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Abstract—There are more bugs in real-world programs than
human programmers can realistically address. This paper
evaluates two research questions: “What fraction of bugs
can be repaired automatically?” and “How much does it
cost to repair a bug automatically?” In previous work, we
presented GenProg, which uses genetic programming to repair
defects in off-the-shelf C programs. To answer these questions,
we: (1) propose novel algorithmic improvements to GenProg
that allow it to scale to large programs and find repairs
68% more often, (2) exploit GenProg’s inherent parallelism
using cloud computing resources to provide grounded, human-
competitive cost measurements, and (3) generate a large,
indicative benchmark set to use for systematic evaluations. We
evaluate GenProg on 105 defects from 8 open-source programs
totaling 5.1 million lines of code and involving 10,193 test cases.
GenProg automatically repairs 55 of those 105 defects. To our
knowledge, this evaluation is the largest available of its kind,
and is often two orders of magnitude larger than previous
work in terms of code or test suite size or defect count. Public
cloud computing prices allow our 105 runs to be reproduced
for $403; a successful repair completes in 96 minutes and costs
$7.32, on average.

Keywords-genetic programming; automated program repair;
cloud computing

I. INTRODUCTION

Program evolution and repair are major components of
software maintenance, which consumes a daunting fraction
of the total cost of software production [1]. Automated
techniques to reduce their costs are therefore especially
beneficial. Developers for large software projects must con-
firm, triage, and localize defects before fixing them and
validating the fixes. Although there are a number of tools
available to help with triage (e.g., [2]), localization (e.g., [3],
[4]), validation (e.g., [5]) and even confirmation (e.g., [6]),
generating repairs remains a predominantly manual, and thus
expensive, process. At the same time, cloud computing, in
which virtualized processing power is purchased cheaply and
on-demand, is becoming commonplace [7].

Research in automated program repair has focused on
reducing defect repair costs by producing candidate patches
for validation and deployment. Recent repair projects in-
clude ClearView [8], which dynamically enforces invari-

ants to patch overflow and illegal control-flow transfer
vulnerabilities; AutoFix-E [9], which can repair programs
annotated with design-by-contract pre- and post-conditions;
and AFix [10], which can repair single-variable atomicity
violations. In previous work, we introduced GenProg [11],
[12], [13], [14], a general method that uses uses genetic
programming (GP) to repair a wide range of defect types
in legacy software (e.g., infinite loops, buffer overruns,
segfaults, integer overflows, incorrect output, format string
attacks) without requiring a priori knowledge, specializa-
tion, or specifications. GenProg searches for a repair that re-
tains required functionality by constructing variant programs
through computational analogs of biological processes, such
as crossover and mutation.

The goal of this paper is to evaluate dual research ques-
tions: “What fraction of bugs can GenProg repair?” and
“How much does it cost to repair a bug with GenProg?” To
answer these questions, we combine three important insights.
Our key algorithmic insight is to represent candidate repairs
as patches [15], rather than as abstract syntax trees. These
changes were critical to GenProg’s scalability to millions
of lines of code, an essential component of our evaluation.
We introduce new search operators that dovetail with this
representation to reduce the number of ill-formed variants
and improve performance. Our key performance insight is
to use off-the-shelf cloud computing as a framework for
exploiting search-space parallelism as well as a source of
grounded cost measurements. Our key experimental insight
is to search version control histories exhaustively, focusing
on open-source C programs, to identify revisions that corre-
spond to human bug fixes as defined by the program’s most
current test suite.

We combine these insights and present a novel, scalable
approach to automated program repair based on GP, and then
evaluate it on 105 real-world defects taken from open-source
projects totaling 5.1 MLOC and including 10,193 test cases.

The main contributions of this paper are:
• GenProg, a scalable approach to automated program

repair based on GP. New GP representation, mutation,
and crossover operators allow GenProg to scale to



large programs and take advantage of cloud computing
parallelism. We evaluate directly against our previous
approach on its own benchmarks [11] and find that the
improved algorithm finds repairs 68% more often.

• A systematic evaluation of GenProg on 105 defects
from 5.1 MLOC of open-source projects equipped
with 10,193 test cases. We generate a benchmark set
by exhaustively searching inclusive version ranges to
help address generalizability concerns: All reproducible
bugs in a time window are considered, and all defects
considered were important enough for developers to test
for and fix manually. This evaluation includes two or-
ders of magnitude more source code than AutoFix-E [9]
or our previous work [11], two orders of magnitude
more test cases than ClearView [8], and two orders of
magnitude more defects than AFix [10] (in addition to
being strictly larger than each of those four previous
projects on each of the those metrics separately).

• Results showing that GenProg repairs 55 of those 105
defects. Because our experiments were conducted using
cloud computing and virtualization, any organization
could pay the same rates we did and reproduce our
results for $403 total — or $7.32 per successful run
on this dataset. A successful repair takes 96 minutes
of wall-clock time, on average, while an unsuccessful
run takes 11.2 hours, including cloud instance start up
times

II. MOTIVATION

This section motivates automated program repair and
identifies monetary cost, success rate and turnaround time
as important evaluation metrics.

The rate at which software bugs are reported has kept
pace with the rapid rate of modern software development.
In 2006, one Mozilla developer noted, “everyday, almost
300 bugs appear [. . . ] far too much for only the Mozilla
programmers to handle” [2, p. 363]; bugzilla.mozilla.org
gives similar bug report numbers for 2011. Since there are
not enough developer resources to fix all defects, programs
ship with both known and unknown bugs [6].

