
Towards Improved Dispatching Rules for Complex Shop
Floor Scenarios—a Genetic Programming Approach

Torsten Hildebrandt
∗

, Jens Heger, Bernd Scholz-Reiter
Bremen Institute of Production and Logistics – BIBA

at the University of Bremen
Hochschulring 20

28359 Bremen, Germany
{hil,heg,bsr}@biba.uni-bremen.de

ABSTRACT
Developing dispatching rules for manufacturing systems is a
tedious process, which is time- and cost-consuming. Since
there is no good general rule for different scenarios and ob-
jectives automatic rule search mechanism are investigated.
In this paper an approach using Genetic Programming (GP)
is presented. The priority rules generated by GP are evalu-
ated on dynamic job shop scenarios from literature and com-
pared with manually developed rules yielding very promis-
ing results also interesting for Simulation Optimization in
general.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Scheduling

General Terms
Algorithms, Design, Experimentation

Keywords
Genetic Programming, Job Shop Scheduling, Dispatching
Rules, Stochastic System Optimization

1. INTRODUCTION
In todays highly competitive, globalized markets an ef-

ficient use of production resources is inevitable for manu-
facturing enterprises. Therefore especially capital-intensive
industries like semi-conductor manufacturing spend consid-
erable effort to optimize their production processes, and as
one part of it optimize production scheduling. Scheduling,
as many other problems in the manufacturing domain are
combinatorial, NP-hard optimization problems. Therefore

∗corresponding author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’10, July 7–11, 2010, Portland, Oregon, USA.
Copyright 2010 ACM 978-1-4503-0072-8/10/07 ...$10.00.

there is a need for heuristics to solve these problems as op-
timal solutions can only be obtained for very small problem
instances.

One class of scheduling heuristics are dispatching rules
which are widely used in industry, especially in complex
manufacturing systems like semiconductor manufacturing.
Their popularity is derived from the fact that they perform
reasonably well in a wide range of environments, and are
relatively easy to understand. They also need only mini-
mal computational time, which allows them to be used even
in real-time, on-line scheduling environments. Dispatching
rules as a special kind of priority rules are applied to assign
a job to a machine. This is done each time the machine
gets idle and there are jobs waiting. The dispatching rule
assigns a priority to each job. This priority can be based on
attributes of the job, the machines or the system. The job
with the highest priority is chosen to be processed next.

Priority-scheduling rules have been developed and ana-
lyzed in the scientific literature for many years, see e.g. [23,
2, 16] . Depending on the manufacturing system and the
various objectives (mean flow time, maximum flow time,
variance of flow time, proportion of tardy jobs, mean tar-
diness, maximum tardiness, variance of tardiness, etc.) no
single rule has been found, which outperforms all others [25].
For this reason it is a time and cost-consuming process to
select the best rule for specific environments and even more
so to manually develop good rules. However this is precisely
what researchers e.g. in the semi-conductor industry do [7,
8]. This motivates further research especially in the area of
automatic adaption and learning of priority rules.

In the evolutionary algorithms (EA) community schedul-
ing received large attention (see e.g. the survey in [15]),
however mostly applying it directly to solve instances of
scheduling problems. Genetic Programming [21] received
only little attention, even though it seems very promising
to use it as a hyper-heuristic [5] to automatically develop
dispatching rules:

1. the time-consuming GP run can be made off-line, once
a good rule was found it can be used as an efficient,
on-line/real-time scheduling rule just as any standard
rule

2. as an automated approach very little manual work has
to be invested, especially to

(a) adopt to different objective functions

(b) incorporate additional information or assess use-
fulness of such information for scheduling

3. new priority rules can be easily integrated in exist-
ing software for production control and manufacturing
simulations.

The work in this paper is a first step to be able to au-
tomatically develop dispatching rules for complex manufac-
turing systems like, e.g. in semi-conductor manufacturing.
Therefore we couple a dynamic job shop simulation with a
GP component and use the thoroughly researched dynamic
job shop scenarios from [25] as an example to develop and
test our framework. Primary focus of our work is to find
good dispatching rules and compare their performance with
manually developed rules for these scenarios and show some
of the advantages of our approach, however the paper also
addresses the broader topic of coupling a GP search with
a stochastic manufacturing simulation to assess individuals’
fitness. Therefore the work presented here is also of interest
for other uses of simulation optimization.

The paper is organized as follows: in section 2 we give a
review of previous work on the use of GP to evolve dispatch-
ing rules followed by a description of our framework and the
scenarios used in section 3. Section 4 presents our compu-
tational experiments and their results. The paper concludes
with a short summary and gives directions towards future
research.

2. PREVIOUS APPROACHES
One of the first approaches to use Genetic Programming

for scheduling problems was conducted by Atlan et al. [1].
They proposed a general system to infer symbolic policy
functions for distributed reactive scheduling. As a validat-
ing case study of their approach they used the well stud-
ied Fisher Thompson [12] static job shop instances and per-
formed very well.

Dimopoulos and Zalzala in [10] investigated the use of GP
for the development of priority rules for the one-machine
total tardiness problem. The rules they found outperformed
standard rules like EDD and SPT as well as the Montagne
rule, which was specially developed for the weighted total
tardiness problem.

