⇤  {I|I 2 P⇤ such that 8I 0 2 P⇤, I

0 6� I} .

Remove dominated individuals from the Pareto front.
Rebalance P⇤.

end if
end for
return P⇤

strictly a genetic algorithm but is an evolutionary algo-
rithm. Although we use an implementation of (µ+�), by
setting � = µ the algorithm is functionally equivalent to
the generation algorithms used in genetic algorithms. In
this paper we make no distinction between genetic algo-
rithms and the more general term evolutionary algorithm
in the classification of the algorithms used. The over-
all implementation of the algorithm is thus functionally
identical to the original NSGA-II algorithm, save that
the selection of parents is random rather than by binary
tournament selection.
Consequently this evolutionary algorithm proceeds in

generations, each of which consists of producing � o↵-
spring from the previous generation’s population, then
selecting µ individuals from the combination of the pre-
vious population and the new o↵spring to form the new
population. As detailed in Algorithm 1 the (µ+ �) algo-
rithm is expressed abstractly in terms of genetic opera-

tors that create, crossover, evaluate and select individu-
als within each population. Thus, we form our algorithm
by specifying what an individual is, the fitness functions
that we use in evaluating individuals, and by providing
suitable genetic operators to create “children” causal net-
works.

B. Representation of Individuals

E↵ectively, our genetic algorithm searches for Pareto
optimal models M 2 M by representing M as an as-
signment of conditional distributions to each node in a
causal network with a fixed structure. Since the random
variables at each node are constrained to be discrete, we
represent the conditional distributions by tensors, such
that finding arbitrary joint, marginal and conditional dis-
tributions over subsets of the nodes is then an exercise in
standard tensor contractions.
In particular, consider a node xi with n causal par-

ents pai = {xi1 , xi2 , . . . , xin}. Then, the distribution
Pr(xi|pai) = Pr(xi|xi1 , . . . , xin) is given by the tensor

X[j
0

, j
1

, . . . , jn] := Pr(xi = j
0

|xi1 = j
1

, . . . , jn), (17)

where we have used square brackets to indicate indices
(similar to C- or Python-style notation).
We can contract repeated indices of two such tensors

with the tensor at a corresponding third node to perform
expectation values. For example, let A be the tensor for
Pr(a|x,�), B be the tensor for Pr(b|y,�) and ⇤ be the
tensor for Pr(�) in the model of Figure 2c. Then, to find
Pr(a, b|x, y), we compute

Pr(a, b|x, y) =
X

�

A[a, x,�]B[b, y,�]⇤[�]. (18)

The general case, allowing for arbitrary numbers of ran-
dom variables and conditions, is given as Algorithm 2.
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Algorithm 2 Joint and Conditional Distribution
Tensors from Individuals

Input: Individual I, random variables x

1

, . . . , x

n

, random
variables y

1

, . . . , y

m

.
Output: Tensor J [i

1

, . . . , i

n

, j

i

, . . . , j

m

] = Pr(x
1

=
i

1

, . . . , x

n

= i

n

|y
1

= j

1

, . . . , y

m

= j

m

) for the distribution
represented by I.
X

0  {x
1

, . . . , x

n

} . X

0 holds those rvs we must still
include.
F  {} . F holds those tensor factors we include in the
final contraction.
while X

0 is not empty do
F  F [X

0

X

0  
S

x2X

0 pa
x

\ F . Add in any parents that we
have not already added.
end while
J  Einstein sum over of F , holding indices
{x

1

, . . . , x

n

, y

1

, . . . , y

m

}. . Marginalize over parents not
appearing as x or y.
return J

C. Fitness Functions

Our algorithm uses two di↵erent kinds of fitness func-
tions:

1. The total variational distance (TVD) between the
joint distribution computed from an individual and
the observed frequencies.

2. Causal inflences along penalized edges, as general-
ized from the definition given by (9) in Section II.

Dealing with each in turn, the TVD is calculated by
taking the vector 1-norm between the flattened joint dis-
tribution tensor the observable variables calculated as in
Section VIB and the flattened observed frequencies,

f
TVD

(I) = kJ[
obs

(I)� F [k
1

, (19)

where I is an individual with joint distribution tensor
J
obs

(I) over all observables, F is the tensor of observed
frequencies, and where [ indicates flattening— that is,
reduction of an arbitrary-rank tensor to a rank-1 tensor.

As discussed in Section II, we adopt a definition of
causal influence that allows us to reason even in lieu
of interventions. Our definition of the causal influence
Ca!b(I) for an individual I proceeds in three steps.
First, we maximize over pairs of settings of a to find
which are most distinguishable through observations of
b alone. We then maximize over the conditions under
which these observations are made, represented by max-
imizing over feasible assignments to the parents of b. Fi-
nally, we marginalize over those nodes which are also
parents of a to prevent “hiding” causal influence; this is
illustrated in Figure 7.

x

y

a

b

C

a!b

:= max*

a,a

0
,y

��Pr(b|a, y)� Pr(b|a0
, y)

��
1

= max*

a,a

0
,y

��E
x

⇥
Pr(b|a, y, x)� Pr(b|a0

, y, x)
⇤��

1

Figure 7. An example of the causal influence measure
C

a!b

(I) given by (9) applied to a more complicated graph.
The random variable y is conditioned on and maximized over,
as it is a parent of b but not of a. By contrast, the variable x

is also a parent of a and so it is marginalized over, resulting
in the causal influence definition at right.

