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ABSTRACT
We make use of self-adaptation in a Differential Evolution
algorithm and of the asynchronous island model to design
a complex interplanetary trajectory touring the Galilean
Jupiter moons (Io, Europa, Ganymede and Callisto) using
the multiple gravity assist technique. Such a problem was
recently the subject of an international competition orga-
nized by the Jet Propulsion Laboratory (NASA) and won
by a trajectory designed by aerospace experts and reach-
ing the final score of 311/324. We apply our method to
the very same problem finding new surprising designs and
orbital strategies and a score of up to 316/324.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Graph and tree search strategies, Heuris-
tic methods

General Terms
Algorithms

Keywords
Self-adaptation, Differential Evolution, multi-criteria tree-
search, interplanetary trajectory optimization

1. INTRODUCTION
The design of interplanetary trajectories can be profitably

approached as a global optimization problem. In the last
decade, a number of researchers [1, 9, 5, 14, 13, 10] have
successfully applied different automated search techniques to
these type of problems, helping to define a new approach to
interplanetary mission design. In this context, the interna-
tional Global Trajectory Optimization Competition (GTOC)
series1, was born with the objective of fostering research in

1See http://sophia.estec.esa.int/gtoc_portal/
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this area by letting different methods compete on one, dif-
ficult, well-defined, problem. During the competition, stan-
dard design methods based on a profound domain knowledge
and on human-in-the-loop procedures, compete with more
or less automated design techniques. Interestingly, evolu-
tionary search techniques have been used by many of the
competition participants, but have never obtained results
that are competitive to those found by other types of op-
timization procedures. For an example of the complex and
diverse solution strategies employed in the first edition of the
competition one can refer to [7]. In this paper we describe
an automated search procedure based on evolutionary tech-
niques that is able to design multiple fly-by interplanetary
trajectories and apply it to the latest problem released in
the GTOC series, the sixth edition problem.

1.1 Brief problem description
The sixth edition of the GTOC series was organized by

the Jet Propulsion Laboratory (JPL), and the problem was
released on the 10th September 2012. The 33 international
teams who registered to the event were given one month
time to find a solution to arguably one of the most difficult
problems ever formalized in the context of these competi-
tions: mapping globally the four Galilean Jupiter moons
(Io, Ganymede, Europa and Callisto) using multiple fly-bys
and an electric propulsion spacecraft. The formal math-
ematical description (problem statement) can be found in
[12]. Here we repeat some of the details to facilitate the
reader. The inertial Jupiter centric frame Fi is indicated
with î, ĵ, k̂. On each moon, a body frame Fb is defined and
indicated with b̂1, b̂2, b̂3. In such a body frame, the moon
surface is considered to be divided into 32 faces Fi, i = 1..32,
similarly to the division used to stitch soccer balls (see Fig-
ure 1), defined by their cartesian coordinates in Fb. We
write Fi := {p̂j , j = 1..ni} where ni is the number of ver-
tices of the i-th face (either 5 or 6), and p̂j are the j-th
vertex coordinates in Fb. Each face, according to its scien-
tific interest, is assigned a score ranging from 1 to 3 points.
Each face on Europa is assigned double scores because of
the higher scientific interest of this particular Jupiter moon.
A face Fi on a moon is visited, and thus its score added to
the total trajectory score, when a fly-by around that moon
is performed having its closest approach vector rp passing
through that particular face2. At each successive fly-by over

2More formally, this happens when rp lies within the pyra-
mid having the face Fi as a basis and the moon center as a
vertex.



Figure 1: Visualization of the moon surface division
into polygonal faces. Reproduced from the original
problem description from JPL [12].

the same face, no further score is accounted. This scor-
ing mechanism was used by the organizers in an attempt
to represent numerically as an objective function the scien-
tific value of imaging-experiments carried out on-board the
spacecraft during each of its closest passages over the moons.
This creates a trajectory design problem with a maximum
score of 324 points, which corresponds to all faces of the four
Galilean moons being visited. The spacecraft has a starting
mass M0 = 2000 kg of which half can be used as propellant
for the spacecrafts electric engine, able to deliver continu-
ously a maximum thrust τmax = 0.1 N. At each of its close
Jupiter passages the available propellant mass decreases by
a penalty value to account for added shielding necessary
to protect the electronics from the strong Jupiter magnetic
field. The functional form of this penalty is given in the JPL
problem description [12]. Applying our technique, we find
many different trajectories scoring up to 316/324 points and
employing very different strategies from the one designed by
the winners of this international competition.

