Evolution of an Efficient Search Algorithm for the Mate-In-N Problem in Chess

Ami Hauptman and Moshe Sipper Ben-Gurion University, Israel

2007 "HUMIES" AWARDS FOR HUMAN-COMPETITIVE RESULTS

Monday, July 9, 2007

Game-Playing AI

- Game Strategy =
 Search + Knowledge
- Search:
 <u>Number of nodes developed</u>
- Knowledge:
 <u>Evaluation of nodes</u>
- Tradeoff between the two

Chess: Machine Players

- Powerful contemporary engines
 - Crafty, Fritz, Deep Junior, ...
 - Lots of search
 - Less knowledge
- Intelligent? Hmmm...
 - Very little generalization
 - Gobbles computational power
 - Deemed theoretically uninteresting [Chomsky, 93]

Chess: Human Players

- Use problem solving cognition
- Deeply <u>knowledge-based</u> play
- Massive use of <u>pattern recognition</u>; parallelism

- Also use search but
 - Substantially less nodes (typically dozens)
 - Selective (only "good")
 - More efficient: less nodes for "same" result
- Good source of inspiration for algorithms

Our Goal

- Concentrating on endgames we previously:
 - evolved node-evaluation function (knowledge) with GP
 - Results: draw or win against CRAFTY, a world-class chess engine
 - Part of work that won a 2005 humies medal
- This work: <u>Evolve the search algorithm itself</u>
- Evolve <u>both search and knowledge</u>, letting <u>evolution</u> balance the two

Incentive for Current Work

• Previously evolved players:

- Sometimes miss (easy) shallow mates
- Scaling problem: adding pieces to board decreased scores
- Evolved players should rely more on search
 - Full pure-knowledge player still unattainable
 - Search makes the strongest engines
- Problem:
 - Simply <u>adding</u> search: too slow (each node thoroughly examined)
- → SOLUTION:
 - Balancing search & knowledge through evolution

Problem Domain

- Mate-in-N: Is there a forced win sequence in maximum 2*(N-1) plies ?
- Crucial to chess engines, searched far more thoroughly
- CRAFTY: For difficult N=5 cases searches over 10⁶ nodes

Mate-in	1	2	3	4	5
Depth in plies	2	4	6	8	10
Nodes developed	600	$7\mathrm{K}$	50K	138K	1.6M

Major Result

Evolved search algorithm: Number of nodes developed reduced by 47% <u>with respect to world-class engine (not simple aß)</u>

Result is Human-Competitive (H) result holds its own or wins a regulated competition involving human-written computer programs (B) better than result accepted as a new scientific result at the time (D) result is publishable in its own right (F) better than result considered an achievement at the time (G) result solves a problem of indisputable difficulty in its field

Why is Result Best?

- Difficult for most human chess players:
 - Must train intensively not to miss (and lose game)
- Our evolved strategies improve upon one of top chess engines in existence (Crafty), representing many human years of programming
- We're beating this top-notch engine in its own "territory": massive search
- Problem is crucial to chess engines, therefore much computational power is expended (e.g., in such positions, Deep Blue examines twice the normal number of nodes)

Why is Result Best? (cont'd)

- Evolving a dynamic algorithm (i.e., a process) usually harder than evolving a static structure
- We took evolution to the next level: balancing search and knowledge
- Surpasses previous EC solutions

Hard problem in hard domain for man & machine (chess)
 Evolved algorithm better than (most) humans
 Evolved algorithm better than human-written top engine
 Evolution taken to next level

• A. Hauptman and M. Sipper

Evolution of an efficient search algorithm for the matein-n problem in chess Proceedings EuroGP2007, pp. 78-89, April 2007

 M. Sipper, Y. Azaria, A. Hauptman, & Y. Shichel
 Designing an evolutionary strategizing machine for game playing and beyond
 IEEE Transactions on Systems, Man, and Cybernetics, Part C, 37(4),
 July 2007