D. Genetic Operators

Having defined the mapping from models to individ-
uals, we complete the specification of our algorithm by
detailing the various genetic operators which act on these
individuals.
a. Creation In order to create a new individual I,

we must specify a new conditional distribution at each
node of the causal graph. We do so randomly by assign-
ing a tensor Xi(I) with entries drawn uniformly from
[0, 1] to each node, then renormalizing to ensureP
xi

Pr(xi|pai) = 1. Using the tensor notation defined

above,

Xi(I)[j0, j1, . . . , j|pai|] =
X̃i(I)[j0, j1, . . . , j|pai|]P
j00
X̃i(I)[j0

0

, j
1

, . . . , j|pai|]
,

(20)

where X̃i(I)[j0, . . . , j|pai|] ⇠ Uni(0, 1) is the unnormal-
ized tensor of I at Xi.
b. Crossover/Mating Given two individuals I

1

and
I
2

, we mate them to produce two new individuals I 0
1

and
I 0
2

by swapping the tensors at each node with probability
p� = 0.5. That is, for each node xi, the corresponding
tensor Xi(I 0

1

) of I 0
1

is given by

Xi(I
0
1

) =

(
Xi(I2) with probability p�
Xi(I1) with probability 1� p�

. (21)

c. Mutation Given a single individual that has been
selected for mutation, we proceed by first picking a node
xµ on the causal graph uniformly at random, with corre-
sponding tensor (assuming n parents) Xµ[i0, . . . , in].
One of the conditional events represented by Xµ (that

is, a single element of the tensor) is selected at random
and the value (and hence the probability assigned to the
selected outcome) is randomly increased or decreased by
a sample from a zero-mean Gaussian distribution, where
the variance is a user supplied parameter. The mutated
element ofXµ is then clipped to the interval [0, 1], and the
relevant tensor index renormalized such that (20) holds.
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By way of example, if we had a node a with binary val-
ues, which in turn had one parent x also with binary val-
ues, then the information pertaining to that node would
be stored in a 2 ⇥ 2 tensor A[a, x] corresponding to the
probability distribution

Pr(A = a|X = x) = A[a, x] =

✓ x=0 x=1

a=0 ↵ �
a=1 � �

◆
, (22)

where ↵ represents the probability of a being 0 given x is
0 and so on. From this it can be seen that it is necessary
that ↵ + � = � + � = 1. One of ↵, �, � or � would
be modified as discussed above, and the remaining val-
ues renormalized to ensure that the relevant probabilities
continue to sum to 1.

d. Selection For selection we used an unmodified
version of the NSGA-II algorithm [39]. NSGA-II uses
a fast sort algorithm to locate the non-dominated indi-
viduals and then applies a crowding distance sorting al-
gorithm to prefer those individuals that explore di↵erent
parts of the pareto front. The “best” µ individuals are
retained for the next generation.

E. Decomposition of the multi-objective
optimization (the Island Model)

Here we present an enhancement to the basic genetic
algorithm discussed above that aids the discovery of
the global Pareto front in multi-dimensional scenarios,
where—as is the case here—it is possible to evolve pop-
ulations to occupy the extremes of any particular front.

As discussed in Section VIG it is well known that the
NSGA-II crowding becomes less e↵ective with the expo-
nential increase in the size of the front with the num-
ber of dimensions. However, in our case are we able to
force the population to start at extreme points of the
Pareto front by pre-evolving the population on struc-
turally reduced graphs or with reduced fitness criteria.
These populations are able to seed the graph we wish
to explore and spread over the front, fleshing it out over
multiple runs. This can then be repeated as we increase
the dimensions of the fronts. This is not dissimilar to
the mechanism used in NeuroEvolution of Augmenting
Topologies (NEAT) [40] where populations are evolved on
small neural networks prior to allowing additional links
to be added. A similar idea of decomposing the objec-
tives is explored in [41]. E↵ectively, where a multiple
dimension Pareto front needs to be explored, di↵erent
populations are evolved on all permutations of the sim-
pler graphs (on seperate “islands”) before being brought
together for evolution over the full graph. This is illus-
trated in Figure 8.

This technique allows us to find a three-dimensional
Pareto front based on a graph with two causal edges,
from x ! � as well as a ! b. This was evolved using
five runs of the “island model” detailed above. For each

run the initial islands had a population of 300 and com-
prised 4 runs of 400 generations. The initial runs found
populations clustered around the three extremes: (1)
min(TVD), hold Cx!� = 0, Ca!b = 0; (2) min(Ca!b),
hold TVD = 0, Cx!� = 0; and (3) min(Cx!�), hold
TVD = 0, Ca!b = 0.

The second set of islands take the relevant individuals
generated above, reduce them to the best 400 individ-
uals representing the extreme of the Pareto fronts for
that island and transplant them to expanded causal net-
work graphs. In this case there are two second genera-
tion islands: one generating the two-dimensional Pareto
front for {TVD and Ca!b}, with Cx!� held to be 0
(i.e. no causal x ! � link); and the second the two-
dimensional Pareto front {TVD and Cx!�}, with Ca!b

held to be 0. These populations are then evolved on
the respective causal networks generating two dimen-
sional Pareto Fronts similar to Figure 10. These popu-
lations are placed in an ✏-Dominance archive. (In other-
words they are only kept if they dominate all previ-
ous individuals by at least ✏, where in this implemen-
tation ✏ was 10�8 + 10�5 ⇤ |value|). The entire process
so far is repeated several times (in this experiment 5
times) to ensure we have 2,000 suitable individuals in
the archive. These individuals are, e↵ectively, clustered
on the two dimensional fronts specified in the second
set of islands. This final population is used to generate
the 3-dimensional Pareto front shown in Figure 9. The
final island had a population of 2,000 individuals (ex-
tracted initially from the ✏-Dominance archive), evolved
for 800 generations. This constituted one run of the is-
land model. The Model was run 5 times, with every
individual generated by the model being submitted to
(but not necessarily accepted by) the global ✏-Dominance
archive.