The sixth edition of the GTOC series was won by a joint
team from the University of Rome and Turin Polytechnic,
who designed their winning trajectory scoring 311 out of
the maximum 324 points. Their interplanetary trajectory
made a clever use of orbital mechanics to first map Callisto
partially, then all Ganymede, then all of Europa and to finish
with a full mapping of Io.

The paper is organized as follows: in Section 2 and in Sec-
tion 3 we introduce two global optimization problem (P1 and
P2) which form the building blocks of our proposed method.
In both cases, solutions represent interplanetary multiple
gravity assist trajectories in the Jupiter system. In Section
4 we describe and comment upon the evolutionary strategy
that we use for solving generic instances of both problems.
We then show, in Section 5, how to build incrementally a
tree T of solutions to the GTOC6 problem juxtaposing mul-
tiple P1 and P2 solutions. In the same section we discuss
the tree search strategy that is employed to find the best
possible tour. In Section 6 we report on the experimental
set-up used and the results produced. Finally, in Section
7, we describe the best found trajectory that improves the
previously known best.

2. PROBLEM P1: THE JUPITER CAPTURE
In this section the first part of the trajectory, i.e. the

Jupiter capture, is described as a global optimization prob-

lem and is indicated with P1(m). Formally, we define prob-
lem P1 as a global optimization problem:

P1(m) :

find: x ∈ R16

to minimize: ∆V (x,m) =
∑3

i=0 ∆Vi

subject to: lb ≤ x ≤ ub
∆Vi < cTiamax

Consider the set M := {i, e, g, c} containing the four Ga-
lilean moons i=Io, e=Europa, g=Ganymede, c=Callisto.
Given a sequence m ∈M4 we want to find a vector x encod-
ing an interplanetary trajectory that visits, in sequence, the
moons m making use of maximum one deep space maneu-
ver between two successive moons and one at the very begin-
ning (at 1000 Jupiter Radii (JR) where the spacecraft is pre-
scribed to start its journey [12]). The cumulative strength of
the four allowed deep space maneuvers ∆V =

∑3
i=0 ∆Vi is

minimized and a maximum acceleration constraint on each
∆Vi is considered to account for the maximum acceleration
amax defined as τmax/M , where M is the spacecraft mass. A
detailed description of the decision vector x (here also called
trajectory encoding), of the objective function ∆V (x,m)
and of the problem constraints follows.

2.1 Trajectory encoding
The capture trajectory is encoded into x using a modifica-

tion of the MGA-1DSM encoding described in [8]. The mod-
ification is necessary to account for the fact that the space-
craft starts its journey from a point at Rs = 1000 Jupiter
Radii (JR) from Jupiter center and not from a planet as as-
sumed in the original MGA-1DSM encoding. Using the con-
catenation operator “ + ” to highlight the four separate tra-
jectory legs3, a capture trajectory is encoded as follows: x =
[t0, u, v, T0]+ [β1, h1, η1, T1]+ [β2, h2, η2, T2]+ [β3, h3, η3, T3],
where all symbols are explained below.

2.1.1 1st leg
The launch date is encoded into t0 as a continuous variable

using the Modified Julian Date 2000 (MJD2000), defined
as the number of days passed since 2000-01-01 at 00:00:00
hours. The starting position vector r0 of the spacecraft is
encoded by the next two variables u, v as follow:

r0 = 1000Rs(cos θ cos φ̂i + sin θ cos φ̂j + sinφk̂)

where Rs is the Jupiter average radius and

θ = 2πu, φ = cos−1(2v − 1)− π/2

The use of the variables, u and v, is motivated by the need
to have the position vector r0 uniformly distributed over the
starting sphere of radius Rs when the encoding variables are
sampled at random. The distribution would not be uniform
if we were using directly θ and φ. Finally the total duration
of the first leg is encoded in T0.

2.1.2 Following legs
For each of the following three legs, the starting velocity

vout (outgoing spacecraft velocity at the moon m in Fi), is
encoded by the first two variables β, h as follows:

vout = vm+

|vin|(cos(δ)ê1 + cos(β) sin(δ)ê2 + sin(β) sin(δ)ê3)
(1)

3A trajectory leg is a part of the whole trajectory between
two consecutive moons.