Geiger, Uzsoy and Aytug presented an approach in [13],
which is also capable of automatically discovering dispatch-
ing rules. It is evaluated in a variety of single machine en-
vironments, and discovers rules that are competitive with
those in the literature. In a follow-up paper Geiger et al.
[14] use their approach to evolve dispatching rules for single
machine batch processing.

Jakobović and Budin: [20, 19] proposed a multiple tree
adaptive heuristic for job shop scheduling, where a decision
tree is used to distinguish between resources based on their
load characteristics. The results of their approach exhibited
better performance than existing scheduling methods.

Tay and Ho [27] developed dispatching rules for the flexi-
ble job-shop problem, where operations can be processed on
different machines. This means, that not only the order of
operations on a machine (sequencing decision) but also the
assignment of operations to machines (routing decision) has
to be done. Tay and Ho try to find rules performing well for
various objectives by using a linear combination of these ob-
jectives in the fitness assessment. For the routing decision
they used a fixed “least waiting time assignment” and use

GP to evolve sequencing rules. They find rules performing
better than standard rules. As our dynamic job shop sce-
narios can be seen as a special case of a dynamic flexible job
shop we also tested their rules on our scenarios. Their per-
formance (ranging from 1.37 to 1.41) was only slightly better
than the ERD rule and quite far away from the performance
of the SPT rule.

We mainly see three reasons for the poor performance of
Tay and Ho’s rules in our scenarios: first, they try to find a
robust rule working reasonably well not just for the objec-
tive of mean flowtime minimization. However even for the
single objective of mean flowtime they report their rules to
be better than simple rules like EDD or SPT in their scenar-
ios. Second, using the fixed least waiting time assignment to
assign operations to machines probably strongly influences
the situations faced by the sequencing rules. Third, for fit-
ness evaluations they use sets of problem instances ranging
from 10 jobs and 5 machines to 200 jobs and 15 machines.
However jobs’ release dates are set in an interval of [0,40] or
[0,20]. This however results in a sharp load peak (in fact:
overloading) at the beginning of the simulation, e.g. in the
case of 15 machines all jobs arrive within less than three
times the mean operation time. Therefore their rules prob-
ably never face typical situations occurring in a long-term
simulation of a swung-in manufacturing system and job ar-
rivals modeled as a continuous arrival process, as we use in
our work.

To sum up the previous work applying GP to find dis-
patching rules it can be stated that most work only consid-
ered comparatively simple scheduling problems, either single
machine or small static scheduling problems. None of the
work found in the literature uses a stochastic simulation for
performance evaluation of rules on a larger time scale and
uses GP on the same scenarios used for the manual creation
of dispatching rules.

3. EXPERIMENTAL SETUP

3.1 Problem Description
Our computational experiments use the dynamic job shop-

scenarios from [25] and try to find good dispatching rules for
these scenarios automatically. In total there are 10 machines
on the shop floor, each job entering the system is assigned
a random routing, i.e. machine visitation order is random
with no machine being revisited. Processing times are drawn
from a uniform discrete distribution ranging from 1 to 49.
Job arrival is a Poisson process, i.e. inter-arrival times are
exponentially distributed. The mean of this distribution is
chosen to reach a desired utilization level on all machines.

Following the procedure from [25] we start with an empty
shop and simulate the system until we collected data from
jobs numbering from 501 to 2500. The shop is further loaded
with jobs, until the completion of these 2000 jobs to over-
come the problem of censored data [9]. Data on the first
500 jobs is disregarded to focus on the shop’s steady state-
behavior.

These things being equal we distinguish 4 scenarios vary-
ing the utilization level of the system and whether there are
missing operations or not:

• utilization: is set to 80 % (low/moderate load) and
95 % (highly utilized system)

• missing/full operations: in the full setting, each job

entering the system has always 10 operations to com-
plete, i.e. has to visit each machine; with missing oper-
ations a job has between 2 and 10 operations (assigned
when entering the system using a uniform distribution)

In the experiments using due date information we addi-
tionally investigate flow factors of 4.0 and 6.0, resulting in
8 scenarios. A flow factor ff of 4.0 means a job j is assigned
its due date Dj as four times its processing time, i.e. if Oj

is the set of job j’s operations and pi,j the processing time

of the ith operation from Oj then Dj = rj + ff
∑|Oj |

i=1 pi,j .
Using the standard α |β| γ-notation from scheduling lit-

erature (see, e.g. [24, pp.13] or [3]), where α denotes the
problem type, β any specialties involved, and γ is the objec-
tive function, the problem as stated above is most similar to
J10 |rj(, Dj)|FT , albeit being stochastic and missing oper-
ations being different from the standard job shop formula-
tion. The objective function FT denotes mean flow time, i.e.
the arithmetic mean of the flow times of jobs 501 to 2500:
FT = 1

2000

∑2500
j=501 (Cj − rj), where Cj is the completion

time of a job j and rj is its release date.

3.2 Benchmark rules
In order to compare our GP-evolved rules with existing

dispatching rules, we chose a set of six rules, the first four
being standard rules used for decades now. The last two
however are rules manually developed by Rajendran and
Holthaus and performing very well for the objective of min-
imizing mean flow time in job shops.