In light of this problem, many companies have begun
offering bug bounties to outside developers, paying for
candidate repairs. Well-known companies such as Mozilla1

and Google2 offer significant rewards for security fixes, with
bounties raising to thousands of dollars in “bidding wars.”3

Although security bugs command the highest prices, more
wide-ranging bounties are available. Consider Tarsnap.com,4

an online backup provider. Over a four-month period,

1http://www.mozilla.org/security/bug-bounty.html $3,000/bug
2http://blog.chromium.org/2010/01/encouraging-more-chromium-security.

html $500/bug
3http://www.computerworld.com/s/article/9179538/Google calls raises

Mozilla s bug bounty for Chrome flaws
4http://www.tarsnap.com/bugbounty.html

Tarsnap paid $1,625 for fixes for issues ranging from cos-
metic errors (e.g., typos in source code comments), to gen-
eral software engineering mistakes (e.g., data corruption), to
security vulnerabilities. Of the approximately 200 candidate
patches submitted to claim various bounties, about 125
addressed spelling mistakes or style concerns, while about
75 addressed more serious issues, classified as “harmless”
(63) or “minor” (11). One issue was classified as “major.”
Developers at Tarsnap confirmed corrections by manually
evaluating all submitted patches. If we treat the 75 non-
trivial repairs as true positives (38%) and the 125 trivial
reports as overhead, Tarsnap paid an average of $21 for each
non-trivial repair and received one about every 40 hours.
Despite the facts that the bounty pays a small amount even
for reports that do not result in a usable patch and that about
84% of all non-trivial submissions fixed “harmless” bugs, the
final analysis was: “Worth the money? Every penny.”5

Bug bounties suggest that the need for repairs is so
pressing that companies are willing to pay for outsourced
candidate patches even though repairs must be manually
reviewed, most are rejected, and most accepted repairs are
for low-priority bugs. These examples also suggest that
relevant success metrics for a repair scheme include the
fraction of queries that produce code patches, monetary cost,
and wall-clock time cost. We now present an automated
approach to program repair with a use case similar to that
of the outsourced “bug bounty hunters.” The method is
powerful enough to fix over half of the defects it tackles,
and we evaluate it using these and other metrics.

III. AUTOMATED REPAIR METHOD

In this section we describe GenProg, an automated pro-
gram repair method that searches for repairs to off-the-
shelf, unannotated programs. We highlight the important
algorithmic and representational changes since our prelimi-
nary work [11] that enable scalability to millions of lines of
code, improve performace, and facilitate implementation on
a cloud computing service.

A. Genetic Programming

GenProg uses genetic programming (GP) [16], an iterated
stochastic search technique, to search for program repairs.
High-level pseudocode for GenProg’s main GP loop is
shown in Figure 1; it closely resembles previous work [11].
Fitness is measured as a weighted average of the positive
(i.e., initially passing, encoding required functionality) and
negative (i.e., initially failing, encoding a defect) test cases.
The goal is to produce a candidate patch that causes the
original program to pass all test cases. In this paper, each
individual, or variant, is represented as a repair patch [15],
stored as a sequence of AST edit operations parameter-
ized by node numbers (e.g., 〈Delete(32), Replace(81, 44)〉)

5http://www.daemonology.net/blog/2011-08-26-1265-dollars-of-tarsnap-bugs.
html



Input: Full fitness predicate FullFitness : Patch → B
Input: Sampled fitness SampleFit : Patch → R
Input: Mutation operator mutate : Patch → Patch
Input: Crossover operator crossover : Patch2 → Patch2

Input: Parameter PopSize
Output: Patch that passes FullFitness

1: let Pop ← map mutate over PopSize copies of 〈 〉
2: repeat
3: let parents ← tournSelect(Pop, Popsize, SampleFit)
4: let offspr ← map crossover over parents , pairwise
5: Pop ← map mutate over parents ∪ offspr
6: until ∃ candidate ∈ Pop. FullFitness(candidate)
7: return candidate

Figure 1. High-level pseudocode for the main loop of our technique.

(see Section III-B). In earlier work, each variant was repre-
sented as a complete program AST in combination with a
weighted execution path.

Given a program and a test suite (i.e., positive and
negative tests cases), we localize the fault (Section III-D) and
compute context-sensitive information to guide the search
for repairs (Section III-E) based on program structure and
test case coverage.

The functions SampleFit and FullFitness evaluate variant
fitness (Section III-C) by applying candidate patches to the
original program to produce a modified program that is
evaluated on test cases. The operators mutate and crossover
are defined in Section III-F and Section III-G. Both generate
new patches to be tested.

The search begins by constructing and evaluating a pop-
ulation of random patches. Line 1 of Figure 1 initializes the
population by independently mutating copies of the empty
patch. Lines 2–6 correspond to one iteration or generation
of the algorithm. On Line 3, tournament selection [17]
selects from the incoming population, with replacement,
parent individuals based on fitness. By analogy with genetic
“crossover” events, parents are taken pairwise at random to
exchange pieces of their representation; two parents produce
two offspring (Section III-G). Each parent and each offspring
is mutated once (Section III-F) and the result forms the
incoming population for the next iteration. The GP loop
terminates if a variant passes all test cases, or when resources
are exhausted (i.e., too much time or too many generations
elapse). We refer to one execution of the algorithm described
in Figure 1 as a trial. Multiple trials are run in parallel, each
initialized with a distinct random seed.

The search space of possible repairs is infinitely large,
and GenProg employs five strategies to render the search
tractable: (1) coarse-grained, statement-level patches to
reduce search space size; (2) fault localization to focus
edit locations; (3) existing code to provide the seed of new
repairs; (4) fitness approximation to reduce required test
suite evaluations; and (5) parallelism to obtain results faster.

