
68 JUNE 2005

The full-length paper details a project
that applied a new technology, genetic
algorithms, to the problem of scheduling
oil production by cyclic steaming at an
oil field in the San Joaquin Valley. The
paper focuses on three themes: the suc-
cessful solution of a production problem
with new technology; the impact of that
technology on oilfield personnel; and the
potential of that technology to support
other types of projects.

Introduction
The Antelope reservoir in the Cymric field,
in the San Joaquin Valley, is a siliceous shale
reservoir containing 12 to 13°API heavy
oil. The reservoir consists primarily of
diatomite, characterized by its high porosity,
high oil saturation, and very low permeabil-
ity. Approximately 430 wells are producing
from this reservoir, with an average daily
production of 23,000 bbl. The oil from the
field is recovered using a Chevron-patented
cyclic-steam process. A fixed amount of sat-
urated steam is injected into the reservoir
during a 3- to 4-day period. The high-pres-
sure steam fractures the rock, and the heat
from the steam reduces oil viscosity. The
well is shut in during the next couple of
days, known as the soak period. Condensed
steam is absorbed by the diatomite, and oil
is displaced into the fractures and wellbore.
After the soak period, the well is returned to
production. The flashing of hot water into
steam at the prevailing pressure provides the
energy to lift the fluids to the surface. The

well flows for approximately 20 to 25 days.
After the well dies, the same cycle is repeat-
ed. Cycle length is 26 to 30 days.

Because there is no oil production during
the steaming and soaking period, there is an
incentive to minimize the steaming frequen-
cy and increase the length of the cycle. But
because well production is highest immedi-
ately after returning to production and
declines quickly thereafter, a case can be
made for increasing the steaming frequency
and reducing the length of the cycle. This
suggests that there is an optimum cycle
length for every well that results in maxi-
mum productivity during the cycle. Because
there are more than 400 wells in the field,
and there are constraints of steam availabil-
ity and distribution system, as well as facili-
ty constraints, the result is a formidable
scheduling problem.

Genetic Algorithms
Genetic algorithms (GAs) are global opti-
mization techniques developed by John
Holland in 1975. They are one of several
techniques in the family of evolutionary
algorithms—algorithms that search for
solutions to optimization problems by
“evolving” better and better solutions. A
genetic algorithm begins with a “popula-
tion” of solutions and then chooses “par-
ents” to reproduce. During reproduction,
each parent is copied, and then parents may
combine in an analog to natural crossbreed-
ing, or the copies may be modified, in an
analog to genetic mutation. The new solu-
tions are evaluated and added to the popu-
lation, and low-quality solutions are deleted
from the population to make room for new
solutions. As this process of parent selec-
tion, copying, crossbreeding, and mutation
is repeated, the members of the population
tend to get better. When the algorithm is
halted, the best member of the current pop-
ulation is taken as the solution to the prob-
lem posed.

One critical feature of a GA is its proce-
dure for selecting population members to
reproduce. Selection is a random process,
but a solution member’s quality biases its
probability of being chosen. Because GAs
promote the reproduction of high-quality

solutions, they explore neighboring solu-
tions in high-quality parts of the solution
search space. Because the process is ran-
domized, a GA also explores parts of the
search space that may be far from the best
individuals currently in the population.

In the last 20 years, GAs have been used
to solve a wide range of optimization
problems. There are many examples of op-
timization problems in the petroleum
industry for which GAs are well suited. At
ChevronTexaco, in addition to the cyclical-
steam scheduling problem, well placement,
rig scheduling, portfolio optimization, and
facilities design have been addressed with
GAs. At NuTech Solutions, GAs have been
used in planning rig workover projects so
that overall workover time is reduced, plan-
ning production across multiple plants to
reduce costs, planning distribution from
multiple plants to a large number of cus-
tomers to reduce costs, and controlling
pipeline operations to reduce costs while
satisfying pipeline constraints. 

All of these problems have common fea-
tures: they cannot be formulated as linear
programming problems, they involve a
large number of complex constraints both
hard and soft, and significant increases in
profits can be obtained if the problems are
solved better than they were being solved
before the creation of a computerized opti-
mization procedure.

Problem Formulation
The cyclic-steam scheduling problem is for-
mulated as a GA optimization problem in
which the objective is to maximize cumula-
tive production over a 2-month period. The
fitness function is calculated as the cumula-
tive production minus the penalties for vio-
lating the soft constraints.

The problem has many constraints. The
field-level constraints include steam avail-
ability and the maximum number of wells
steaming. Gauge-station constraints include
minimum amount of steam used and maxi-
mum number of wells on production. The
header-level constraints include maximum
number of wells steaming, and the individ-
ual-well constraints include maximum/min-
imum number of production days.
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Additionally, there are operational con-
straints such as communication where mul-
tiple wells must be steamed together and
wells blocked because of rig activities. 

Although all of the field constraints could
have been incorporated in the problem for-
mulation as hard constraints, constraints
that absolutely cannot be violated, the deci-
sion was made to make many of the con-
straints soft constraints, constraints that can
be violated but with an associated penalty.
An example of a hard constraint is the total
steam available on a given day for the whole
field, whereas some soft constraints are
maximum amount of steam used by a well
group and minimum number of wells
steaming in a header.

The optimization is stopped when one of
the following criteria is satisfied.