Table 1: Lower and upper bounds, lb and ub, for
the generic instance of P1.

Lower Upper
t0 [MJD 2000] 7305 11323
u 0 1
v 0 1
T0 [days] 190 210
βi -2π 2π
hi [km] 50 2000
ηi -2π 2π
T1 [days] 0.1 5
T2 [days] 5 100
T3 [days] 20 55

where vm is the velocity of the moon m at the beginning
of the leg4, vin is the spacecraft velocity at the end of the
previous leg (incoming velocity at the moon) and:

ṽin = vin − vm

e = 1 + ((h+Rm)/µm) ṽ2in
δ = 2 sin−1(1/e)
ê1 = ṽin/|ṽin|
ê2 = (ê1 × vm)/|ê1 × vm|
ê3 = ê1 × ê2

(2)

where Rm is the moon radius and µm its non dimensional
gravity parameter. Next, the variable ηi encodes the po-
sition of a deep space maneuver which occurs at t = t0 +∑i−1

j=0 Tj + ηiTi and Ti encodes the total leg duration.

2.2 Objective function
The objective function for problem P1 is computed as fol-

lows. A single revolution Lambert’s problem [2] is solved
between r0 and r1 with transfer time T0. r1 is the position
of the first encountered moon at t0 + T1. The solution to
the Lambert’s problem returns v0 and v1

in, i.e. the veloci-
ties at the beginning and at the end of the first trajectory
leg. From these results, we compute ∆V0 = abs(|v0|− |v0|),
where v0 is the magnitude of the prescribed starting velocity
(i.e. 3.5 [km/s]). For each successive leg we then compute
the velocity increments ∆Vi corresponding to the deep-space
maneuver location encoded in x using the standard proce-
dure employed by the MGA-1DSM encoding [8]. The final
objective function is the sum of all computed velocity incre-
ments, i.e., ∆V =

∑3
i=0 ∆Vi.

2.3 Constraints
The box bounds lb and ub used in problem P1 are re-

ported in Table 1. The most important bounds are those on
the transfer times Ti. They, alone, select the type of capture
we are looking for. In our case, we want to be captured in
the Jupiter system in the shortest possible time and we aim
to acquire a short orbital period to increase the frequency
we will be able to score points with. We achieve this goal
by forcing two moons to be visited on the very first revolu-
tion in a rapid succession and we thus select a very small
upper bound on T1. The possibility to have these types of
“multiple-satellite-aided Jupiter capture trajectories” is dis-
cussed thoroughly in [11]. We then force the following orbit

4The ephemerides of the moons are detailed in the original
JPL problem statement [12]

to have a relatively small period with an upper bound of
100 days on T2, thus allowing, in the second leg, a 13:1 reso-
nance with the Ganymede orbit or a 5:1 with Callisto. The
upper bound on T3, is then selected to be lower, i.e. 55
days, to complete the spacecraft insertion in the Galilean
moon system (allowing only 3:1 resonances with the outer
moon Callisto5).

The non linear constraint on the spacecraft ∆Vi accounts
for the maximum acceleration τmax allowed by the on-board
spacecraft electric propulsion system. A constant c, here set
to be 0.1, is also introduced to account for orbital effects
while biasing the search towards purely ballistic captures
(corresponding to ∆V = 0)6.

3. PROBLEM P2: SINGLE TRANSFER BE-
TWEEN MOONS

A fundamental building block to our overall strategy is
a second global optimization problem we here indicate as
P2. This represents the problem of finding a minimum ∆V
transfer between two moonsms andmnext fixing the starting
conditions. The transfer starts at t0 from ms with a known
absolute velocity vin and makes a fly-by over the Fi face of
ms.

P2(Fi,mnext) :
find: x ∈ R4

to minimize: ∆V (x)
subject to: lbi(Fi) ≤ x ≤ ubi(Fi)

where x = [β, h, η, T ] and, most importantly, the box bounds
lbi and ubi depend on the face Fi to be visited. While any
particular instance of the problem P2 depends on Fi, mnext,
ms, vin and t0, we write P2(Fi,mnext), neglecting those
variables (ms,vin, t0) that are fixed when a previous part of
the trajectory exists (e.g. a solution to P1 or to P2)

The objective function ∆V (x) is computed by first com-
puting vout from vin using Eq.(1-2), and then by propagat-
ing those initial conditions with Keplerian dynamics for the
time ηT . Finally, a single revolution Lambert’s problem [2]
is solved to get to the target moon position in t0 + T .