To illustrate the advantage of using this model, we
have also plotted (in red) the best Pareto front found
using just the basic algorithm (i.e. evolving only over
the full graph). These additional points were collected
over 8 runs, using a high population (6,000) and repre-
sented five times the computing power required for the
Island Model. As can be seen the global ✏-Dominance
archive for the basic algorithm contained few individu-
als on the best global Pareto front found by the Island
Model. The Pareto front for the Island Model (plotted
blue) does appear to be a viable candidate for the ac-
tual global front, indicating that - for this model - the
trade-o↵s in the di↵erent causality violations considered
is linear. The front fits a linear plane with a Pearson’s ⇢2

value of 0.9902, the non-fitting points being those with
extremely low TVD values (the points which appear on
the horizontal part of the mesh). While this still needs to
be investigated further we believe it is related to exper-
imental noise which might require increased causal vio-
lation to match the noisy data exactly. So far as we are
aware this is the first evidence that tradeo↵s in multiple
causal violations are also linear for such graphs.
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Figure 8. Island model diagram showing the steps in evolving a three-dimensional Pareto front. This allows a the edges of the
Pareto front to be found by exploring lower dimensional graphs with lower populations. Multiple runs in each of step 1 and
step 2 can be done concurrently.
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Cx! 6
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Figure 9. The 3D Pareto front for a! b and x! � violations
found using the “Island Model” is shown in blue. Beneath it
is a linear mesh which fits the Pareto front with a Pearson’s
⇢

2 of 0.9902. By Comparison the non-optimal Pareto front
found by combining the best individuals from 8 runs using
the basic algorithm (i.e. no pre-evolution) on the full graph
is shown in red. The front shown in blue took a fraction of
the computing time to find compared to the non-optimal red
runs.

F. Previous Work and Design Decisions

Although there has been previous work in using genetic
algorithms to explore Bayesian causal networks (e.g. [42],
[43] and [44]), the focus of such works has been to create

the network and the links therein. For instance, [45] uses
a multi-objective genetic algorithm (MOGA) to evolve
dynamic Bayesian networks. There the multi-objectives
explored were the ability of the evolved networks to ex-
plain the data, compared with the complexity of the net-
work in question. The MOGA was used instead of, for in-
stance, a minimum description length (MDL) constraint.
In all of these cases the network is being used to model
something of interest and then, given some observed val-
ues, infer the likely causes. The genetic algorithms are
used to construct di↵erent models which are then trained,
typically the success (or otherwise) of a particular model
being its performance on withheld data.

Our work di↵ers because of the way we wish to utilize
the Bayesian causal networks, specifically we specify the
networks we are interested in, namely those which model
a physical view of “reality” with specified local causality
violation. Training such networks to replicate observed
correlations is of limited interest because successful train-
ing results in one specific probability distribution that
explains the data. What we are interested in finding are
all the relevant probability distributions where the ability
to match the observed correlations is contrasted with the
strength of the local causality violations. The evolution-
ary algorithm is used, not to evolve networks, but rather
to find these probability distributions given the network.
The MOEA is used to guide evolution along these Pareto
fronts.

In order to explore the Pareto front some type of
MOEA algorithm is required. MOEA on two or three
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dimensions are relatively well understood. Algorithms
to explore large dimensions are still an active area of
research (see for example [46]). Since our initial experi-
ments (reported here) would only require causal networks
with no penalized edges (a single-value optimization), one
penalized edge (a MOEA with a two-dimensional Pareto
front) or two penalized edges (a MOEA with a three-
dimensional Pareto front), we decided to use the well
understood NSGA-II [39]. Although NSGA-II attempts
to return the whole of the Pareto front in a single run it
was quite clear that the search space (being the required
probability assignments for all the nodes in the network)
was not smooth, even though the Pareto fronts may be
(and, in fact, turned out to be) smooth. Given this an
✏-Dominance Archive [47] was maintained and updated
through multiple runs. In order to maintain diversity
between runs the archive was not used to guide the evo-
lution, but rather served as an updated archive of the
best Pareto front found so far. After completing mul-
tiple runs, the individuals in the archive thus represent
the Pareto front for the entire procedure, rather than for
each run taken in isolation.

In Section VIE we describe how the ✏-Dominance
Archive generated from a lower dimension front can be
used to seed evolution when a higher dimensional Pareto
front is explored, in a manner not dissimilar to the algo-
rithm presented by Liu et al. [41] or utilized by Stanley
and Miikkulainen [40].

G. Implementation methodology and details

Our initial runs with the EA (i.e. the MOEA with a
single objective, being to minimize the TVD) were used
to verify that the EA could match known results. In this
case we start with a causal network that reflects Bell’s
non-locality assumptions (as shown in Figure 2a) and for
various values of � in (14) use the EA to try and match
the experimentally observed joint probability distribu-
tion. This is a single-objective EA, with fitness being
governed solely by the TVD, i.e. by how closely the ob-
served probability distribution of the Model (being the
observed joint probability distribution for an individual
over the local causal graphs) matches the experimental
data. It is known that when � is less than

p
2 � 1 the

observed data can be modeled with a local causal net-
work. The TVD values should increase as � increases
to 1 since the empirical distribution no longer factorizes
into a locally causal distribution.