• A specified number of generations have
been created.

• A specified amount of time has elapsed.
• The fitness function has not improved

over a specified number of generations.
The GA used multiple heuristics to

enhance its performance and speed up its
search for high-quality solutions. To begin
with, when it created the initial population
of solutions, “the seed,” it used heuristics
based on those that the well operators and
steam operators used at the oil field. It also
used some heuristics developed for the pro-
ject to find good initial schedules. An exam-
ple of such a heuristic is “attempt to steam
high-production wells at their optimal cycle
length—the length of time between steam-
ing at which a well’s average daily produc-
tion is maximized.” The constraints of the
problem made it impossible to steam all
wells at their optimal cycle length, but
inserting schedules based on this as a goal
into the initial population gave the algorithm
some high-quality solutions that could be
mutated and crossbred with other types of
solutions to find even better solutions.

The technique used for representing solu-
tions was not the approach commonly
found in GA textbooks. An indirect encod-
ing approach was used in which each solu-
tion was a permutation list of wells, with
multiple entries allowed for the same well.
Then a decoding procedure was used that
simulated the effects of various schedules to
translate the permutation list into an actual
schedule. The schedule builder looks at the
first well on the list and simulates steaming
it on Day 1. If this process violates no hard
constraints, then the well is scheduled for
steaming on Day 1. The schedule builder
then looks at the second well on the list. It
simulates the effects of steaming that well
together with the first well on Day 1. If no

hard constraints are violated, this well is
added to the schedule for Day 1. If hard con-
straints are violated, the well is not added to
the schedule. The process continues, con-
sidering each well for steaming on Day 1,
and adding each well, in order, that can be
steamed without violating a hard constraint.
Then the process continues with Day 2,
considering each well, in order, that was not
already steamed on Day 1. The process is
repeated for Days 3 and 4. The critical point
is that the schedule-building process will
not build a schedule that violates a hard
constraint. Also, this schedule-building
process uses some clever heuristics and a
simulator to transform a list of wells into a
feasible steaming schedule. Once a schedule
is built, it can be evaluated, and its “score”
is returned to the GA as the evaluation of
the original solution, the list of wells.

The optimization process uses heuristics
to initialize the population, as well as ran-
domly generated solutions to fill out the ini-
tial population. The process includes intelli-
gent heuristics in the procedures used to
modify new solutions. Also used are cross-
breeding procedures appropriate to combin-
ing different permutations to combine two
parents to produce a child. The process
includes a good deal of domain knowledge
in the schedule builder to produce feasible
schedules. A post-processor is included that
checks to find simple changes that could be
made to the best solution found to improve
its quality.

The interface to the optimizer gives the
well operators and steam operators at the
field a great deal of power and flexibility in
their interactions with the system. The
operators can edit the well data that are
entered into the optimizer. They can select
optimization heuristics and procedures
used in a run. They can parameterize the
objective function that specifies the goals of
the run. They can activate, deactivate, and
parameterize the hard and soft constraints.
They also can edit the solutions found by
the optimizer in cases in which there is a
constraint known to the operators that is
not reflected in the databases available to
the optimizer.

Application
A pilot test was conducted to demonstrate
the feasibility, and to determine the potential
benefit, of the approach. A well group com-
prising 21 wells was selected, and the test
was conducted for 60 days. During this peri-
od, the wells in this group were operated
only on the recommendations of the sched-
uler without any adverse effects. The work
process was changed to facilitate the sched-

uler needs. The operators successfully
adopted the new process, which relied much
more on production data that were updated
daily, and used the visualizer to determine
well performance parameters. Daily logs
were kept of the recommendations that were
followed. At the end of the test period, a
comparison was done against the baselines.

Cumulative production from this well
group during the 60-day period increased
11%. The number of active wells was the
same as in the base period, implying that
well productivity increased. The scheduler
recommended shorter cycles for many of the
wells compared to field practice. Cumulative
steam during the same period increased
17%. Because the total steam available for
the field is constrained, it would not be pos-
sible for the scheduler to increase the steam
usage the way it did in the pilot test. As a
result, the increase in production resulting
from higher steam use was backed out. The
final conclusion was that use of the sched-
uler would increase production 3 to 5%.

The pilot test helped identify issues that
needed to be addressed before implement-
ing the process fieldwide. The full-length
paper describes each individual part of the
optimization tool.

Results
As a risk-mitigation measure, the plan for
developing the scheduler with all of its
functionality was broken down into three
releases. Each subsequent release would be
approved to move forward after the previ-
ous release was considered to be successful.
Release 1 of the scheduler for the whole
field was deployed in January 2003. From
8 January 2003 to 8 March 2003, produc-
tion increased 6.4% compared to the base-
line. Not all of this increase was a result of
the scheduler because new wells were
drilled, and the production from these wells
was a part of the increased production.

To estimate the economic benefit of the
scheduler, the production gain attributable
to factors other than the scheduler had to be
deducted. Of the total 6.4% increase, there
was a 1.4% gain that cannot be attributed to
anything other than the scheduler. A pre-
liminary examination of the project indi-
cates a payout period of approximately 75
days. The scheduler has been in daily use
since August 2003, and the operators like its
consistency and fast response.

For a limited time, the full-length paper is avail-
able free to SPE members at www.spe.org/jpt.
The paper has not been peer reviewed.
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