1. FIFO—First In (queue) First Out: jobs are processed
in the order they entered the queue in front of a ma-
chine.

2. ERD—Earliest Release Date first: preference is given
to the job which entered the system first.

3. SPT—Shortest Processing Time first: the job with the
shortest processing time of its current operation is pro-
cessed first. This rule is usually considered a good
choice if the objective is to minimize mean flow time.

4. WINQ—(least) Work In Next Queue first: jobs are
ranked in the order of a (rather worst case) estima-
tion of their waiting time before processing on the next
machine can start. This estimation includes the time
needed by a machine m to finish its current job plus
the sum of processing times of all jobs currently wait-
ing in front of m. The job where this sum is least has
the highest priority.

5. PT +WINQ—Processing Time plus WINQ: this rule
uses the sum of WINQ (as just described) and the
processing time of a job’s current operation. The job
where this sum is least gets the highest priority. This
rule was proposed by Rajendran and Holthaus in [25]
and achieved a very good performance to minimize
mean flow time.

6. 2PT+WINQ+NPT this rule is similar to the just de-
scribed PT+WINQ-rule but uses twice the Processing
Time and adding the processing time of a job’s next op-
eration (NPT–Next Processing Time). This rule was
manually developed and presented by Rajendran and
Holthaus in a follow-up paper to [25]: [17]. In that

evaluate
population

full evaluation
application of

genetic operators

initial population

best individual
of generation

new generation‘s
population

evaluated
individuals

best individual of runstop after specified
number of

generations reached

Figure 1: schematic depiction of a single GP run

paper the authors used slightly different scenarios to
assess rule-performance, however this rule is also su-
perior in the original scenarios of [25] also used in this
paper. This rule is the real benchmark to beat as it is
the best rule manually developed for these scenarios.

3.3 Comparing rule performances
The job shop scenarios as described in section 3.1 turn

out to have a high variability on one hand due to the high
influence of the utilization on mean flow time and results are
also rather sensitive to the random numbers used. There-
fore multiple independent replications of each scenario are
necessary to get reliable estimates of mean flow time values
and the comparison has to account for a high variability of
flow times between the scenarios. Therefore to compare the
performance of two rules A and B we use a performance
index perfAB over all scenarios from the set of 4 (8) scenarios
S. This performance index is defined as:

perfAB =
1

|S|

|S|∑
s=1

FTA,s

FTB,s
(1)

This index is greater than 1 if rule A performs worse than
rule B or in the interval (0, 1) if A performs better than B.
FTA,s is the mean flow time achieved when using rule A in
scenario s. As initial experiments showed, the relative per-

formance
FTA,s

FTB,s
is also less sensitive to the choice of random

numbers.

3.4 System Architecture
In our framework to conduct the computational experi-

ments, implemented in Java, we use ECJ [11] to perform
the GP-operations. To implement the manufacturing sce-
narios and assess the performance of dispatching rules we
implemented and integrated a simple discrete-event simula-
tion. This simulation is very roughly based on the Java-port
of the job shop implementation of the SIMLIB library [22],
as described in [18]. Our framework allows the utilization
of multi-core processors/computers, which was used in our
experiments to run them on an 8-core computer with Intel
Xeon 3GHz-CPUs.

Figure 1 shows the general sequence of actions in a single
GP run, which follows the standard procedure of most Ge-
netic Algorithms: the starting point is an initial population,
which is evaluated. Each evaluation in our case is a simu-
lation run of at least 4 different scenarios (with potentially
multiple replications), assessing the performance of an indi-
vidual, i.e. candidate dispatching rule. As explained in more

Name Value
population size 1000
generations 20-200 (see text)
crossover proportion 90 %
reproduction proportion 10 %
selection method tournament selection

(size 7)
creation type ramped half-and-half

(min depth 2, max depth
6)

max. depth for crossover 17
function set +, −, ×, ÷, max, if3
basic terminal set PT, NPT, OpsLeft,

RemProcTime, TimeIn-
Queue, TimeInSystem,
WINQ, 0, 1

due date related terminals Slack, TimeTillDue,
ODD

Table 1: GP parameters used

detail later on we only use a rather simple evaluation here,
as a full evaluation would be far too time-consuming. The
fitness values of the individuals are then used to apply the
standard operators of a GP run to form the population of
the next generation. The settings used here are summarized
in table 1. This new population needs to get evaluated and
the whole procedure is repeated until a certain maximum
number of generations were generated and evaluated.

To get a reliable estimate of the performance of a rule re-
quires a simulation with many replications, making it com-
putationally expensive (see section 3.3). Therefore we chose
to use a two-step procedure: a “lightweight” evaluation with
few replications during the GP run followed by a full evalu-
ation with many replications afterwards. Such a full evalu-
ation is only performed on the best individual of each gen-
eration in order to find the best rule of a GP run. This is
shown on the right side of figure 1. We chose 200 indepen-
dent replications to perform a full evaluation and get reliable
estimate of a rule’s performance, the question of what num-
ber of replications to use for the “lightweight” evaluations is
investigated in section 4.