An initial population of 300 (µ = 300,� = 300) was
chosen, with the probability of crossover, being 0.1 (and
mutation 0.9). The mutation operator used a standard
deviation of 0.1 (see Section VID). As is typical for
experiments using genetic algorithms no systematic at-
tempt was made to find the “best” parameters for the al-
gorithm. Rather during the course of some initial testing
runs, runs with variations of parameters were tried and
the parameters of the ones that seemed to find solutions

quickest were used. Population sizes reflected those min-
imum populations required to avoid runs being trapped
early on in local minima. The parameters reported are
not reported in a claim of optimality, but rather are re-
ported for the purposes of reproducibility. In any case,
once a solution is obtained, its validity does not depend
on the means by which it was found.

Figure 4a shows experimentally measured density ma-
trices for a range of state � values. The reduction in
coherence is observed as decreasing o↵-diagonal terms.
Figure 4b shows the minimum TVD values emerging from
20 runs of the graph for various � values together with
a linear line fitting the data, running from the known
y-intercept of 0 TVD for � = (

p
2 � 1). As can be

seen the EA fits the expected linear results (Pearson’s
⇢2 = 0.9952).

Having ensured that the algorithm could correctly
match the known results on a causal network consistent
with Bell’s non-locality assumptions, the next stage is to
require a relaxation of local causality to allow the EA
(now operating as a MOEA) to match the correlations
present in entangled states. As an initial step, we exam-
ined relaxing one casual edge at a time, beginning with
a causal influence from a to b—that is, Alice’s outcome
is allowed to influence Bob’s. This is illustrated in Fig-
ure 2c. This becomes a multi-objective problem with
a two-dimensional Pareto front, ostensibly well within
the capabilities of NSGA-II. The tensor contractions re-
quired are not overly complex but with increasing num-
bers of hidden variables (as a result of additional causal
links) each run takes a non-trivial amount of time. As
is typical where the search landscape (being the underly-
ing conditional probability distributions) is not smooth
(even though the fitnesses such distributions reduce to
are smooth) a number of runs failed to converge to any
part of the Pareto front, with most runs finding part, but
not all of the Pareto front. In Figure 10a we show the
individual results of 40 such runs. As can be seen from
the figure just under half of the 40 runs had a large per-
centage of their front non-opitmal, with approximately
half the runs being plotted on top of each other on the
Pareto Front. To generate the final Pareto front each
of the individuals in the ✏-Dominance archive from each
of the 40 runs are submitted to the global ✏-Dominance
archive, so that the best estimate of the true Pareto front
can emerge, as shown in Figure 10b.

Two points arise from these results. The first is that
the front appears to be linear, that is increasing local-
ity violations allows observed (quantum) correlations to
be more exactly matched, the tradeo↵ being linear in
nature. As far as we are aware this was not previously
known. The second arises from the number of failed or
only partially successful runs. In particular we note that
while in the majority of runs the MOEA was able to find
many points on (or close to) the Pareto front, other runs
could be trapped and all runs had di�culty at either ex-
treme of the front. It is clear that the search landscape in
general is not smooth - the interplay between the condi-
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tioning on the hidden local variable and the other proba-
bility distributions allow the MOEA to become trapped
in some local minima. The larger front (in this case a
two-dimensional line) allowed the population to “slide”
away from the edge cases. In addition as observed in [9]
it is likely the edge cases represent very specific distribu-
tions. Whilst some of these observed di�culties could,
in part, be ameliorated by using a larger population and
relying on the NSGA-II crowding mechanism to prevent
such slippage, as is known this will not be feasible if the
front consists of three (or more) dimensions. The front
grows exponentially with the number of dimensions, re-
quiring an exponential increase in population size. An
alternative MOEA such as NSGA-III may help but each
alternative comes with their own di�culties and assump-
tions. It is, however, possible to use the specifics of the
problem space to address these concerns. We know we
can evolve the population on a more limited graph (such
as the purely local graph) and force the population to find
the lowest TVD with a causal violation of zero (i.e. in
the local graph Ca!b = 0, since there is no link a ! b).
This evolved population can then be “transplanted” on
to a graph that does have an a ! b link (e.g. Fig-
ure 2c). The other extreme (i.e. lowest Ca!b violation
for TVD= 0) can be found with a small alteration to
the fitness function. To find this point we evolve the
population on the graph representing Figure 2c but with
a single-objective fitness function, implemented as min-
imizing the TVD, but where two individuals have the
same TVD, the one with the lowest causality violation is
preferred. This drives the population towards zero TVD
and then minimizes the causality. Even with this the
observed correlations were unable to achieve an exact
TVD = 0, it is speculated this is a result of experimental
noise. The ability to generate populations (distributions)
that sat at the extreme points of the Pareto front allowed
the entire two-dimensional front to be revealed and, as
discussed below, can similarly be utilized to reveal the
three-dimensional front created by two simultaneously
relaxed local causality constraints.

VII. DISCUSSION

In this work, we have developed a method to allow
the study of several relaxations of local hidden variables
models simultaneously in a single framework using the
tools of casual networks and genetic algorithms.

