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ABSTRACT
We address the problem of optimizing a spacecraft trajectory
by using three different multi-objective evolutionary
algorithms: i) Non-dominated sorting genetic algorithm, ii)
Pareto-based ranking genetic algorithm, and iii) Strength
Pareto genetic algorithm. The trajectory of interest is an orbit
transfer around a central body when the spacecraft uses a low-
thrust propulsion system. We use a Lyapunov feedback
control law called the Q-law to create an eligible trajectory,
while the Q-law control parameters are selected with the multi-
objective algorithms. The optimization goal is to minimize
flight time and consumed propellant mass simultaneously.
The Pareto fronts (trade-off surface between flight time and
propellant mass) produced by these algorithms are evaluated
by means of two quantitative metrics: 1) size of the dominated
space and 2) coverage of two Pareto fronts. With the two
metrics, a hierarchy of algorithms emerged. The non-
dominated sorting genetic algorithm and the strength Pareto
genetic algorithm are equally effective, and they outperform
the Pareto-based ranking genetic algorithm.          

Categories and Subject Descriptors
Real-World Applications
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1. INTRODUCTION
Many real-world optimization problems involve multiple
competing objectives, which give rise to a set of
compromising solutions rather than a single optimal solution.
Spacecraft trajectory design is such a multi-objective
optimization problem. Optimal trajectories are the ones that
minimize both flight time and propellant consumption.
Reduction of flight-time often competes with propellant
saving. The competition leads to a trade-off between the two

resources. The reasonable estimation of the trade-off is the key
in spacecraft trajectory design.

The feasibility of the trajectory is bound to the capability of a
specific propulsion system. One promising propulsion system
for future deep-space missions is electric low-thrust
propulsion. In fact, NASA’s future space missions Dawn and
JIMO will use electric propulsion for inter-planetary cruise
and orbital operations. The strength of the electric propulsion
is that despite its low thrust levels, the specific momentum
transfer per kilogram of propellant is ten to twenty times
greater than for chemical propulsion. However, the control of
low-thrust spacecraft poses a challenging design problem,
particularly for orbit transfers around a central body because i t
involves a large number of revolutions and thrust arcs along
these revolutions.  

In an effort to find optimal trajectories, several heuristic
control laws have been developed [1,3-5,7,8]. One of the
promising control laws is the Q-law, which is based on
Lyapunov feedback control [7,8]. The Q-law involves a set of
control parameters that are left free for the mission designer to
select. The Q-law, with nominal values for the control
parameters, provides reasonable estimates of Pareto-optimal
solutions, indicating that a suitable Lyapunov function has
been found and that optimization of the control parameters
should yield near-Pareto-optimal solutions. Indeed, it has
been demonstrated that genetic algorithm and simulated
annealing optimizations efficiently find the optimal Q-law
control parameters for a wide variety of orbit transfers,
yielding the estimation of the flight time and propellant mass
requirements that are comparable to those obtained with
standard, but computationally more demanding, optimization
techniques [6,10]. In this paper, we examine the efficiency of
several multi-objective evolutionary algorithms for the
selection of the Q-law control parameters and thus for the
better estimation of the trade-off of the resources in the low-
thrust orbit transfer.

2. PROBLEM
2.1 Q-law
The Q-law is a Lyapunov feedback control law developed by
Petropoulos in an attempt to provide good initial guesses for
optimal trajectories between two arbitrary orbits [7,8]. The Q-
law determines when and at what angles to thrust based on the
proximity quotient termed Q. The function Q judiciously
quantifies the proximity of the osculating orbit to the target
orbit. In the Q-law, the central body is modeled as a point
mass, and no perturbing forces are considered.
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The Q-law has 13 free control parameters, which mission
designers can control. The control parameters affect the
efficiency of thrust usage and the geometry (gradient, maxima,
minima, saddle points, etc) of the proximity quotient Q. A
different efficiency of thrust usage leads to a different length
or location of a thrust arc, and a different geometry of Q leads
to a different thrust angle or shifts thrust-arc location. Hence,
the mission designer can acquire a different trajectory for a
different set of the Q-law control parameters. For a detailed
discussion of the mechanisms of the Q-law, readers are referred
to Refs. [7,8].