Besides choosing the set of terminals and non-terminals
and the experiments regarding the best number of replica-
tions per fitness evaluation, which vary the maximum num-
ber of generations, we did not make any serious attempts to
optimize the parameters listed in table 1. These parameter
settings are mostly ECJs defaults following recommenda-
tions from [21]. We found these settings to work well in our
experiments.

3.5 Rule Components
Looking into the literature on dispatching rules and pre-

vious uses of GP in similar applications like ours we chose
the function set to consist of the basic arithmetic opera-
tions augmented by the maximum function and a ternary
version of if-then-else (if a >= 0 then b else c; a, b, c are
sub-expressions evolved with GP). Our basic terminal set
consists of the terms listed below. As a dispatching rule
gets evaluated each time a machine becomes idle to choose
one of its currently waiting jobs, all terms are relative to the
job j, which is to be evaluated and assigned a priority.

PT Processing Time of j’s current operation

NPT Next Procesing Time, i.e. processing time of j’s next
operation or 0 if there is no such operation

OpsLeft number of operations left for j

RemProcTime sum of the processing times of all opera-
tions left for j

TimeInQueue time j spent in current queue in front of
machine m: TimeInQueuej,m = t− rj,m, where rj,m is
the point in time j entered the queue

TimeInSystem time spend in system:
TimeInSystemj = t− rj

WINQ Work In Next Queue as described in section 3.2

constants as constant values we use {0, 1}

For our experiments involving due date information we
extended this set of terminals with the following terms:

TimeTillDue TimeTillDuej = Dj − t

Slack the slack denotes the difference between the time a
job gets due and its remaining processing time to finish
it slj = TimeTillDuej − RemProcTimej . If the slack
becomes negative a job can not possibly meet its due
date Dj .

ODD Operational Due Date: this is often used as a dis-
patching rule on its own and assigns each operation i
of a job j a due date Di,j . There are various ways how
to compute these due dates, we chose proportional to
an operations processing time. This means if a job has
a flow factor ff:

Di,j =

{
rj + ff× p1,j if i = 1

Di−1,j + ff× pi,j else

We include this information (Di,j − t) as a terminal
in our GP search to have something like intermediate
milestones for each operation.

In the formulas above t denotes the current simulation
time. Please note that all times are not absolute time values
but relative to the current simulation time to ease GP’s task
of finding rules robust to changes in the simulation length.

3.6 Fitness Function
The fitness fA of each individual A, i.e. dispatching rule,

is evaluated using the formula (lower is better):

fA = perfA2PT+WINQ+NPT ∗ fspA
2PT+WINQ+NPT

Individuals’ evaluations are always relative to the fixed
baseline rule 2PT +WINQ+NPT and consist of the per-
formance index as described in section 3.3 multiplied with
a full system penalty fspA

B . This factor is usually just 1 but
becomes larger than 1 when the simulation has to be ter-
minated early, which can happen if the number of jobs con-
currently in the system (work in progress, WIP) gets larger
than 500. Such a high WIP is a sure sign of a rule with very
bad performance and the system running full. We chose
not to assign a fixed very bad fitness to such individuals but
still to use its (partial) performance but penalize it with this

 0.92

 0.925

 0.93

 0.935

 0.94

 0.945

 0.95

 0.955

 0.96

si
ng

le
-1

re
p

si
ng

le
-2

re
ps

si
ng

le
-5

re
ps

si
ng

le
-1

0r
ep

s

ge
nS

ee
d-

1r
ep

ge
nS

ee
d-

2r
ep

s

ge
nS

ee
d-

5r
ep

s

ge
nS

ee
d-

10
re

ps

re
la

tiv
e

pe
rf

or
m

an
ce

Figure 2: performance of GP rules found using var-
ious settings varying the number of replications per
evaluation and random seed usage. Experiments 1
to 4 use a new seed in each generation, experiments
5 to 8 use a single seed for each GP run.

factor which gets higher the earlier the WIP threshold was
exceeded.

fspA
B =

1

min
(

0.9, nA
nB

)
In this formula nA is the number of jobs finished until the

simulation was terminated and nB is the number of jobs the
reference rule B needed to complete its simulation run.

4. EXPERIMENTS AND RESULTS

4.1 Evaluation of Stochastic Simulations
In our attempt to find good dispatching rules the most

time-critical task is the determination of an individual’s fit-
ness. Getting accurate fitness values requires a high number
of independent replications, but takes a longer time—using
few replications potentially misleads GP’s search. To inves-
tigate this more closely we ran experiments using different
numbers of replications per fitness evaluation. For these ex-
periments we set a maximum of 200000 replications of our
4 scenarios as an upper limit for each GP run. Using a
population size of 1000 this limit is reached after a varying
number of generations: using just a single replication per
evaluation this limit is reached after 200 generations, using
10 replications it is already reached after 20 generations.
The underlying question thus is, whether it’s more advanta-
geous to spend the 200000 replications in many replications
in the hope, GP can cope with the imprecision and, due to
the many generations, still arrives at better rules than those
using more precise evaluations but fewer generations.