With further refinement, we hope that our approach
can shed light on other scenarios where quantum cor-
relations display richer structure than classical systems
would allow. For example, generalizations of the stan-
dard Bell scenario to more stations [48, 49] and more
outcomes [50, 51], as well as multiple hidden variables
[3, 52, 53]. In the latter scenario, very little is known
since classical correlations are no longer given by linear
constraints. Very recently, Chaves has used the frame-
work of causal networks to systematically study such
higher-order constraints [54]. Such measured quantities
will be particularly useful to our approach as they can
be seen as highly relevant coarse grainings of the expo-
nentially growing data space. Such dimension reduction
techniques will be crucial for scaling up our numerical
algorithm to the analysis of multi-party quantum corre-
lations.
In addition, there is nothing specifically “quantum”

about our core numerical methods. Thus, our approach
should find application outside of the problem of un-
derstanding quantum correlations. Recently Lee and
Spekkens have also used inspiration from the causal anal-
ysis of quantum correlations to develop new causal dis-
covery protocols [55]. Like Lee and Spekkens, we de-
part from the usual considerations of observed correla-
tion to considering the entire joint probability distribu-
tion. Our goals di↵er, however; whereas the aim of Lee
and Spekkens is to find all casual models consistent with
data, our goal is to find non-dominated models of the
plausible correlations. These two approaches are likely
to find a harmonious union in the future.
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Figure 1: Causal networks for Bell-type experiments. On the left is the local hidden variable model,
which respects the assumptions going into Bell’s famous no-go theorem. Such a model cannot account
for certain correlations obtained from measuring entangled particles. The graph in the middle contains a
causal link between the measurement settings. Such a model exploits the detection loophole and violates
measurement independence. Finally, on the right is a superluminal model which contains a causal link
between the measurement choice and the hidden variable controlling the state of the particles.

relaxations necessary to avoid the contradiction, and more
importantly, explore the trade-o�s necessary in minimizing
the amount by which the assumptions are violated. Building
o� the work of Chaves et al [9], we make all this concrete
through a quantification of the relaxation of each assumption
in the context of causal models. The task of minimizing the
amount of the relaxation is a multi-objective optimization
problem. Bell’s theorem is recast as the statement that all
objectives cannot be simultaneously minimized. We explore
the trade-o�s through the concept of Pareto optimality—a
model is Pareto optimal if it is better than (or equal to) all
other models in at least one of the desirable properties.

To find the Pareto optimal, we develop a multi-objective
genetic algorithm simulating the evolution of casual mod-
els. In this sense, an individual of the population is a causal
model and its fitness is inversely proportional to the causal
influences we want to penalize (such as nonlocality and mea-
surement dependence) together with how close the model
can reproduce the experiment data. We develop a new
causal discovery algorithm which allows the penalization of
causal influences between arbitrary variables. Thus, our al-
gorithm is more broadly applicable to other scenarios than
the Bell experiment we consider here.

2. CAUSAL MODELS
The prototypical “Bell experiment” has two distant par-

ties: Alice and Bob. Alice has a device with a setting labeled
x and Bob, y. Both of their devices also record binary events,
labeled a (Alice) and b (Bob). Suppose it is empirically ob-
served that a and b are correlated. Bell defined a locally
causal model of such correlations as follows: there exists a
“hidden variable” � which is the common cause both of a
conditioned on x, and of b conditioned on y. We write these
random variables as a | x and b | y, respectively. Formally,
the general conditional distribution is assumed to satisfy

Pr(a, b|x, y, �) = Pr(a|x, �) Pr(b|y, �). (1)

Moreover, it is assumed that the choices of settings can be

made such that each of x and y can be set independently of
the hidden variable �,

Pr(x, y|�) = Pr(x|�) Pr(y|�) = Pr(x) Pr(y). (2)

Such an assumption is often motivated by the injection of
randomness into the measurement settings or the free-will
of Alice and Bob. Bell’s theorem can be stated succinctly as
follows: there exists conditional distributions for quantum
systems which cannot be factorized as in Eqs. (1) and (2).

A causal network is a directed acyclic graph with nodes
representing random variables and edges denoting causal re-
lationships between variables. The defining feature of such
networks is the factorization of joint probabilities. Gener-
ally, suppose we have nodes {x0, x1, . . . , xK}, each of which
represents a random variable in our model. We will assume
that each such random variable is discrete, and without loss
of generality, will assume integer labels xi � {0, . . . , dim xi �
1} for its possible values. The edges in the causal network
of these variables are defined such that

Pr(x0, x1, . . . , xK) =
K�

i=0

Pr(xi|pai), (3)

where pai denotes the parents of node i.
Take, for example, the causal network in Figure 1 (left). In

general, we can decompose the joint distribution Pr(a, b, x, y, �)
in terms of conditional distributions as

Pr(a, b, x, y, �) =

Pr(a|b, x, y, �) Pr(b|x, y, �) Pr(x|y, �) Pr(y|�) Pr(�). (4)

Using the causal network to eliminate conditionals, eq. (3)
implies

Pr(a, b, x, y, �) =

Pr(a|x, �) Pr(b|y, �) Pr(x) Pr(y) Pr(�), (5)

which are identical to Bell’s assumptions on local hidden
variable models. Thus, Bell’s theorem is equivalent to the

(b)

Figure 10. The results of 40 typical runs of the EA with a causal graph allowing “Alice to Bob” local causality violations (see
Figure 2c). (a) For the purpose of producing this graph, each run had its own ✏-Dominance archive. As can be seen several
runs failed to find the correct front at all, indicating that the interplay between hidden nodes and conditioned variables results
in a non-trivial search when attempting to match the observed distributions of observable variables. (b) At the conclusion of
these 40 runs the ✏-Dominances archive are combined to form the gobal ✏-Dominance archive generating the best estimate of
the actual Pareto. The front is well fit by a straight line (Pearson’s ⇢

2 value of 0.997, with bisquare robust fitting). Exact
fitting of the distribution (very low TVD) requires additional causality violation. Experimental noise might be reason for this.
Although around 100 runs were conducted to produce the reported results (Figure 5) very few additional points were found on
the Pareto Front.
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[7] Č. Brukner, “Quantum causality,” Nature Physics 10,
259 (2014).