3.1 Face-targeting
When instantiating P2(Fi,mnext) we need to specify the

lower and upper bounds on the four variables β, h, η, T . The
choice on the bounds on η, i.e. the position of the deep space
maneuver, is rather simple: η ∈]0, 1[ is set to allow small
correction maneuvers at any points of the trajectory leg. For
the transfer time, we use T ∈ [0.1,min(4Tm, 40)] (days),
where Tm is the largest period between the starting and
final moon orbit. The maximum of 40 (days) on the upper
bound avoids to consider long multiple revolution transfers
when Callisto is either the starting or the targeted moon
(4Tm would then be roughly 64 days). The bounds on the
remaining two variables, β and h are, instead, decided to
have the resulting solution visit the chosen moon face Fi.
The procedure to find these bounds is what we call face-
targeting and it is based on the following results:

5The orbital period of Callisto is 16.7 days, while the orbital
period of Ganymede is 7.15 days.
6The coefficient c is often referred to gravity loss and,
coarsely, accounts for the difference between having to ac-
cumulate a given velocity difference in a flat space or in a
central gravity field.



Figure 2: Visualization of the visitable band.

Definition 1. A point p̂ on the moon surface of radius Rm

is visitable during a fly-by with incoming relative velocity
ṽin if and only if ṽin · p̂ ≥ 0 and h ∈ [hmin, hmax], where:

h+Rm = µm/(ṽout · ṽout)(1/ sin(δ/2)− 1)
ṽout = ṽin − 2(ṽin · p̂)p̂

δ = acos
(

ṽout·ṽin
ṽout·ṽout

)
and hmin, hmax were prescribed by the JPL problem state-
ment [12] as the minimum and maximum fly-by altitude on
each moon. If ṽin · p̂ < 0 the vertex is said to be in the
near side of the moon. For the cases in which ṽin · p̂ ≥ 0, if
h < hmin the vertex is said to be above the visitable band,
if h > hmax it is said to be below.

If a point is visitable according to the above definition,
then a moon-centric hyperbola exists and has its closest ap-
proach radius rp aligned with p̂. Essentially, at each fly-by
the moon surface can be represented as in Figure 2, where
the area made by all visitable points is shown to form a band
(the visitable band) that is symmetric with respect to the
incoming relative velocity and that is placed in the far side
of the moon.

Definition 2. A face F := {p̂j , j = 1..n} defined by its n
vertices is visitable if and only if aj ≥ 0, j = 1..n exist such
that the point

∑n
j=1 ajp̂j is visitable

In other words, a face is visitable if at least one of its
points is visitable. In order to compute the set L containing
all visitable faces, one can use the following algorithm:

Algorithm 1 Find visitable faces

L := ∅
for all Fi in the moon m do

for all p̂j ∈ Fi do
check if p̂j is in the near side or above, below or in

the visitable band.
end for
if (at least one vertex is visitable) or (at least one, but

not all vertices are above the band) then set L = L∪{Fi}
end if

end for
return L

Given a face Fi ∈ L, we may now find the lower and upper
bounds βm, βM , hm, hM that bracket such a face and bias
the solution of the problem P2 to fly over Fi and thus to

score that face (if not scored already). We do so by using
algorithm 2.

Algorithm 2 Face bracketing

Let Fi ∈ L
for all p̂j ∈ Fi do

If p̂j is on the near side, project it to the far side.
Compute hj = µm/(ṽout · ṽout)(1/ sin(δ/2)−1)−Rm

Compute βj = atan2(ṽout · ê3, ṽout · ê2)
end for
set βm = minj βj , βM = maxj βj
set hm = max(minhj , hmin), hM = min(maxj hj , hmax)

4. SOLVING P1 AND P2

All problems that derive from different instances of P1(m)
and P2(Fi,mnext) are single objective, continuous global op-
timization problems that we solve by exploiting one powerful
idea rooted in evolutionary computations: self-adaptation.
By using self-adaptation we are able to not care about tun-
ing algorithmic parameters, while still obtaining solutions
for all different problems with an acceptable efficiency. This
is a fundamental advantage as for each instance of P1(m) or
P2(Fi,mnext) we are, essentially, creating a much different
objective function landscape. Resonant transfers, multiple
revolution transfers and very short transfers may or may not
exist according to the particular instance, drastically chang-
ing the fitness landscape.