B. Patch Representation

An important GenProg enhancement involves the choice
of representation. Each variant is a patch, represented as se-
quence of edit operations (cf. [15]). In the original algorithm,
each individual was represented by its entire abstract syntax
tree (AST) [11], which does not scale to large programs in
the cloud computing setting. For example, for at least 36
of the 105 defects considered in this paper, a population of
40–80 ASTs did not fit in the 1.7 GB of main memory
allocated to each cloud node. In our dataset, half of all
human-produced patches were 25 lines or less. Thus, two
unrelated variants might differ by only 2 × 25 lines, with
all other AST nodes in common. Representing individuals
as patches avoids storing redundant copies of untouched
lines. This formulation influences the mutation and crossover
operators, discussed below.

C. Fitness evaluation

To evaluate the fitness of a large space of candidate
patches efficiently, we exploit the fact that GP performs well
with noisy fitness functions [13]. The function SampleFit
applies a candidate patch to the original program and eval-
uates the result on a random sample of the positive tests as
well as all of the negative test cases. SampleFit chooses
a different test suite sample each time it is called. The
predicate FullFitness evaluates to true if the candidate patch,
when applied to the original program, passes all of the test
cases. For efficiency, only variants that maximize SampleFit
are fully tested on the entire test suite. The final fitness of a
variant is the weighted sum of the number of tests that are
passed, where negative tests are weighted twice as heavily
as the positive tests.

D. Fault Localization

GenProg focuses repair efforts on statements that are
visited by the negative test cases, biased heavily towards
those that are not also visited by positive test cases [3].
For a given program, defect, set of tests T , test evaluation
function Pass : T → B, and set of statements visited when
evaluating a test Visited : T → P(Stmt), we define the
fault localization function faultloc : Stmt → R to be:

faultloc(s) =

{
0 ∀t ∈ T. s 6∈ Visited(t)

1.0 ∀t ∈ T. s ∈ Visited(t) =⇒ ¬Pass(t)
0.1 otherwise

That is, a statement never visited by any test case has zero
weight, a statement visited only on a bug-inducing test case
has high (1.0) weight, and statements covered by both bug-
inducing and normal tests have moderate (0.1) weights (this
strategy follows previous work [11, Sec. 3.2]). On the 105
defects considered here, the total weight of possible fault
locations averages 110. Other fault localization schemes
could potentially be plugged directly into GenProg [6].



E. Fix Localization
We introduce the term fix localization (or fix space) to

refer to the source of insertion/replacement code, and ex-
plore ways to improve fix localization beyond blind random
choice. As a start, we restrict inserted code to that which
includes variables that are in-scope at the destination (so
the result compiles) and that are visited by at least one test
case (because we hypothesize that certain common behavior
may be correct [18]). For a given program and defect we
define the function fixloc : Stmt → P(Stmt) as follows:

fixloc(d) =
{
s

∃t ∈ T. s ∈ Visited(t) ∧
VarsUsed(s) ⊆ InScope(d)

}
The previous approach chose an AST node randomly from
the entire program. As a result, an average of 32% of
generated variants did not compile [11]—usually due to type
checking or scoping issues. For larger programs with long
compilation times, this is a significant overhead. For the 105
defects considered here, less than 10% of the variants failed
to compile using the fix localization function just defined.

F. Mutation Operator
Earlier work used three types of mutation: delete, insert,

and swap. However, we found swap to be up to an order of
magnitude less successful than the other two [12, Tab. 2]. We
thus replace swap with a new operator replace (equivalent
to a delete followed by an insert to the same location). In a
single mutation, a destination statement d is chosen from
the fault localization space (randomly, by weight). With
equiprobability GenProg either deletes d (i.e., replaces it
with the empty block), inserts another source statement s
before d (chosen randomly from fixloc(d)), or replaces d
with another statement s (chosen randomly from fixloc(d)).

G. Crossover Operator
The crossover operator combines partial solutions, help-

ing the search avoid local optima. Our new patch subset
crossover operator is a variation of the well-known uniform
crossover operator [19] tailored for the program repair
domain. It takes as input two parents p and q represented as
ordered lists of edits (Section III-B). The first (resp. second)
offspring is created by appending p to q (resp. q to p) and
then removing each element with independent probability
one-half. This operator has the advantage of allowing parents
that both include edits to similar ranges of the program
(e.g., parent p inserts B after A and parent q inserts C
after A) to pass any of those edits along to their offspring.
Previous uses of a one-point crossover operator on the fault
localization space did not allow for such recombination (e.g.,
each offspring could only receive one edit to statement A).

IV. EXPERIMENTAL SETUP

This section describes how we selected a set of subject
programs and defects for our systematic evaluation, and it
describes the parameter settings used for the experiments.

Program LOC Tests Defects Description

fbc 97,000 773 3 legacy programming
gmp 145,000 146 2 multiple precision math
gzip 491,000 12 5 data compression
libtiff 77,000 78 24 image manipulation
lighttpd 62,000 295 9 web server
php 1,046,000 8,471 44 web programming
python 407,000 355 11 general programming
wireshark 2,814,000 63 7 network packet analyzer

total 5,139,000 10,193 105

Table I
SUBJECT C PROGRAMS, TEST SUITES AND HISTORICAL DEFECTS: Tests
were taken from the most recent version available in May, 2011; Defects
are defined as test case failures fixed by developers in previous versions.

A. Subject Programs and Defects

Our goal was to select a set of benchmark programs and
defects that can run in our experimental framework and is
indicative of “real-world usage.” We required that subject
programs contain sufficient C source code, a version control
system, a test suite of reasonable size, and a set of suitable
subject defects. To reduce bias, we only used programs
that could run without modification under cloud computing
virtualization, which limited us to programs amenable to
such environments. We required that subject defects be
reproducible and important. To eliminate bias, we searched
systematically through the program’s source history, looking
for revisions that caused the program to pass test cases that
it failed in a previous revision. Such a scenario corresponds
to a human-written repair for the bug corresponding to the
failing test case. This approach succeeds even in projects
without explicit bug-test links, and it ensures that benchmark
bugs are important enough to merit a human fix and to affect
the program’s test suite.