[8] E. G. Cavalcanti and R. Lal, “On modifications of Re-
ichenbach’s principle of common cause in light of Bell’s
theorem,” Journal of Physics A: Mathematical and The-
oretical 47, 424018 (2014).

[9] C. J. Wood and R. W. Spekkens, “The lesson of causal
discovery algorithms for quantum correlations: causal
explanations of Bell-inequality violations require fine-
tuning,” New Journal of Physics 17, 033002 (2015).

[10] K. Ried, M. Agnew, L. Vermeyden, D. Janzing, R. W.
Spekkens, and K. J. Resch, “A quantum advantage
for inferring causal structure,” Nature Physics 11, 414
(2015).

[11] A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-
mechanical description of physical reality be considered
complete?” Physical Review 47, 777 (1935).

[12] J. S. Bell, “On the Einstein Podolsky Rosen paradox,”
Physics 1, 195 (1964).

[13] S. Kochen and E. Specker, “The problem of hidden vari-
ables in quantum mechanics,” Indiana Univ. Math. J. 17,
59 (1968).

[14] B. F. Toner and D. Bacon, “Communication cost of sim-
ulating Bell correlations,” Physical Review Letters 91,
187904 (2003).

[15] J. Barrett and N. Gisin, “How much measurement inde-
pendence is needed to demonstrate nonlocality?” Physi-
cal Review Letters 106, 100406 (2011).

[16] M. J. W. Hall, “Complementary contributions of indeter-
minism and signaling to quantum correlations,” Physical
Review A 82, 062117 (2010).

[17] M. J. W. Hall, “Local deterministic model of singlet

state correlations based on relaxing measurement inde-
pendence,” Physical Review Letters 105, 250404 (2010).

[18] M. J. W. Hall, “Relaxed Bell inequalities and Kochen-
Specker theorems,” Physical Review A 84, 022102
(2011).

[19] D. E. Koh, M. J. W. Hall, Setiawan, J. E. Pope, C. Mar-
letto, A. Kay, V. Scarani, and A. Ekert, “E↵ects of re-
duced measurement independence on Bell-based random-
ness expansion,” Physical Review Letters 109, 160404
(2012).

[20] M. Banik, “Lack of measurement independence can sim-
ulate quantum correlations even when signaling can not,”
Physical Review A 88, 032118 (2013).

[21] L. P. Thinh, L. Sheridan, and V. Scarani, “Bell tests with
min-entropy sources,” Physical Review A 87, 062121
(2013).
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Appendix A: Derivation of the inequality presented in Section III

For the sake of being self-contained, let us start this section with reviewing some basic facts about discrete probability
distributions and introduce some notation. Throughout this section, we focus on the empirical frequencies F (a, b, x, y)
and the probability distribution Pr(a, b, x, y|M) associated to a fixed model M . Here a, b are the special nodes whose
causal relationship is of interest, y will denote the parents that are not grandparents of b, and x is any set of additional
random variables which might include hidden variables � as well as additional measurement outcomes. Therefore, the

http://dx.doi.org/10.1103/PhysRevLett.115.250401
http://dx.doi.org/10.1103/PhysRevLett.115.250401
http://dx.doi.org/10.1103/PhysRevLett.115.250402
http://dx.doi.org/10.1126/sciadv.1600162
http://dx.doi.org/10.1038/ncomms11339
http://dx.doi.org/10.1103/PhysRevA.64.052312
http://dx.doi.org/10.1103/PhysRevA.64.052312
http://dx.doi.org/10.1103/PhysRevLett.23.880
http://dx.doi.org/10.1145/361002.361007
http://dx.doi.org/10.1145/361002.361007
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1109/TEVC.2013.2281533
http://dx.doi.org/10.1109/TEVC.2013.2281533
http://dx.doi.org/10.1145/2464576.2482729
http://dx.doi.org/10.1145/2464576.2482729
http://dx.doi.org/http://dx.doi.org/10.1016/j.ins.2012.12.051
http://dx.doi.org/http://dx.doi.org/10.1016/j.ins.2012.12.051
http://dx.doi.org/10.1103/PhysRevA.64.032112
http://dx.doi.org/10.1103/PhysRevLett.88.040404
http://dx.doi.org/10.1103/PhysRevLett.88.040404
http://dx.doi.org/10.1088/0305-4470/37/5/021
http://dx.doi.org/10.1088/0305-4470/37/5/021
https://arxiv.org/abs/1506.04325
https://arxiv.org/abs/1506.03880


15

discussion is completely general and not specific to the models considered, e.g., in the experiment.
If we marginalize these distributions over any variable, say y, we produce new distributions

F (a, b, x) =
X

y

F (a, b, x, y) and Pr(a, b, x|M) =
X

y

Pr(a, b, x, y|M), (A1)

respectively. As outlined in (A1), we indicate marginalization over any variable, by simply omitting the corresponding
variable in the description. Having such a notation at hand, the product rule (for discrete probability distribution)
assures that as an immediate consequence of the definition of conditional distributions,

F (a, b, x, y) = F (a, b, x|y)F (y) and Pr(a, b, x, y|M) = Pr(a, b, x|y,M) Pr(y|M) (A2)

for the variable y. Analogous formulas are true for any combination of the variables present in the distributions (i.e.
{a, b, x, y} for F (·) and {a, b, x, y} for Pr(·|M)).