In the case of P1 (a more difficult problem with a higher
dimensionality with respect to P2 and a much larger search
space mainly determined by the wide bounds on the t0, the
launch window), we also make use of a second tool: the
asynchronous island model. This allows us to achieve a
coarse-grained parallelization while introducing a migration
operator that further accelerates evolution.

We tested three algorithms employing self-adaptation as a
principle, a) differential evolution with self adaptation strat-
egy (jDE) [3], the Corana’s Adaptive Neighbourhood Simu-
lated Annealing (SA-AN) [4], and Covariance Matrix Adap-
tation Evolutionary Strategy (CMA-ES) [6]. We do not have
space here to discuss the performances of these algorithms
in connection with our problems, but we did perform exten-
sive test sessions and our final decision converged on jDE as
for its clear superiority in the context of P1, where a good
interaction with the asynchronous generalized island model
is necessary to actually find any good solutions, and for its
low run time in general.

It is worth anticipating here that, as explained in detail
in a later section, to assemble one entire solution of the
Jupiter’s moon tour, up to 1,000,000 different instances of
P2 need to be solved and one good solution to P1 has to be
determined. To give an idea of the performances of our cho-
sen set up, we report, preliminarily, some results on the re-
sulting computational efficiency7. Figure 3 illustrates the re-
sults of 50 runs on three different instances of P1(m), which
consistently resulted in good final results: a) m = [g, c, c, c],
b) m = [c, g, g, g], c) m = [g, i, i, i]. Each run is made up
to convergence, which we check every 40 generations and is
defined by two criteria: fitness variability and chromosomic

7Our experiments are done on a Intel(R) Xeon(R) CPU -
X5355 @ 2.66GHz



Figure 3: Performance of jDE in the asynchronous island model along 50 runs on different instances of
problem P1. Left: m = [g, c, c, c]. Center: m = [c, g, g, g]. Right: m = [g, i, i, i]. in the plots, the solutions are
ranked with respect to their fitness.

variability ftol ≤ 1e−2 and xtol ≤ 1e−3. Eight islands are
used and one individual is migrated along a ring topology
each 100 generations. Each island evolves a population of
20 individuals. The asynchronous migration model imple-
mentation and the jDE implementation are made available
via the open source PaGMO/PyGMO project8. In the case
of P2, where one single island is used (i.e. no migration),
we report that our set-up is able, on average, to solve 10
problem instances each second.

5. ASSEMBLING ONE MOON TOUR
Our overall strategy to solve the GTOC6 problem consists

of assembling in cascade multiple solutions to problems P1

and P2. We start with a trajectory that captures our space-
craft in the Jupiter system (i.e. one solution to P1(m)), and
we append to it, one by one, solutions to P2(Fi,mnext). As
there are four moons and, on average, 15 visitable faces, the
average branching factor is 60. This means that at the nth

step a full search tree contains 60n trajectories. This creates
a tree T of possibilities that soon becomes intractable.

In our notation, the generic tree node is defined by N :=
{m, t,vin,∆V, f} and represents an interplanetary trajec-
tory (solution to the GTOC6 problem), that at the epoch
t visits the moon m with an incoming velocity vin, having
cumulated a velocity change of ∆V and having previously
visited all moon faces in f . Each node can thus be assigned
a score that is computed as a function of f . The root node
of the tree, i.e. a Jupiter capture trajectory, is determined
using Algorithm 3.

Algorithm 3 Find a capture trajectory Nroot

while ∆V ≥ 100 (m/s) and ∆T = t− t0 ≥ 0.9 (years) do
pick a random m ∈M4

solve P1(m)
end while

let m be the last moon in m,
let t be the epoch at the last moon,
let vin be the spacecraft velocity at t,
let ∆V be the cumulative velocity increment,
let f the set of all moon faces visited,
let Nroot := {m, t,vin,∆V, f}