Table IV-A summarizes the programs used in our experi-
ments. We selected these benchmarks by first defining pred-
icates for acceptability, and then examining various program
repositories to identify first, acceptable candidate programs
that passed the predicates; and second, all reproducible bugs
within those programs identified by searching backwards
from the checkout date (late May, 2011). The next subsection
formalizes the procedure in more detail.

B. Selecting Programs for Evaluation

A candidate subject program is a software project contain-
ing at least 50,000 lines of C code, 10 viable test cases, and
300 versions in a revision control system. We consider all
viable versions of a program, defined as a version that checks
out and builds unmodified on 32-bit Fedora 13 Linux (a
lowest common denominator OS available on the EC-2 cloud
computing framework). A program builds if it produces its
primary executable, regardless of the exit status of make.

We define test cases to be the smallest atomic testing units
for which individual pass or fail information is available.
For example, if a program has 10 “major areas” which each



contain 5 “minor tests” and each “minor test” can pass or
fail, we say that it has 50 test cases. We define a viable
test case as a test that is reproducible, non-interactive, and
deterministic in the cloud environment (over at least 100
trials). testsuite(i) denotes the set of viable test cases passed
by viable version i of a program. We use all available viable
tests, even those added after the version under consideration.
We exclude programs with test suites that take longer than
one hour to complete in the cloud environment.

We say that a testable bug exists between viable versions
i and j of a subject program when:

1) testsuite(i) ( testsuite(j) and
2) there is no i′ > i or j′ < j with the testsuite(j) −

testsuite(i) = testsuite(j′)− testsuite(i′) and
3) the only source files changed by developers to reach

version j were .c, .h, .y or .l

The second condition requires a minimal |i− j|. The set of
positive tests (i.e., encoding required behavior) is defined as
testsuite(i) ∩ testsuite(j). The negative tests (i.e., demon-
strating the bug) are testsuite(j) − testsuite(i). Note that
the positive and negative tests are disjoint.

Given a viable candidate subject program, its most recent
test suite, and a range of viable revisions, we construct a
set of testable bugs by considering each viable version i
and finding the minimal viable version j, if any, such that
there is a testable bug between i and j. We considered all
viable revisions appearing before our start date in late May,
2011 as a potential source of testable bugs. However, we
capped each subject program at 45 defects to prevent any
one program from dominating the results.

We canvassed the following sources using the criteria
outlined above:

1) the top 20 C-foundry programs on Sourceforge.net
2) the top 20 C programs on Google code
3) the largest 20 non-kernel Fedora 13 source packages
4) programs in other repair papers [14], [13] or known

to the authors to have large test suites
Many otherwise-popular projects failed to meet our crite-

ria. Many open-source programs have nonexistent or weak
test suites; opaque testing paradigms; non-automated GUI
testing; or are difficult to modularize, build and reproduce
on our architecture (e.g., eclipse, firefox, ghostscript,
handbrake, openjpeg, openoffice). For several programs,
we were unable to identify any viable defects according to
our definition (e.g., gnucash, openssl). Some projects (e.g.,
bash, cvs, openssh) have inaccessible or unusably small
version control histories. Other projects were ruled out by
our test suite time bound (e.g., gcc, glibc, subversion).
Some projects have many revisions but few viable ver-
sions that compile and run against recent test cases (e.g.,
valgrind). Earlier versions of certain programs (e.g,. gmp)
require incompatible versions of automake and libtool.

The set of benchmark programs and defects appears in

Table IV-A. The authors acknowledge that it is not complete
and that other additions are possible. While it is certainly
“best effort,” to our knowledge it also represents the most
systematic evaluation of automated program repair to date.

C. Experimental Parameters

We ran 10 GenProg trials in parallel for each bug. We
chose PopSize = 40 and a maximum of 10 generations for
consistency with previous work [11, Sec. 4.1]. Each indi-
vidual was mutated exactly once each generation, crossover
is performed once on each set of parents, and 50% of the
population is retained (with mutation) on each generation
(known as elitism). Each trial was terminated after 10
generations, 12 hours, or when another search found a repair,
whichever came first.

We used Amazon’s EC2 cloud computing infrastructure
for the experiments. Each trial was given a “high-cpu
medium (c1.medium) instance” with two cores and 1.7 GB
of memory.6 Simplifying a few details, the virtualization can
be purchased as spot instances at $0.074 per hour but with a
one hour start time lag, or as on-demand instances at $0.184
per hour. These August–September 2011 prices summarize
CPU, storage and I/O charges.7

V. EXPERIMENTAL RESULTS

This section reports and analyzes the results of running
GenProg on our benchmark suite of defects. We address the
following questions:
• How many defects can GenProg repair, and at what

cost? (Section V-A)
• What determines the success rate? (Section V-B)
• What is the impact of alternative repair strategies?

(Section V-C)
• How do automated and human-written repairs com-

pare? (Section V-D)

A. How many defects can GenProg repair?

Table II reports results for 105 defects in 5.1 MLOC from
8 subject programs. GenProg successfully repaired 55 of the
defects (52%), including at least one defect for each subject
program. The 50 “Non-Repairs” met time or generation
limits before a repair was discovered. We report costs in
terms of monetary cost and wall clock time from the start
of the request to the final result, recalling that the process
terminates as soon as one parallel search finds a repair.
Results are reported for cloud computing spot instances, and
thus include a one-hour start lag but lower CPU-hour costs.