With these rules and notational concepts at hand, the following statement is an immediate consequence of the
triangle inequality.

Lemma 1. Let F (a, b, x, y) and Pr(a, b, x, y|M) be as above. Then

kPr(b|M)� F (b)k
1

 kPr(a, b|M)� F (a, b)k
1

 kPr(a, b, x, y|M)� F (a, b, x, y)k
1

= TVD(M). (A3)

This Lemma encapsulates two particular instance of the well-known fact that marginalization contracts the total
variational distance. Since the latter is a measure of how well two probability distributions can be distinguished and
marginalization corresponds to ignoring certain variables, Lemma 1 can be intuitively paraphrased as: “knowing more
doesn’t hurt”.

Proof of Lemma 1. Inserting the definitions of marginalization and total variational distance yields

kPr(b|M)� F (b)k
1

=
X

b

�����
X

a

(Pr(a, b|M)� F (a, b))

����� 
X

a,b

|Pr(a, b|M)� F (a, b)| = kPr(a, b|M)� F (a, b)k
1

(A4)

upon employing the triangle inequality. The second inequality can be established in complete analogy.

We are now ready to establish the main auxiliary result necessary to establish Theorem 1. It requires the concept
of the harmonic mean for two variables. For x

1

, x
2

> 0 the harmonic mean is defined as H(x
1

, x
2

) = 2x1x2
x1+x2

.

Lemma 2. Consider two bivariate probability distributions p(u, v) and q(u, v) over finitely many elements labeled by

u and v, respectively. Then, the following inequality is valid for any fixed variable v:

kp(u|v)� q(u|v)k
1


P

u |p(u, v)� q(u, v)|+ |p(v)� q(v)|
H (p(v), q(v))

(A5)

We point out that this estimate is responsible for introducing the on first sight unfavorable scaling of the bounds (13).
However, inequality (A5) is actually tight, making the aforementioned behavior essentially unavoidable. To see this,
let u, v,2 {0, 1} be binary variables and let p be the uniform probability distribution over the four possible joint
instances. If one chooses q to be a perfectly correlated bivariate distribution—i.e. q(0, 0) = q(1, 1) = 1/2—it is easy
to see that equality is attained in the assertion of Lemma 2.

Proof of Lemma 2. Fix an arbitrary label v. Inverting the product rule allows us to rewrite the left hand side of (A5)
as

kp(u|v)� q(u|v)k
1

=

����
p(u, v)

p(v)
� q(u, v)

q(v)

����
1

=
1

p(v)q(v)

X

u

|q(v)p(u, v)� p(v)q(u, v)| . (A6)

For p(v) and q(v) we now define

µ :=
1

2
(p(v) + q(v)) and � :=

1

2
(p(v)� q(v))
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which obey p(v) = µ+ � as well as q(v) = µ� � by construction. Inserting these decompositions into (A6) reveals

p(v)q(v)kp(u|v)� q(u|v)k
1

=
X

u

|(µ� �)p(u, v)� (µ+ �)q(u, v)|

=
X

u

|µ (p(u, v)� q(u, v))� � (p(u, v) + q(u, v))|

µ
X

x

|p(u, v)� q(u, v)|+ |�|
X

u

(p(u, v) + q(u, v))

=µ
X

u

|p(u, v)� q(u, v)|+ |�|(p(v) + q(v))

=µ

 
X

u

|p(u, v)� q(u, v)|+ 2|�|
!
,

where we have employed the triangle inequality and the definition of marginalization. Replacing µ and � with the
original expressions then yields

kp(u|v)� q(u|v)k
1

p(v) + q(v)

2p(v)q(v)

 
X

u

|p(u, v)� q(u, v)|+ |p(v)� q(v)|
!
.

The desired statement then follows from this estimate by identifying the pre-factor as 1/H
�
p(v), q(v)

�
.

We can now show that a bound holds that relates the maximum deviation between the causal influence of any fixed
model M and the frequencies F .

Lemma 3. For any fixed model M 2 M and fixed set of empirical frequencies F , let y denote the parents that are

not grandparents of the random variable b. Then the following inequality holds

|Ca!b(F )� Ca!b(M)|  4 TVD(M)

min*a,y H
�
Pr(a, y|M), F (a, y)

� , (A7)

where min* denotes the minimization over feasible assignments to the variables a, y.