8http://pagmo.sourceforge.net/pygmo/index.html

5.1 The lazy race tree search
As explained above, starting from a root node Nroot that

is an outcome of Algorithm 3, we define a tree T where each
node N represents a solution (i.e. a trajectory) to our prob-
lem. The tree depth, defined as d, represents the number of
fly-bys performed (after capture). The tree dimension make
a complete search intractable. We thus need to deploy a dif-
ferent strategy. A first attempt could be to search the tree
implementing a depth first search by adding pruning criteria
to make sure to trim uninteresting branches and to complete
the search in a reasonable time. The advantage would be to
prioritize an early exploration of the tree leaves. The prob-
lem with this approach is that it is impossible to estimate
how much of the tree would be pruned out by a certain cri-
terium, and thus each search could easily be too short or too
long. A breadth first search strategy, carrying over to the
next depth a constant number of nodes that is selected by
a ranking criteria, solves this problem having a time com-
plexity that grows linearly with the tree depth, which is a
characteristic that is highly desirable in our case. In such
an algorithm, nodes that have equal depth (i.e. number of
fly-bys) need to be ranked and we would then be forced to
compare trajectories that possess different times of flight, cu-
mulative ∆V and score using an aggregated objective func-
tion, which introduces a lot of greediness in the search9. We
thus introduce a novel algorithm that we call Lazy Race
Tree Search (LRTS) able to overcome the problems men-
tioned above. The basic idea, outlined in Algorithm 4, is
to only rank (and eventually select and prune) nodes that
have similar time of flight, not equal tree depth. Introduc-
ing the set U containing all unbranched nodes, initialized to
a set containing only the root node N0, at each iteration
we look in U for nodes having time of flight smaller than
the minimum time of flight T0 among them plus a small ε.
We then select bf (branching factor) nodes to branch, using
the ranking criteria, and we remove all selected nodes from
U . The algorithm stops when T0 is larger than the 4 years
allowed by the problem definition.

6. TREE SEARCH RESULTS
In order to assess the performance of LRTS on our prob-

lem, while also trying to beat the best solution known for

9In a preliminary implementation of this algorithm we could
not reach the score threshold of 300



Algorithm 4 Lazy Race Tree Search

U := {Nroot} (the set of unbranched nodes)
let t0 be the starting epoch of the trajectory
while T0 ≤ 4 years do

let T0 := minU (t− t0),
let S := {N ∈ U|(t− t0) ∈ [T0, T0 + ε]},
select bf nodes in S and branch them,
remove from U all nodes in S

end while

the GTOC6 problem (i.e. the trajectory scoring 311 found
by the group at Polytechnic of Turin and La Sapienza, Uni-
versity of Rome), we launch a large number (360) of tree
searches. The LRTS uses a branching factor bf = 50, a
time of flight bin of ε = 5 days and a ranking method de-
fined by the trajectory score augmented by the maximum
potential number of points scored on the current moon m
(with ties broken by a secondary ranking method defined as
the number of non scoring fly-bys). A gravity loss coeffi-
cient of c = 0.1 is used when instantiating the various P2.
Each search starts from a different root node Nroot found
by running once Algorithm 3. The results are summarized
in Figure 4. Most trajectories found are above the thresh-
old of 300 points, some (34 to be exact) have a higher score
than the currently known best of 311. We here note that
the overall trajectory ∆V is consistently very small thanks
to the pruning at 100 m/s in Algorithm 3 and to the very
small gravity loss coefficient c selected. As a consequence,
all solutions found by LRTS can be transformed into low-
thrust trajectories (i.e. trajectories that can be flown by
an electric propulsion system such as that prescribed by the
Jet Propulsion Laboratory problem statement). On aver-
age, one tree search is completed in 16.8 hours. The average
depth of the searched tree is 132. Using 32 CPUs, the whole
run lasts 7.87 days. During the entire run an estimated
number of half a billion (500,000,000) different global opti-
mization problems (of type Multiple Gravity Assist with one
Deep Space Maneuver MGA-1DSM) are solved by the self-
adaptive jDE deployed in our asynchronous island model. It
is interesting to note how only the sequences m = [c, g, g, g],
m = [g, i, i, e], m = [g, i, i, g], m = [g, i, i, i], m = [c, g, c, c],
m = [c, i, c, c], m = [g, c, c, c] were found to be able to define
a suitable capture trajectory and, in any case, all best trajec-
tories used the Callisto, Ganymede, Ganymede, Ganymede
sequence, indicating that such an entry strategy results in
particularly good root nodes for LRTS.

7. OUR SOLUTION
In this section, we describe in more details the solution

with the highest score found by our tree search (i.e. the
left most point in Figure 4). It has a total score of 316
out of the maximum score of 324, visiting 120 moon faces
against the 115 faces visited by the previously best known
solution (winner of the 6th edition of the GTOC which scores
311). From Table 2, we note that our solution almost maps
all faces on three of the four moons: full scores on Europa
and Ganymede and one point less on Io. The solution was
sent according to the required competition format to the
Jet Propulsion Laboratory experts (the GTOC6 organizers)
who kindly validated the new solution using their trajectory
analysis tools.