For example, consider the repaired fbc defect, where
one of the ten parallel searches found a repair after 6.52
wall-clock hours. This corresponds to 5.52 hours of cloud
computing CPU time per instance. The total cost for the

6http://aws.amazon.com/ec2/instance-types/
7http://aws.amazon.com/ec2/pricing/



Avg. Cost Avg. Cost
Defects per Non-Repair Per Repair

Program Repaired Hours US$ Hours US$

fbc 1 / 3 8.52 5.56 6.52 4.08
gmp 1 / 2 9.93 6.61 1.60 0.44
gzip 1 / 5 5.11 3.04 1.41 0.30
libtiff 17 / 24 7.81 5.04 1.05 0.04
lighttpd 5 / 9 10.79 7.25 1.34 0.25
php 28 / 44 13.00 8.80 1.84 0.62
python 1 / 11 13.00 8.80 1.22 0.16
wireshark 1 / 7 13.00 8.80 1.23 0.17

total 55 / 105 11.22h 1.60h

Table II
REPAIR RESULTS: 55 of the 105 defects (52%) were repaired successfully

and are reported under the “Avg. Cost per Repair” columns. The
remaining 50 are reported under the “Non-Repair”s columns. “Hours”

columns report the wall-clock time between the submission of the repair
request and the response, including cloud-computing spot instance delays.
“US$” columns reports the total cost of cloud-computing CPU time and

I/O. The total cost of generating the results in this table was $403.

entire bug repair effort for that to repair that defect is thus
10×5.52 hours×$0.074/hour = $4.08 (see Section IV-C).

The 55 successful repairs return a result in 1.6 hours
each, on average. The 50 unsuccessful repairs required 11.22
hours each, on average. Unsuccessful repairs that reach the
generation limit (as in the first five benchmarks) take less
than 12+1 hours. The total cost for all 105 attempted repairs
is $403, or $7.32 per successful run. These costs could be
traded off in various ways. For example, an organization
that valued speed over monetary cost could use on-demand
cloud instances, reducing the average time per repair by 60
minutes to 36 minutes, but increasing the average cost per
successful run from $7.32 to $18.30.

Table II does not include time to minimize repair size, an
optional deterministic post-processing step based on delta
debugging [20], which always succeeds. This step is a small
fraction of the overall repair cost [11].

We view the successful repair of 55 of 105 defects from
programs totaling 5.1 million lines of code as a very strong
result for the power of automated program repair. Similarly,
we view an average per-repair monetary cost of $7.32 as a
strong efficiency result.

B. What determines the success rate?

This section explores factors that may correlate with
GenProg’s success in repairing a given defect. We first
quantitatively analyze the algorithmic changes we made to
GenProg’s program representation and genetic operators. We
next investigate the relationship between GenProg success
and defect complexity using several external metrics, includ-
ing developer reported defect severity and the number of files
touched by developers in a repair. We also consider internal
metrics such as localization size.

1) Representation and Genetic Operators: We compare
our new representation and operators to the previous ap-
proach using the benchmarks from [11], first to allow

Program Fault LOC Ratio of Repairs Found

gcd infinite loop 22 1.07
uniqw-utx segfault 1146 1.01
look-utx segfault 1169 1.00
look-svr infinite loop 1363 1.00
units-svr segfault 1504 3.13
deroff-utx segfault 2236 1.22
nullhttpd buffer exploit 5575 1.70
indent infinite loop 9906 3.75
flex segfault 18775 1.95
atris buffer exploit 21553 0.97

average 6325 1.68

Table III
NEW ALGORITHM: The final column reports the ratio of successful

repairs found by our enhanced algorithm to those found by the originally
published algorithm on that work’s benchmarks [11] (higher is better).

for a direct comparison, and second because the previous
approach does not scale to our new benchmarks. We held
population size, number of generations, mutation rate and
fault localization strategy constant, changing only the inter-
nal representation and genetic operators. We ran 100 random
repair trials per benchmark. Success rate is the number of
trials that find a repair (as in [11, Fig. 5]).

Table III shows results. The new representation outper-
formed the old on all benchmarks except atris, where
success drops slightly, and look, where both approaches
succeed on all trials. Averaged over these benchmarks, the
new representation allows GenProg to find repairs 68% more
frequently than the original method. This result is consistent
with our hypothesis that the new representation would enable
a more efficient search for solutions.

2) Correlating Repair with External Metrics: One con-
cern is that GenProg might succeed only on “unimportant”
or “trivial” bugs. We investigated this hypothesis by ana-
lyzing the relationship between repair success and external
metrics such as human time to repair, human repair size,
and defect severity. With one exception, we were unable to
identify significant correlations with these external metrics.

We manually inspected version control logs, bug
databases, and associated history to link defects with bug
reports. Although all of our benchmarks are associated with
source control and bug-tracking databases, not all defect-
associated revisions could be linked with a readily available
bug report [21]. We identified publicly accessible bug or
security vulnerability reports in 52 out of 105 of our cases.
All bug reports linked to a defect in our benchmark set were
eventually marked “confirmed” by developers. We measure
developer time as the difference between when the bug
report was marked “assigned” and when it was “closed”,
which we know is a rough approximation. We extracted
developer-reported defect severities on a 1–5 scale. We
assigned php security bug reports marked “private” a severity
of 4.5. Ultimately, we identified severity information for 28
of the 105 defects. Results on this subset are comparable
to those on the full dataset: GenProg repaired 26 of the 52



defects associated with bug reports (50%) and 13 of the 28
(46%) associated with severity ratings.

We investigated both linear and non-linear relationships
between repair success and search time and the external
metrics. Correlation values are Pearson’s unless otherwise
noted. We found a significant correlation in only one case.
The number of files touched by a human-generated patch
is slightly negatively correlated with GenProg success (r =
−0.29, p = 0.007): The more files the humans changed
to address the defect, the less likely GenProg was to find
a repair (although we note that the correlation is not very
strong). We were unable to identify a significant relationship
between either “human time to repair” or “human patch size
(in diff lines)” and GenProg’s repair success.