2.2 Q-law optimization
For a given set of the control parameters, the output of the Q-
law is a series of thrust arcs and thrust angles with a resulting
flight time and consumed propellant mass. The desired
outcome for the mission designer is the trade-off between
flight time and propellant mass and the Pareto-optimal
trajectory corresponding to each point on the trade-off surface.
Therefore, our optimization problem is to minimize both flight
time and required propellant mass while varying the Q-law
control parameters. Mathematically, the Q-law optimization
problem is expressed as

  

€ 

minimize r y = t( r x ),m( r x ){ }∈ Y,
where r x = x1,x2,L,x13{ }∈ X.

                        (1)

Here,   

€ 

r x  is the Q-law control parameter vector,   

€ 

r y  the objective
vector given by the flight time ( t ) and the consumed
propellant mass (m) of the trajectory generated with the given
Q-law parameter vector. We call X the decision space and Y the
objective space.  

Figure 1. Low-thrust orbit transfer around the Earth between
a geostationary-transfer orbit and a retrograde, Molniya-

type orbit.

2.3 Low-Thrust Orbit-Transfer
The Q-law optimization is applied to a low-thrust orbit transfer
that involves the changes of four of the five orbit elements:
the semimajor axis (a), eccentricity (e), inclination (i), the
argument of periapsis (ω), and longitude of the ascending

node (Ω). More specifically, this is an orbit transfer around the
Earth from a geostationary-transfer orbit to a retrograde,
Molniya-type orbit, involving a large plane change. We chose

this transfer for this study because it is a rather complex orbit
transfer, involving changes in most orbit elements. The details
of the initial and target orbit are listed in Table 1. The
spacecraft initial mass is assumed to be 2000 kg, the thrust 2
N, and the specific impulse 2000 s. A typical minimum-time
trajectory for this orbit transfer is shown in Figure 1. This
trajectory involves about 80 revolutions around the central
body (Earth). The large number of revolutions is common in
low-thrust trajectories due to the low level of thrust.

 Table 1. Initial and final orbit elements of the orbit transfer
around the Earth between a geostationary-transfer orbit and

a retrograde, Molniya-type orbit.

Orbit a
(km) e i

(deg.)
ω

(deg.)
Ω

(deg.)

Initial 24505.9 0.725 0.06 180 180

Target 26500.0 0.700 116 270 180

3. METHODS
The low-thrust orbit transfer optimization is performed with
three different multi-objective evolutionary algorithms: 1)
Non-dominated sorting genetic algorithm, 2) Pareto-based
ranking genetic algorithm, and 3) Strength Pareto genetic
algorithm. The performance of each algorithm is evaluated by
means of two quantitative metrics: 1) size of the dominated
space and 2) coverage of the two Pareto fronts. We briefly
summarize the multi-objective evolutionary algorithms and
the performance metrics below. More details can be found in
Ref. [11].  

3.1 Non-dominated Sorting Genetic
Algorithm
The non-dominated sorting genetic algorithm was first
implemented by Srinivas and Deb [9]. While it follows the
standard genetic algorithm for parent selection and offspring
generation, it determines the fitness of the individual using
the concept of Pareto dominance as follows. First, the non-
dominated individuals in the current population are identified
as described in the Appendix. The same fitness value i s
assigned to all the non-dominated individuals. The
individuals are then ignored temporarily, and the rest of the
population is processed in the same way to identify a new set
of non-dominated individuals. A fitness value that is smaller
than the previous one is assigned to all the individuals
belonging to the second non-dominated front. This process
continues until the whole population is classified into non-
dominated fronts with different fitness values. In the original
algorithm, the fitness is shared within the decision space.
However, we did not apply fitness sharing in our optimization
problem because we have not observed any significant
improvement in the optimization and the fitness sharing
increases the computation time.

3.2 Pareto-based Ranking Genetic Algorithm
The Pareto-based ranking genetic algorithm was proposed by
Fonseca and Fleming [2]. Similar to the non-dominated
sorting genetic algorithm, this algorithm also uses the concept
of Pareto dominance. An individual’s rank equals the number
of other individuals in the population by which it i s
dominated. The original algorithm includes fitness sharing in



the objective space. However, our optimization omits the
fitness sharing.