Figure 4: Results after 360 tree searches. The ver-
tical line corresponds to the previous best known
solution. The best score (most left point) is 316.
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Figure 5: Scores obtained at each flyby of the four
moons.

The scores on each flyby of the moons are plotted in Fig.
5, in which different colors indicates the points received: 3,
2, 1, or 0 for flyby on faces visited before, while Europa re-
ceives double points. From the plot, we notice that the flyby
sequence and scores obtained are quite well structured in-
stead of scattered evenly. The flybys on the same moon and
scores are clustered together. They are also mostly ordered
from first visiting the high score faces then the low score
faces. From the dynamical point of view, visiting the same
moon repeatedly implies the use of a resonance transfer (i.e.
integer ratio of the orbital periods of the spacecraft and the
moon) and is rather easy to obtain, while switching between
moons may result in a time gain, but it is subject to stricter
planetary phasing consideration and may thus cost more ∆V
or just be not possible. Our solution clearly makes use of
both possibilities trying to take advantage of quick moon

Table 2: Summary of our Jovian tour.
Moon No. of Flybys Scores Obtained/Max. Score
Io 37 67/68
Europa 39 136/136
Ganymede 40 60/60
Callisto 25 53/60
Total 141 316/324



switches as much as possible and otherwise mapping the
same moon on resonances. This overall strategy, which we
call moon-hopping, is very different from that employed by
the GTOC6 winning trajectory that, instead, mapped one
moon at a time.

From Fig. 5 we observe how the whole trajectory can be
divided into four phases. In Phase 1, starting from a fast
Callisto-Ganymede flyby using a 2.3 days long transfer, the
spacecraft is captured in the Jovian system. A few more fly-
bys at Ganymede are then able to further reduce the orbital
period, allowing a visit to the high-score faces of the inner
moons, Io and Europa. Phase 2 consists of mostly high-
score flybys at Ganymede, mixed with flybys at the mid-
score faces of Io. In the 3rd phase, the spacecraft visits Cal-
listo and Io on faces with high and low scores, respectively.
The remaining low-scores faces in Europa, Ganymede, and
Callisto are visited in the final phase. The trajectories of
the 4 phases are plotted in Figure 6.

Solutions from the tree searches are under an impulsive
MGA-1DSM model, which is a good approximation of the
low-thrust propulsion model. In the MGA-1DSM model,
our solution has a total ∆V of 83 m/s, which is mostly
used in the first leg for the capture and that implies the
rest of the trajectory is basically ballistic. We optimized
this solution for final mass in a continuous low-thrust model
[15], as required by the problem. As the trajectories coming
out from the search are mainly ballistic (i.e. very little ∆V is
used) we did not encounter any problem in such a low-thrust
conversion. The final mass of the trajectory is 1036 kg and
the total time of flight is 3.9 years. The final mass is mainly
accounting for the mass penalty that needs to be assigned
at each successive Jupiter close encounter as described in
the JPL problem statement [12]. We did not check such
a penalty during the tree search, only at the end. As a
consequence some of the trajectories (roughly one out of ten)
in Figure 4 are actually infeasible for the GTOC6 problem
(luckily not the highest ranked one).

8. CONCLUSIONS
The design of extremely complex interplanetary trajecto-

ries including dozens of multiple gravity assists may be per-
formed autonomously by computers with the aid of carefully
planned searches powered by evolutionary algorithms. We
consider the case of the GTOC6 challenge proposed by the
Jet Propulsion Laboratory and improve significantly over
the best known solution (winner of the competition) using
a new completely automated scheme that makes extensive
use of self-adaptation and of the asynchronous island model.
Compared to the previous best solution the trajectory found
by our computers appears to be using a quite different or-
bital strategy, frequently hopping between moons, which is
of interest to interplanetary trajectory designers.

9. ACKNOWLEDGMENTS
We thank Dr. Anastassios Petropoulos from Jet Propul-

sion Laboratory (the organizer of GTOC6) for having nu-
merically validated our trajectory to be a solution to the
GTOC6 problem.