We found no significant correlation between “bug report
severity” and “GenProg’s ability to repair.” Exploring fur-
ther, we found no significant difference between the mean
severity of repaired and unrepaired defects (Student T test
and Wilcoxon Rank-Sum test) at α = 0.95. These results
suggest that the defects that GenProg can and those that it
cannot repair are unlikely to differ in human-provided sever-
ity. We note that no defect associated with a severity report
has lower than “Normal” priority (3 in our scheme). Recall
that, by definition, our dataset restricts attention to bugs
important enough for developers to fix (see Section IV-A).

3) Correlating Repair with Internal Metrics: We define
the space of possible program repairs by both the fault
(Section III-D) and fix (Section III-E) space. Previous work
reported that the time to find a repair scaled roughly linearly
with the size of the weighted path, or fault localization
size [12, Fig. 3]. Fix space size has not been previously
studied.

We find a statistically significant, though not very strong,
relationship between the log of the fault weight and repair
success (r = −0.36, p = 0.0008) as well as the log
of the number of fitness evaluations to repair (r = 0.28,
p = 0.01). As fault space size increases, the probability
of repair success decreases, and the number of variants
evaluated to a repair increases. This result corroborates our
previous findings. We additionally find a significant negative
correlation between the log of the fix space size and the log
of the number of fitness evaluations required to find a repair
(r = −0.42, p < 0.0001). One possible explanation for
these results is that while bad fault localization can preclude
a repair (e.g., the variable x must be zeroed just before this
function call), imprecise fix localization may make it difficult
but still possible (e.g., there are many ways to set x to 0

without using “x=0;”). A larger fix space may include more
candidate repair options, reducing the time to find any one,
even if it does not appear to correlate with actual success.

C. What is the impact of alternative repair strategies?

In this subsection we evaluate two alternative repair strate-
gies: searching for multiple repairs and using annotations.

Defects Total Unique Defects
Repaired Unique Patches Repaired

Program Automatically Patches Per Repair w/ Annotat.

fbc 1 / 3 1 1.0 2 / 3
gmp 1 / 2 2 2.0 2 / 2
gzip 1 / 5 8 8.0 4 / 5
libtiff 17 / 24 115 6.8 19 / 24
lighttpd 5 / 9 23 4.6 6 / 9
php 28 / 44 157 5.6 33 / 44
python 1 / 11 5 5.0 2 / 11
wireshark 1 / 7 7 7.0 3 / 7

total 55 / 105 318 5.8 71 / 105

Table IV
ALTERNATE DEFECT REPAIR RESULTS. “Unique Patches” counts the

number of distinct post-minimization patches produced if each of the 10
parallel searches is allowed to run to completion. The final column

reports that 30% more defects can be repaired via our technique if human
localization annotations are provided.

1) Search for multiple repairs: Diverse solutions to the
same problem may provide multiple options to developers,
or enable consideration of multiple attack surfaces in a se-
curity context. To investigate GenProg’s utility in generating
multiple repairs, we allowed each of the ten independent tri-
als per bug to run to completion instead of terminating early
when any trial found a repair. To identify unique patches,
we convert each repair into a tree-structured expression-level
edit script using the DiffX algorithm [22] and minimize the
edit script using delta debugging [20] (effectively removing
unnecessary edits). We consider a repair unique if the result
of using this patch is textually unique.

Table IV shows how many different patches were discov-
ered in this use-case. GenProg produced 318 unique patches
for 55 repairs, or an average of 5.8 distinct patches per
repaired bug. The unique patches are typically similar, often
involving different formulations of guards for inserted blocks
or different computations of required values. Because all tri-
als, including successful ones, must now run to completion,
the total cost increases from $403 to $502 for all 550 runs.

2) Include human annotations: GenProg is fully auto-
mated. However, we might instead use programmer annota-
tions to guide a repair search, similar in spirit to program-
ming by sketching [23]. In sketching, a programmer specifies
high-level implementation strategies—a “sketch” of general
structure, as well as details such as likely relevant variables,
invariants, or function calls—but leaves low-level details to
a program synthesizer. The synthesizer uses these inputs to
generate the complete code.

In these experiments, we relax our assumption of full
automation, and assume that humans provide an unordered
superset of statements that may be used to construct a
patch (i.e., fix localization information) and pinpoint critical
areas where patch actions mights be applied (i.e., fault
localization). Such annotations are easier to provide than a
concrete patch [23], but are not automatic. We are interested
in annotations to explore the upper limits of our fully



automated method and to explore what a hybrid human-
machine approach might achieve. We use the actual human
repairs for our defect set as the source of our annotations.
We say that a defect can be repaired with annotations if (1)
it can be repaired automatically, or (2) it can be repaired
with fault and fix information restricted to those lines and
changes made by the human developers.

The final column of Table IV shows results. With annota-
tions, the statement-level repair method can address 71 out of
105 bugs (68%). Annotations also reduce time to first repair
by 50% on this dataset (data not shown). This is consistent
with the relationship between search space size and repair
success (Section V-B3) and suggests that benefits might be
gained from improved localization.

These results also illuminate our decision to use only
statement-level changes. Human developers used at least
one “extra-statement level” change (e.g., introducing a new
global variable) in 33 of the 105 subject defects. However,
the unannotated statement-level approach can repair 11 of
those defects. For example, we observed that humans often
introduce new variables to hold intermediate computations or
to refactor buggy code while repairing it. GenProg achieves
the same effect by reusing existing variable definitions to
hold intermediate results. The statement-level technique is
less likely to repair such defects, addressing only 33% of
them (vs. 52% overall repair rate). Statistically, whether a
human repair restricts attention to statement-only changes
moderately correlates with whether our technique can repair
that same bug: r = 0.38, p < 0.0001.

Restricting attention to statements reduces the search
space by one to two orders of magnitude. These results
suggest that that is a good trade-off. However, they also
suggest that more powerful or finer-grained operators might
allow GenProg to address many other real-world defects.