This issue is also related to the question whether using
advanced methods from simulation optimization (see e.g.,
[26]) to use ranking and selection mechanisms like OCBA
(Optimal Computing Budget Allocation, [6]) in a GP/GA
run can be beneficial for our work.

Another factor to investigate in these experiments is the
question of proper random number use. In all cases we use

common random numbers [22, pp. 578] to evaluate all indi-
viduals of a certain generation, that is, all individuals of a
generation face exactly the same shop floor situation. The
question however is if it’s better to use a new random seed
for each generation or is it better to use a single seed for a
complete GP run, so whether a single seed causes some kind
of overfitting to the special conditions of a single run or if
a single seed is actually beneficial because otherwise GP’s
search gets less effective as it is has to cope with a slightly
different situation each generation.

Figure 2 shows some results of these experiments. Experi-
ments 1 to 4 use a new seed in each generation, experiments
5 to 8 use a single seed for each GP run. The number of
seeds is varied: 10, 5, 2, 1, that is experiment 1 uses 10
evaluations and a new seed per evaluation, and experiment
8 uses a single seed per run and just a single replication per
evaluation. The boxes show the average solution quality af-
ter the last generation, i.e. 200000 replications run, averaged
over 10 runs. The black line in the box is the mean value,
the blue box denotes its 95 % confidence interval. The red
points below the boxes show the best rule found in any of
the runs and generations (as already stated before we save
and fully evaluate the best individual of each generation).

Looking at experiments 1 to 4, when using a new seed
for each generation, there is a trend towards just a single
replication per evaluation. Although only the confidence
intervals of 10 and 1 replication(s) don’t overlap using the
replications for as many generations as possible seems to be
the best choice to get a good rule. The situation is less clear
when looking at the results of experiments 5 to 8 using only a
single seed. Figure 3 shows them in more detail, plotting the
development of the best rule found after a certain number
of generations. Additionally the graph contains the same
curve for the best setting for a new seed each generation,
i.e. using just 1 replication.

As the graphs show in the cases of 1 and 2 replications
(light blue and purple line) solution quality stagnates quite
early. This means in these cases overfitting of the rules to
the specific situation created by the single random number
seed occurs, even if a rule’s performance further increases
for this specific situation encountered in a certain GP run,
when fully evaluating them their performance for the general
problem does not get better any more. Using 5 or 10 replica-
tions per evaluation however seems to make little difference
compared to their counterparts using a new seed each gen-
eration. In these cases the diversity in an evaluation seems
to be high enough to be representative for the problem in
general.

As the result of these experiments we chose a single repli-
cation per evaluation and a high number of generations using
a new random number seed for each generation as parame-
ters for our subsequent experiments. It also means the use of
ranking and selection procedures like [26] mentioned before
does not make sense to speed up GP’s evaluations in our
case, the efficiency of just a single replication per evaluation
can hardly be improved upon.

4.2 Additional Domain Information
When using an automated approach like ours it is very

easy to include additional information into dispatching rules.
During the GP run the genetic algorithm automatically finds
a good way to integrate such information in a rule—or finds
rules without it if rule performance does not benefit from

0,920

0,940

0,960

0,980

1,000

1,020

1,040

1,060

0 50000 100000 150000 200000

av
er

ag
e

pe
rf

or
m

an
ce

number of replications
genSeed-1 rep single-10 reps single-5 reps single-2 reps single-1 rep

Figure 3: average performance of best rules after
a certain number of replications over 10 runs for
different settings of replications per evaluation.

them. We illustrate this with two of our experiments, one
integrating due date-related information into the search and
in section 4.2.2 we use the information on jobs arriving in
the near future in our rules.

4.2.1 Due Date Information
Even though at first it seems not clear why a rule opti-

mized for best mean flow time performance should contain
information on due dates, the rational behind these experi-
ments however was the fact that in the Holthaus/Rajendran-
papers [25, 17] sometimes rules including due date informa-
tion achieve a very good mean flow time. Amending our
basic terminal set with the due date-related terminals as
listed in table 1 we checked, whether this information can
also be beneficial for GP runs. The results are shown in
figure 4, experiment “due dates”. This diagram is similar
to figure 2, i.e. the blue dashed boxes show the confidence
interval around the black vertical line showing the mean
performance reached at the end of 10 GP runs. The red
dots illustrate the performance of the best rule found in the
course of these 10 runs.

Comparing the results with the best parameter combina-
tion “genSeed-1rep” identified before and also included in
figure 4 for reference, it is clear that including due date in-
formation is not beneficial, mean performance at the end is
clearly worse (confidence intervals don’t overlap) and also
the best individual found is only in the range of mean per-
formance of “genSeed-1rep”.

4.2.2 Lookahead
The information on jobs arriving in the near future can

improve scheduling decisions. Therefore we implemented an
efficient way to make this information available to dispatch-
ing rules in our job shop information. Whenever a job starts
processing on a machine m the machine m + 1 this job is
going to visit next is notified of its arrival at a certain point
in time in the near future and enqueued in its queue, how-
ever marked as a job not currently present in the queue.
Assigning the highest priority to one of these future jobs, a
dispatching rule now has the possibility to keep a machine
idle. This allows them to create a broader class of schedules
than the non-delay schedules that are able in the experi-
ments presented before (for the classification of schedules in

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

lo
ok

ah
ea

d

du
e

da
te

s

ge
nS

ee
d-

1r
ep

re
la

tiv
e

pe
rf

or
m

an
ce

Figure 4: Results of experiments to include addi-
tional information.

non-delay, active, semi-active see, e.g. [24, pp. 21]). At least
in theory this means our dispatching rules are now able to
find optimal schedules for more scenarios.