3.3 Strength Pareto Genetic Algorithm
The strength Pareto genetic algorithm is proposed by Zitzler
[11]. It uses the elitism mechanism and the concept of Pareto
dominance. It is the elitism mechanism that makes this
algorithm quite different from non-dominated sorting or
Pareto-based ranking. This algorithm involves an elite group,
which is treated differently from the rest of the population. The
elite group consists of a subset of non-dominated individuals.
The elite group is chosen by clustering the non-dominated set
so that the individuals in the elite group are distributed
uniformly in the objective space [11].  

The fitness assignment procedure is a two-stage process. First,
the individuals in the elite group are ranked by a value called
strength. The strength of the elite individual is proportional to
the number of population members it dominates. The fitness of
the individual is equal to its strength. Second, the individuals
in the non-elite group are evaluated. The fitness of a non-elite
individual is given by the sum of the strengths of all elite
individuals who dominate it. Note that fitness is minimized in
this algorithm.   

3.4 Performance Metrics
The performance assessment of multi-objective optimizers
should take at least the following three aspects into account: i)
minimal distance to the Pareto-optimal front, ii) adequate
(good) distribution, and iii) maximum spread. Various
performance metrics to measure the three aspects have been
introduced in the literature. We chose the following two
measures: I) Size of dominated space and 2) coverage of two
Pareto fronts [11]. Zitzler has shown that the two metrics are
sufficient to measure the difference in performance between
algorithms [11].

3.4.1 Size of the dominated space
The size of the dominated space S is a measure of how much of
the objective space is weakly dominated by a given non-
dominated set A. As an example, the size of the dominated
space is illustrated in Figure 2. Since our optimization
involves the minimization of two objectives, a reasonable
maximum value for each objective is chosen to determine the
size of the dominated space.

Figure 2. Space dominated (colored in orange) by a given
Pareto set when two objectives are minimized.

3.4.2 Coverage of two Pareto fronts
This measure compares two Pareto optimal sets to each other.
When two Pareto optimal sets A and B are given, the coverage

C(A,B) of the two Pareto fronts maps the ordered pair (A,B) to
the interval [0, 1]:

  

€ 

C(A,B) =
b∈ B |∃a∈ A : a f b{ }

B
                 (2)

Therefore, C(A,B) gives the fraction of B dominated by A. For
example, C(A,B) =1 means that all individuals in B are
dominated by A. The opposite C(A,B)=0 represents the
situation that no individual in B is dominated by A.  Note that
C(A,B) is not necessarily equal to 1-C(B,A).                  

4. APPLICATIONS
4.1 Parameters
For the multi-objective genetic algorithms, the following
parameters are used. Each Q-law control parameter i s
represented by a real-valued genome within a predetermined
range. The population size is kept to be 1000. For the strength
Pareto genetic algorithm, the size of the elite group is set to be
at most 200. The crossover probability is 0.8 and the mutation
probability per genome is 0.1. In each generation, 10% of the
population is replaced by offsprings. Parents are selected by
tournament. Offsprings are created with one-point crossover
and random mutation within the predetermined range of each
genome. After 200 generations, the genetic evolution i s
terminated. With these parameter settings, this evolution
process evaluates about 19800 different individuals (Q-law
control parameter sets).   

4.2 Reference Algorithm
As an additional point of reference, random sampling i s
considered. The random sampling algorithm randomly
generates a new individual per generation, according to the
rate of crossover and mutation. Hence the number of fitness
evaluations is the same as for the other multi-objective
algorithms.

Figure 3. Pareto fronts obtained with the multi-objective
algorithms and the random sampling.



4.3 Results
The Pareto fronts obtained with the three multi-objective
algorithms and the random sampling are plotted in Figure 3.
All of the considered multi-objective algorithms outperform
the random sampling. This demonstrates that the genetic
algorithms search the design space more efficiently than the
random sampling as expected.

The quality of the obtained Pareto fronts are measured and
compared according to metrics S (size of the dominated space)
and C (coverage of two Pareto fronts).  Figure 4 shows the size
of the dominated space with respect to the number of
generations. After 30 generations, the non-dominated sorting
outperforms the other multi-objective genetic algorithms. It i s
interesting to note that up to the tenth generation, the random
sampling outperforms the genetic algorithms but i s
consistently and efficiently outperformed thereafter by the
genetic algorithms.

Figure 4. Size of the dominated space vs. generation number
for multi-objective genetic algorithms and random

sampling.