D. How do automated and human-written repairs compare?
In this subsection compare the repairs produced by hu-

mans with those produced by GenProg for two indicative
defects. We have not inspected all 318 unique repairs man-
ually; a user study of patch quality is left as future work.

1) Python Date Handling: In one bug, six python tests
failed based on whether the date “70” maps to “1970” or
“70”. The human patch removed a global dictionary, 17 lines
of processing using that dictionary, and a flag preserving that
dictionary during y2k checking.

The automated repair removes the 17 lines of special
processing but leaves untouched the empty dictionary and
unused flag. This retains required functionality but increases
run time memory usage by one empty dictionary. The patch
is thus as functionally correct as the human patch but
degrades some non-functional aspects (maintainability and
memory footprint), neither of which are tested.

This “normal” priority issue8 was open for 7 days and

8http://bugs.python.org/issue11930

involved 12 developer messages and two different candidate
patches submitted for review by human developers.

2) Php Global Object Accessor Crash: php uses refer-
ence counting to determine when dynamic objects should
be freed. php also allows user programs to overload internal
accessor functions to specify behavior when undefined class
fields are accessed. Version 5.2.17 had a bug related to a
combination of those features. At a high level, the “read
property” function, which handles accessors, always calls a
deep reference count decrement on one of its arguments,
potentially freeing both that reference and the memory it
points to. This is the correct behavior unless that argument
points to $this when $this references a global variable—a
situation that arises if the user program overrides the internal
accessor to return $this. In such circumstances, the global
variable has its reference count decremented to zero and
its memory is mistakenly freed while it is still reachable,
causing the interpreter to incorrectly return an error later.

The human-written patch replaces the single line that
always calls the deep decrement with a simple if-then-else:
in the normal case (i.e., the argument is not a class object),
call the deep decrement on it as before, otherwise call a
separate shallow decrement function (Z_DELREF_P) on it. The
shallow decrement function may free that particular pointer,
but not the object to which it points.

The GenProg-generated patch adapts code from the
nearby “unset property” function. The deep decrement is
unchanged, but additional code is inserted to check for the
abnormal case. In the abnormal case, the reference count is
deeply incremented (through machinations involving a new
variable) and then the same shallow decrement (Z_DELREF_P)
is called.

Thus, at a very high level, the human patch changes
deep_Decr() to:
1 if (normal) deep_Decr(); else shallow_Decr();

while the GP-generated patch changes it to:
1 deep_Decr();
2 if (abnormal) { deep_Incr(); shallow_Decr(); }

The logical effect is the same but the command ordering is
not. Both patches increase the file size by four lines. The
human patch is perhaps more natural: it avoids the deep
decrement rather than performing it and then undoing it.

E. Summary

GenProg repaired 55 of 105 defects from subject programs
spanning 5.1 MLOC and 10,193 tests. In a commercial cloud
computing setting, GenProg repaired these 55 bugs in 1.6
hours for $7.32 each, on average. These times include a
1-hour start time for the cloud instances; paying more for
on-demand instances reduces trial time accordingly, while
increasing cost. All defects considered in this study were
at least moderately severe and were important enough for
developers to fix. We were unable to identify a significant



relationship between human-reported severity (or human
time to repair, etc.) and repair success. However, GenProg
was less successful at repairing defects in which humans
touched a large number of files or for which the fault could
not be precisely localized. Qualitative comparison suggests
that GenProg’s repairs are often functionally equivalent to
the human patches, but deemphasize untested non-functional
requirements such as memory usage, readability or maintain-
ability.

Our extensive use of parallelism is novel compared to
previous work (cf. [11, Sec 3.4]) and yields an average return
time of 96 minutes per successful repair. However, if we
continue to search beyond the first repair, GenProg finds
5.8 unique patches per successful repair, which provides
developers more freedom and information. When augmented
with sketching-inspired annotations [23], GenProg repairs
71 of the 105 defects. The remaining 34 presumably require
algorithmic or localization improvements.

Although we report reproducible monetary costs for fixing
a defect once a test case is available, it is difficult to directly
compare our costs to those for human-generated repairs.
Our programs do not report per-issue effort tracking. As
an indirect time comparison, Weiss et al. [24] survey 567
effort-tracked issues in jboss (an open-source Java project
of comparable scale to our subject programs). Their mean
time taken per issue was 15.3 hours with a median of 5.0
hours. As an indirect cost comparison, the Tarsnap.com bug
bounty averaged $21 for each non-trivial repair (Section II).
Similarly, an IBM report gives an average defect cost of
$25 during coding (rising to $100 at build time, $450
during testing/QA, and $16,000 post-release) [25, p.2]. In
personal communication, Robert O’Callahan of Novell, the
lead engineer for the Mozilla Gecko layout engine, noted
that our costs would be “incredibly cheap if it carried over
to our project!” but cautioned that the fix must be the right
one to avoid damaging the long-term health of the code.

We note three potential complexities in cost comparisons.
First, we require test cases that identify the defects. This
is standard practice in some organizations (e.g., at IBM,
testing/QA might prepare test cases for particular bugs that
separate maintenance developers may then use to fix them).
In others (e.g., much open-source development), test case
construction may introduce additional costs. Second, candi-
date patches produced by our technique must be inspected
and validated by developers. While even incorrect tool-
generated patches have been shown to reduce the amount
of time it takes developers to address an issue [26], the
exact reduction amount is unknown. Finally, we note that
human patches are far from perfect: Yin et al. survey 2,000
OS fixes and find that 14–24% are incorrect and 43% of
those bad fixes led to crashes, hangs, corruption, or security
problems [5].