The information on future jobs is in our experiment re-
flected in two terminals: the TimeInQueue-term now be-
comes negative for these future jobs and in addition to the
basic terminal set as listed in table 1 we include WINQ2 as
an additional terminal. The only difference between WINQ
and WINQ2 is WINQ2 including the processing times of fu-
ture jobs to arrive on the next machine, whereas WINQ does
not.

Looking at the results (“lookahead” in figure 4) the mean
performance at the end of a GP run is rather bad with about
94 %. The variance of these values however is quite high as
is reflected in the broad confidence interval. This means, in
some runs only rather bad solutions can be found whereas
also very good rules are possible. This is also reflected in
the best rule found: with a performance of 0.9147 it is on
average about 0.5 % better than the best rule found using
just the basic terminal set and no lookahead: “genSeed-1rep”
with a performance of 0.9202.

One reason for this high variance is a more difficult search
caused by the additional degree of freedom for dispatching
rules to keep a machine idle. If not used properly, especially
in the scenarios with 95 % utilization, you very easily end
up with the system running full.

4.3 Best Rules Found
To summarize our experiments table 2 lists the results of

our benchmark rules and the best rules found in the exper-
iments described before. It shows for each of the 4 scenar-
ios the mean flow times achieved. The values in brackets
are the standard error of these means over the 200 inde-
pendent replications we used to obtain them. Column 6
contains the mean flow time averaged over all scenarios,
and the last column contains the performance relative to
2PT+WINQ+NPT. The 3 rules highlighted are our refer-
ence rule 2PT+WINQ+NPT, the best rule found using the
basic terminal set and no lookahead “genSeed-1rep” and the
rule found with the best overall performance “lookahead”
utilizing information on future jobs.

One drawback of the best rules found however is their

Name 80% 95% 80% 95% Mean Perf

FIFO 822.5 (4.6) 2292.4 (36.7) 512.2 (3.6) 1440.4 (23.6) 1266.9 1.6297

ERD 791.9 (3.9) 1878.9 (24.0) 496.5 (3.1) 1261.7 (18.1) 1107.3 1.4244

SPT 619.3 (2.4) 1377.3 (22.1) 387.4 (2.0) 935.5 (17.1) 829.9 1.0675

WINQ 684.0 (2.8) 1554.4 (23.8) 430.5 (2.4) 999.5 (16.0) 917.1 1.1797

PT+WINQ 619.4 (2.4) 1362.1 (20.9) 386.9 (2.1) 888.1 (14.9) 814.1 1.0473

2PT+WINQ+NPT 611.5 (2.2) 1273.1 (18.6) 383.9 (1.9) 841.0 (13.6) 777.4 1.0000

genSeed‐1rep 588.5 (2.0) 1152.1 (16.0) 367.9 (1.7) 758.2 (11.6) 716.7 0.9219

genSeed‐2reps 589.6 (2.0) 1147.9 (15.7) 368.0 (1.7) 755.9 (11.5) 715.4 0.9202

genSeed‐5reps 588.7 (2.0) 1154.1 (15.8) 367.5 (1.7) 760.1 (11.6) 717.6 0.9231

genSeed‐10reps 589.0 (2.0) 1164.8 (16.8) 367.9 (1.7) 769.3 (12.3) 722.8 0.9298

single‐1rep 589.7 (2.0) 1160.9 (16.7) 367.8 (1.7) 766.1 (12.3) 721.1 0.9276

single‐2reps 590.0 (2.0) 1161.2 (16.7) 368.1 (1.7) 766.2 (12.2) 721.4 0.9279

single‐5reps 589.6 (2.0) 1157.9 (16.2) 368.9 (1.7) 763.7 (11.9) 720.0 0.9262

single‐10reps 591.1 (2.0) 1166.4 (16.7) 368.7 (1.7) 768.8 (12.3) 723.8 0.9310

due_dates 589.3 (2.0) 1157.5 (16.1) 367.9 (1.7) 764.5 (12.0) 719.8 0.9259

lookahead 581.0 (1.9) 1142.9 (16.5) 363.6 (1.7) 756.6 (12.2) 711.0 0.9147

full job shop missing operations

Table 2: Flow times in simulation scenarios for
various rules and mean performance relative to
2PT+WINQ+NPT, lower values are better. The
numbers in brackets give the standard error after
200 replications.

size—good rules tend to get rather complex in the num-
ber of terminals and non-terminals. Therefore we can only
give one of the rules here, “genSeed-10rep”. It computes a
priority value Z (the higher the better) using the formula
shown below. In this formula abbreviations were used for
the terminals: pi,j is PT, pi+1,j is NPT, nL

j is OpsLeft,
w is WINQ, tiq is TimeInQueue, and tis is TimeInSystem:

Z = −pi,j

[(
pi+1,j −

pi+1,j

pi,j

)
w

+

[
max

(
pi,j , n

L
j − tiq

)
×(

max

(
pi,j − pi+1,j ,

pi,j
pi,j + tis

)
+ 1

)
+ 1

]]

5. RULE ROBUSTNESS
As shown in the previous section, GP was able to find very

good dispatching rules for our scenarios. To check the gener-
alization abilities of the rules, we modified our experimental
setting in two ways:

• Number of machines: besides the maximum number
of 10 machines we also use 50 machines. This means
the number of operations per job increases to 50, or
lies in the interval [2,50] for the scenarios with missing
operations.