10. REFERENCES
[1] B. Addis, A. Cassioli, M. Locatelli, and F. Schoen. A

global optimization method for the design of space

trajectories. Computational Optimization and
Applications, 48(3):635–652, 2011.

[2] R. H. Battin. An introduction to the mathematics and
methods of astrodynamics. American Institute of
Aeronautics and Astronautics, revised edition, 1999.

[3] J. Brest, V. Zumer, and M. S. Maucec. Self-adaptive
differential evolution algorithm in constrained
real-parameter optimization. In IEEE Congress on
Evolutionary Computation, CEC 2006, pages 215–222.
IEEE, 2006.

[4] A. Corana, M. Marchesi, C. Martini, and S. Ridella.
Minimizing multimodal functions of continuous
variables with the “simulated annealing” algorithm
Corrigenda for this article is available here. ACM
Transactions on Mathematical Software (TOMS),
13(3):262–280, 1987.

[5] K. Deb, N. Padhye, and G. Neema. Interplanetary
trajectory optimization with swing-bys using
evolutionary multi-objective optimization. In L. Kang,
Y. Liu, and S. Zeng, editors, Advances in Computation
and Intelligence, volume 4683 of Lecture Notes in
Computer Science, pages 26–35. Springer, 2007.

[6] N. Hansen, S. D. Müller, and P. Koumoutsakos.
Reducing the time complexity of the derandomized
evolution strategy with covariance matrix adaptation
(CMA-ES). Evolutionary Computation, 11(1):1–18,
2003.

[7] D. Izzo. 1st ACT global trajectory optimisation
competition: Problem description and summary of the
results. Acta Astronautica, 61(9):731–734, 2007.

[8] D. Izzo. Global Optimization and Space Pruning for
Spacecraft Trajectory Design. In B. Conway, editor,
Spacecraft Trajectory Optimization, Cambridge
Aerospace Series, chapter 7, pages 178–201.
Cambridge University Press, 2010.

[9] D. Izzo, V. M. Becerra, D. R. Myatt, S. J. Nasuto,
and J. M. Bishop. Search space pruning and global
optimisation of multiple gravity assist spacecraft
trajectories. Journal of Global Optimization,
38(2):283–296, 2007.

[10] X. Liu, H. Baoyin, and X. Ma. Five special types of
orbits around Mars. Journal of guidance, control, and
dynamics, 33(4):1294–1301, 2010.

[11] A. E. Lynam, K. W. Kloster, and J. M. Longuski.
Multiple-satellite-aided capture trajectories at Jupiter
using the Laplace resonance. Celestial Mechanics and
Dynamical Astronomy, 109(1):59–84, 2011.

[12] A. E. Petropoulos. Problem description for the 6th
global trajectory optimisation competition.
http://goo.gl/FmrOc. Accessed: 01/01/2013.

[13] M. Rosa Sentinella and L. Casalino. Cooperative
evolutionary algorithm for space trajectory
optimization. Celestial Mechanics and Dynamical
Astronomy, 105(1–3):211–227, 2009.

[14] M. Vasile and M. Locatelli. A hybrid multiagent
approach for global trajectory optimization. Journal
of Global Optimization, 44(4):461–479, 2009.

[15] C. H. Yam, D. Izzo, and F. Biscani. Towards a high
fidelity direct transcription method for optimisation of
low-thrust trajectories. In 4th International
Conference on Astrodynamics Tools and Techniques,
May 2010.



−120 −100 −80 −60 −40 −20 0 20

−120

−100

−80

−60

−40

−20

0

20

x, R
J

y
, 

R
J

From 1000 R
J

−20 −10 0 10 20

−25

−20

−15

−10

−5

0

5

10

15

20

25

−10
1

x, R
J

y
, 
R

J
Callisto

Ganymede

Europa

Io

−20
−10

0
10

20−20

−10

0

10

20

−5
0
5

x, R
J

y
, 
R

J

z
, 
R

J

−20
−10

0
10

20

−30

−20

−10

0

10

20

−4
0
4

x, R
J

y
, 

R
J

z
, 

R
J

Figure 6: Visualization of the four phases of the moon tour. Phase 1: leg 1-51 (top-left); Phase 2: leg 52-78
(top-right); Phase 3: leg 79-115 (bottom-left); Phase 4: leg 116-141 (bottom-right). Colors on the trajectory
represent scores obtained on the upcoming flyby (same color scheme as Fig. 5).