A more direct comparison between two algorithms is made
with the measure of the coverage of two Pareto fronts C(A,B),
as listed in Table 2. The Pareto fronts of all the three multi-
objective genetic algorithms completely dominate the Pareto
front of the random sampling. Among the genetic algorithms,
both the non-dominated sorting and strength Pareto genetic
algorithms completely dominate the Pareto-based ranking
genetic algorithm. Finally, the non-dominated sorting genetic
algorithm dominates 76% of the Pareto optimal solutions
obtained with the strength Pareto genetic algorithm.

For this test run, both metrics S and C demonstrate that the
non-dominated sorting genetic algorithm is superior to the
other multi-objective algorithms considered here. To check the
robustness of the performance order, two more runs were
performed with a different random-number seed. One run leads
to the same order of the performance among the algorithms,
while the other run switched the order between the non-
dominated sorting and the strength Pareto genetic algorithm.
In both cases, the Pareto-based ranking genetic algorithm i s

inferior to other multi-objective genetic algorithms.
Considering the results of all the three independent runs, the
non-dominated sorting and the strength Pareto genetic
algorithms are approximately equivalent, while they clearly
outperform the Pareto-based ranking genetic algorithm.

The resulting performance order is different from that obtained
by Zitzler for different optimization problems (knapsack
problem, traveling salesman problem, continuous test
problems) [11]. Zitzler found that the strength Pareto genetic
algorithm clearly outperforms the non-dominated sorting
algorithm. The disagreement may come from the uniqueness of
our problem. Our optimization problem involves the
nonuniformity of the objective space. The Pareto-optimal
solutions are nonuniformly distributed along the flight-time
objective line. The shorter flight time, the more Pareto-optimal
solutions there are.  This nonuniformity is due to the higher
sensitivity of the flight time to the propellant mass in a short
flight time zone.

5. CONCLUSIONS
We have applied several multi-objective genetic algorithms to
the optimization of low-thrust orbit transfers around the Earth.
A Lyapunov feedback control law called the Q-law is used to
create an eligible orbit transfer, while the Q-law control
parameters are selected with the multi-objective algorithms.
Two resources, flight time and propellant mass, are minimized
and a trade-off between the two resources is obtained. We have
systematically compared the performance of three different
genetic algorithms: 1) Non-dominated Sorting Genetic
Algorithm (NSGA), 2) Pareto-based Ranking Genetic
Algorithm (PRGA), and 3) Strength Pareto Genetic Algorithm
(SPGA). Random sampling is also considered as a reference
point. Two quantitative performance metrics were used: 1) size
of the dominated space and 2) coverage of two Pareto fronts.
With these metrics, a hierarchy of the multi-objective genetic
algorithms emerged. While NSGA and SPGA are comparable to
each other, NSGA and SPGA clearly outperform PRGA. Random
sampling performs much worse than all the genetic algorithms.

Table 2. Coverage of two Pareto fronts C(A,B) for ordered
pairs of algorithms: The listed value C(A,B) is the fraction of

B dominated by A with algorithm A associated with the
corresponding row and algorithm B associated with the

corresponding column. The algorithms are Random
sampling (RAND), Non-dominated Sorting Genetic

Algorithm (NSGA), Pareto-based Ranking Genetic Algorithm
(PRGA), and Strength Pareto Genetic Algorithm (SPGA).

C(A,B) RAND NSGA PRGA SPGA

RAND N/A 0 0 0

NSGA 1 N/A 1 0.76

PRGA 1 0 N/A 0

SPGA 1 0.18 1 N/A
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7. APPENDIX
An individual (a decision vector)   

€ 

r x  is non-dominated by a
population set A iff

  

€ 

/ ∃ a∈ A : r a f r x ,                                       (4)

where the condition   

€ 

r a f r x  is defined as

  

€ 

r a f r x  (r a  dominates r x )       
iff   ∀i ∈ {1,L,M}, f i(

r a ) ≥ f i(
r x )

∧∃i ∈ {1,L,M}, f i(
r a ) > f i(

r x ).
                     (5)

Here   

€ 

f (r a )  is the objective vector of the decision vector   

€ 

r a ,
and   

€ 

f ( r x )  is the objective vector of the decision vector   

€ 

r x .
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