• Distributions: instead of an exponential distribution
for inter-arrival times and a discrete uniform distribu-
tion for processing times we use a uniform distribution,
and a log-normal distribution respectively. Distribu-
tion parameters were set so mean inter-arrival times
as well as mean and variance of the processing times
remain the same.

These two settings for the number of machines and whether
to use the original or changed distributions creates 4 differ-
ent settings, one of which being the original setting used in
the experiments presented before.

The results of these experiments are shown in Table 3. Ir-
respectively of the distributions and number of machines the

Name m=10 m=50 m=10 m=50

SPT 1.0675 1.0726 0.9571 1.0016

genSeed-1rep 0.9219 0.9452 0.9091 0.9408

genSeed-2reps 0.9202 0.9347 0.9050 0.9339

genSeed-5reps 0.9231 0.9335 0.9120 0.9333

genSeed-10reps 0.9298 0.9473 0.9104 0.9367

single-1rep 0.9276 0.9442 0.9094 0.9360

single-2reps 0.9279 0.9555 0.9073 0.9463

single-5reps 0.9262 0.9372 0.9119 0.9377

single-10reps 0.9310 0.9780 0.9097 0.9531

due_dates 0.9259 0.9594 0.9490 0.9723

lookahead 0.9148 0.9309 0.8936 0.9192

orig. distr. altered distr.

Table 3: Performance of selected rules relative to
2PT+WINQ+NPT in robustness experiments.

rules evolved by GP can maintain their good performance.
Increasing the number of machines results in a decrease of
performance compared to using 10 machines, although re-
sults are still better than our benchmark rules.

One other interesting thing happens: changing distribu-
tions changes the performance of SPT. In the case of 10
machines it is now clearly better than the reference rule,
with 50 machines they achieve about the same performance.

6. CONCLUSION AND OUTLOOK
With the work presented in this paper we were able to

find much better dispatching rules for the dynamic job shop
scenarios of [25]. Using their own scenarios we were able to
beat their best manually developed rule presented in [17],
a follow-up paper of [25], by a large extend. Using their
2PT+WINQ+NPT rule brings an improvement of 6.3 % over
SPT on average. In our work we were able to improve over
their rule by another 8.5 %, if compared with SPT this is an
improvement of 14.3 %.

Robustness experiments indicate GP was able to find rules
generalizing well to changing conditions in the form of dif-
ferent distributions and/or increased number of machines.

Besides the success of our GP approach in these particular
job shop scenarios our work addresses the broader topic of
coupling a GP search with a rather time-consuming stochas-
tic manufacturing simulation to evaluate individuals. We
found in our case using just a single replication per evalua-
tion and a new random number seed for each generation to
yield the best results.

Extending our work to also address other objective func-
tions besides mean flow time, such as mean tardiness, num-
ber of tardy jobs, or combinations thereof, is very straight-
forward. A more challenging task is to extend the manufac-
turing system simulation of our framework to address things
like sequence-dependent setups, parallel batching machines
etc. and make good scheduling decisions in such environ-
ments. As we could show even in the case of the thoroughly
researched dynamic job shop scenarios we used in this work
there was still room for larger improvements. In the more
complex settings just outlined substantially less work was
done, so we expect even more potential in these cases.

Even though our experiments showed (see section 4.1)
that the use of methods like OCBA does not make sense
for our work to speed up GP’s fitness evaluations, there is
still potential to use such methods to make full evaluations
more efficient using an approach similar to [4].

It would also be interesting to see how good our rules
are compared to more complex heuristics that are able to

solve a problem like ours, e.g. a Genetic Algorithm with
a sliding time window, or something similar. Such a lower
bound on what is possible in our scenario would be very
helpful to assess the effectiveness of the GP search but also
to assess how good scheduling with local dispatching rules
can get. We can clearly show our rules to be much better
than standard and existing rules but unfortunately we don’t
know for sure what is possible in our scenarios.

7. ACKNOWLEDGMENTS
The authors would like to thank Jürgen Branke and Chris-

toph Pickardt, University of Warwick, for many fruitful dis-
cussions helping to improve this paper substantially.

This research is funded by the German Research Founda-
tion (DFG) under grant SCHO 540/17-1.

8. REFERENCES
[1] L. Atlan, J. Bonnet, and M. Naillon. Learning

distributed reactive strategies by genetic programming
for the general job shop problem. May 1994.