Proof. Choose an arbitrary model M 2 M. To ease notation, denote by y the parents that are not grandparents of
the variable b. In order to derive the upper bound presented in (13), we start with inserting the definition (9) of
Ca!b(M) and observe

Ca!b(M) =max*
a,a0,y

kPr(b|a, y,M)� Pr(b|a0, y,M)k
1

=max*
a,a0,y

kPr(b|a, y,M)� F (b|a, y)� Pr(b|a0, y,M) + F (b|a0, y) + F (b|a, y)� F (b|a0, y)k
1

max*
a,a0,y

kPr(b|a, y,M)� F (b|a, y)k
1

+max*
a,a0,y

kPr(b|a0, y,M)� F (b|a0, y)k
1

+max*
a,a0,y

kF (b|a, y)� F (b|a0, y)k
1

=2max*
a,y

kPr(b|a, y,M)� F (b|a, y)k
1

+ Ca!b(F ), (A8)

where we have identified the last term as the empirical average causal e↵ect defined in (12). As a simple bookkeeping
device, let us define v = (a, y) to be the cartesian product of the random variables a and y. The first term in (A8)
can be bounded by invoking Lemma 2 and Lemma 1. Doing so results in

Ca!b(M)� Ca!b(F ) 2max*
v

kPr(b|v,M)� F (b|v)k
1

(A9)

2max*
v

P
b |Pr(v, b|M)� F (v, b)|+ |Pr(v|M)� F (v)|

H
�
Pr(v|M), F (v)

� (A10)

4max*
v

kPr(v, b|M)� F (v, b)k
1

H
�
Pr(v|M), F (v)

� (A11)

4max*
v

TVD(M)

H
�
Pr(v|M), F (v)

� (A12)

which is equivalent to the upper bound presented in (A7). The corresponding lower bound can be derived in a
completely analogous fashion by starting o↵ with Ca!b(F ) instead of Ca!b(M).
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This bound is not yet useful because the right hand side still depends on the unknown model. We seek an inequality
that is independent of the model as long as the model has a fixed and su�ciently small value of TVD(M) with respect
to the empirical frequencies. The bound in Section III is a way to avoid this di�culty, and we have now assembled
all prerequisites necessary to prove it. We restate the main theorem for completeness.

Theorem 1. Let M denote any model and let TVD(M), Ca!b(M) and Ca!b(F ) be as in (7), (9) and (12), re-

spectively. Denote by M⌧ the set of models having TVD(M)  ⌧ with respect to the empirical frequencies F , and

let f? = mina,y F (a, y), where y denotes all parents of the variable b that are not grandparents of b. Then for all

M 2 M⌧ and ⌧ < 2f?
we have

|Ca!b(F )� Ca!b(M)|  2⌧(4f? � ⌧)

f?(2f? � ⌧)
. (A13)

Proof of Theorem 1. Again for the sake of bookkeeping we introduce a variable v = (a, y). We begin with the inequality
from Lemma 3 and note that we can simply maximize the righthand side over all M 2 M⌧ to get a universal bound.
We have

max
M2M⌧

4 TVD(M)

min*v H
�
Pr(v|M), F (v)

�  4 ⌧

minM2M⌧ min*v H
�
Pr(v|M), F (v)

� . (A14)

Therefore we must establish a lower bound on the denominator. Plugging in the definition of the harmonic mean, a

simple calculation confirms that @xH(x, y) = 2y2

(x+y)2 � 0, so the denominator is bounded from below as

min
M2M⌧

min*
v

2Pr(v|M)F (v)

Pr(v|M) + F (v)
� min

M2M⌧

min*
v

2Pr(v|M)f?

Pr(v|M) + f?
. (A15)

Now we relax slightly to allow all possible probability distributions (not necessarily ones coming from a causal model
M , and denote P⌧ to be the set of all probability distributions p with kp � Fk

1

 ⌧ . Minimizing over a potentially
larger set P⌧ may only decrease the function (or keep its minimum unchanged). We find the denominator is now
bounded by

min
M2M⌧

min*
v

2Pr(v|M)f?

Pr(v|M) + f?
� min

p2P⌧

min*
v

2p(v)f?

p(v) + f?
� min

p2P⌧

2p?f?

p? + f?
. (A16)

Here in the second inequality we have used the same monotonicity argument for the harmonic mean above (since it
is a symmetric function) and replaced the minimum over v with p? = min*v p(v).

Now we appeal to the monotonicity result of Lemma 1, so that p 2 P⌧ implies that kp(v)�F (v)k
1

 ⌧ . The claim
then follows if we can establish the following result,

min
p2P⌧

p? � f? � ⌧

2
. (A17)

A weaker result, that minp2P⌧ p
? � f?� ⌧ , is easy to see if we relax the requirement that p is normalized and add the

more stringent requirement that ⌧ < f?. Begin with the choice p(a) = F (a), and then subtract ⌧ from the smallest
component, keeping all other components fixed. This achieves the least value of this relaxed problem. This is a valid
solution since the resulting vector is still nonnegative, owing to the constraint ⌧ < f?. The slightly tighter result
follows from reasserting the constraint that the entries of p must sum to 1, and allows us to weaken the constraint
on ⌧ to ⌧ < 2f?. With the normalization condition in place, subtracting any deviation of size � from a component of
p must be compensated by adding � elsewhere in the vector, and this contributes a total of 2� to the TVD between
these di↵ering vectors. The largest such a deviation can be is half of ⌧ , and to minimize our objective function we
put this deviation on the smallest component. This component remains positive because of the condition ⌧ < 2f?, so
this remains a valid probability distribution.

Again by the monotonicity of the harmonic mean, this minimal value can be used to lower bound the denominator.
The final inequality is obtained by plugging in the value of (A17) into the denominator expression and simplifying.

We remark that the maximum possible value for f? in a Bell experiment where a takes d possible outcomes is 1/d.
Because this inequality is monotonically decreasing with f?, the bound becomes weaker as the number of outcomes
increases, and the requirement that ⌧ < 2f? becomes more demanding.
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