[2] J. H. Blackstone, D. T. Phillips, and G. L. Hogg. A
state-of-the-art survey of dispatching rules for
manufacturing job shop operations. International
Journal of Production Research, 20(1):27–45, 1982.

[3] J. Blazewicz, K. H. Ecker, E. Pesch, G. Schmidt, and
J. Weglarz. Scheduling Computer and Manufacturing
Processes. Springer, Berlin et al., 2nd edition, 2001.

[4] J. Boesel, B. L. Nelson, and S.-H. Kim. Using ranking
and selection to ”clean up” after simulation
optimization. Operations Research, 51(5):814–825,
2003.

[5] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa,
E. Ozcan, and J. Woodward. A classification of
hyper-heuristics approaches. In M. Gendreau and
J.-Y. Potvin, editors, Handbook of Meta-heuristics.
Springer, 2nd edition. Forthcoming.

[6] C. H. Chen, D. He, M. Fu, and L. H. Lee. Efficient
simulation budget allocation for selecting an optimal
subset. Informs Journal on Computing, 20(4):579–595,
2008.

[7] C.-C. Chern and Y.-L. Liu. Family-based scheduling
rules of a sequence-dependent wafer fabrication
system. IEEE Transactions on Semiconductor
Manufacturing, 16(1):15–25, 2003.

[8] T. C. Chiang, Y. S. Shen, and L. C. Fu. A new
paradigm for rule-based scheduling in the wafer probe
centre. International Journal of Production Research,
46(15):4111–4133, 2008.

[9] R. W. Conway. Priority dispatching and job lateness
in a job shop. Journal of Industrial Engineering,
16:228–237, 1965.

[10] C. Dimopoulos and A. M. S. Zalzala. Investigating the
use of genetic programming for a classic one-machine
scheduling problem. Advances in Engineering
Software, 32(6):489–498, 2001.

[11] ECJ. A Java-based Evolutionary Computation
Research System, project homepage, 2009.
http://cs.gmu.edu/˜eclab/projects/ecj/, last accessed
15th January 2010.

[12] H. Fisher and G. L. Thompson. Probabilistic learning
combinations of local job-shop scheduling rules. In

J. F. Muth and G. L. Thompson, editors, Industrial
Scheduling, pages 225–251. Prentice-Hall, 1963.

[13] C. Geiger, R. Uzsoy, and H. Aytug. Rapid modeling
and discovery of priority dispatching rules: an
autonomous learning approach. Journal of Scheduling,
9(1):7–34, 2006.

[14] C. D. Geiger and R. Uzsoy. Learning effective
dispatching rules for batch processor scheduling.
International Journal of Production Research,
46(6):1431–1454, 2008.

[15] E. Hart, P. Ross, and D. Corne. Evolutionary
scheduling: A review. Genetic Programming and
Evolvable Machines, 6(2):191–220, 2005.

[16] R. Haupt. A survey of priority rule-based scheduling.
OR Spektrum, 11(1):3–16, 1989.

[17] O. Holthaus and C. Rajendran. Efficient jobshop
dispatching rules: further developments. Production
Planning & Control, 11(2):171–178, 2000.

[18] B. J. Huffman. An object-oriented version of SIMLIB
(a simple simulation package). INFORMS
Transactions on Education, 2(1):1–15, 2001.

[19] D. Jakobović and L. Budin. Dynamic scheduling with
genetic programming. In P. Collet, M. Tomassini,
M. Ebner, S. Gustafson, and A. Ekárt, editors,
Proceedings of the 9th European Conference on
Genetic Programming, volume 3905 of Lecture Notes
in Computer Science, pages 73–84, Budapest,
Hungary, 10 - 12 Apr. 2006. Springer.

[20] D. Jakobović, L. Jelenković, and L. Budin. Genetic
programming heuristics for multiple machine
scheduling. In M. Ebner, M. O’Neill, A. Ekárt,
L. Vanneschi, and A. I. Esparcia-Alcázar, editors,
Proceedings of the 10th European Conference on
Genetic Programming, volume 4445 of Lecture Notes
in Computer Science, pages 321–330, Valencia, Spain,
11 - 13 Apr. 2007. Springer.

[21] J. R. Koza. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge, MA, USA, 1992.

[22] A. M. Law. Simulation modeling and analysis.
McGraw-Hill, Boston, USA et al., 4. edition, 2007.

[23] S. S. Panwalkar and W. Iskander. A survey of
scheduling rules. Operations Research, 25(1):45–61,
1977.

[24] M. Pinedo. Scheduling—Theory, Algorithms and
Systems. Prentice Hall, Upper Saddle River, New
Jersey, USA, 2nd edition, 2002.

[25] C. Rajendran and O. Holthaus. A comparative study
of dispatching rules in dynamic flowshops and
jobshops. European Journal of Operational Research,
116(1):156–170, July 1999.

[26] C. Schmidt, J. Branke, and S. E. Chick. Integrating
techniques from statistical ranking into evolutionary
algorithms. Springer Berlin / Heidelberg,
3907:752–763, 2006.

[27] J. C. Tay and N. B. Ho. Evolving dispatching rules
using genetic programming for solving multi-objective
flexible job-shop problems. Computers & Industrial
Engineering, 54(3):453–473, 2008.