One of the php defects that GenProg successfully repairs
corresponds to a use-after-free vulnerability with an asso-

ciated security CVE.9 The human patch uses intermediate
variables to hold deep copies of the function arguments
such that when one is destroyed, the others are unaffected.
GenProg inserts code that copies the vulnerable argument
an additional time, preserving the relevant values when they
are converted. We note that all three of the bug bounties
surveyed in Section II pay at least $500 for a single security
fix, which exceeds the entire cost of our 105 runs ($403) —
including the one that obtained this security repair.

VI. LIMITATIONS, THREATS TO VALIDITY

An important threat to validity involves whether our
results generalize to other settings (i.e., whether our bench-
marks represent an indicative sample). We attempt to mit-
igate selection bias (i.e., “cherry-picking”) by defining vi-
able subject programs and defects and then including all
matching defects found by an exhaustive search. We ac-
knowledge that our benchmark set is “best effort,” however.
Our requirements limit the scope from which we draw
conclusions. For example, using deterministic bugs leaves
race conditions out of scope, while using only C code leaves
multi-language bugs out of scope. In addition, we only
evaluate on open source software, and thus cannot directly
speak to industrial development. Finally, using checked-in
bugs that trigger checked-in test cases has the advantage
that all bugs considered were of at least moderate priority,
but our technique cannot be applied to bugs without tests.

An orthogonal threat relates to the sensitivity of our
algorithm to GP parameters. We address this issue directly
in previous work [12]. Representation choice and genetic
operators matter more than the particular parameter values
in this setting [27]. For example, increasing the number of
generations has a minimal effect [12, Fig. 2].

VII. RELATED WORK

Automated repair. This work extends our previous
work [12], [11], [13], [14] in several important ways. We
systematically develop a large benchmark set and conduct a
significant study of the technique on two orders of magnitude
more code; propose novel GP representations and operators
to enhance effectiveness and enable scalability; characterize
actual, real-world costs; propose and characterize fix space
as an important consideration in search-based software re-
pair; and explore factors influencing repair success as well
as theoretical and practical limitations.

Clearview [8] uses monitors and instrumentation to flag
erroneous executions, and generate and evaluate candidate
binary patches to address invariant violations. AutoFix-
E [9] leverages contracts present in Eiffel code and abstract
state diagrams to propose semantically sound candidate bug
fixes. AFix [10] uses reports generated by an atomicity-
violation detector to automatically generate patches for

9http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-1148



single-variable atomicity violations. In the space of dynamic
error recovery, Jolt [28] assists in the dynamic detection of
and recovery from infinite loops; Demsky et al. [29] use
run-time monitoring and formal specifications to detect and
repair inconsistent data structures; Smirnov et al. [30], [31]
automatically compile programs with code to detect memory
overflow and generate trace logs, attack signatures, and
proposed patches; and Sidiroglou and Keromytis [32] use
intrusion detection to identify vulnerable memory allocations
and enumerate candidate repair patches.

These approaches address particular defect types via re-
pair strategies or templates enumerated a priori, whereas
GenProg has developed patches for many defect types [14].
Unlike AFix, GenProg is unlikely to repair concurrency
errors, although it can repair deterministic bugs in multi-
threaded programs. Unlike AutoFix-E, GenProg does not
require specifications or annotations. In addition, our eval-
uation includes two orders of magnitude more subject code
than AutoFix-E, two orders of magnitude more test cases
than ClearView, and two orders of magnitude more defects
than AFix, and is strictly larger than these projects and our
own related work on each of these metrics separately.
Debugging assistance. He and Gupta use weakest precon-
ditions to statically debug fully-specified programs written
in a restricted variant of C [33]. BugFix mines user input
and common bug-fix scenarios tracked over a project’s life-
cycle to suggest bug repairs [34]. DebugAdvisor [35] helps
programmers query databases of history, source control, etc,
to identify context or prior issues potentially relevent to a
given bug. BugFix’s user annotations may be useful in repair
scenarios such as the one we evaluate in Section V-C.

Molnar et al. find integer bugs in 1.5 million lines of
code using dynamic test generation. They also evaluate costs
using cloud computing prices, finding (but not fixing) 77
bugs for $2.24 each. A natural next step would be to combine
both approaches to both find and fix defects.
Evolutionary search and GP. Arcuri [36] proposed to use
GP to automatically co-evolve defect repairs and unit test
cases, demonstrating on a hand-coded example of bubble-
sort. However, the work relies on formal specifications,
limiting generalizability and scalability. Orlov and Sipper
have experimented with evolving Java bytecode [37], using
specially designed operators. However, our work is the first
to report substantial experimental results on real defects in
real programs. Recently, Debroy and Wong independently
validated that mutations targeted to probably-faulty state-
ments can repair bugs without human intervention [38].
White et al. use GP to improve non-functional program
properties, particularly execution time [39]. Ackling et al.
recently proposed to encode variants as a list of rewrite rules
and a modification table [15], evaluating on 74 lines of code.
Our patch representation follows this spirit.

Search-Based Software Engineering (SBSE) has applied
evolutionary and related search methods to software con-

cerns such as testing, project management and effort estima-
tion identification of safety violations, and to re-factoring of
large software bases. See Harman [40] for a survey.

VIII. CONCLUSION

We report novel enhancements to GenProg, an automated
program repair technique based on genetic program, which
significantly improve repair success and enable scalability. 10

With new representation, mutation and crossover operators,
GenProg finds 68% more repairs than previous work [11].
These changes enable scalability to bugs in large, open-
source programs while taking advantage of cloud computing
parallelism. We systematically evaluate GenProg on 105 re-
producible defects that developers have previously patched.
Those defects come from 8 programs including 5.1 million
lines of code and 10,193 test cases. This evaluation includes
orders of magnitude more code, test cases, and defects than
related or previous work [9], [8], [10], [11].

Our overall goal is to reduce the costs associated with
defect repair in software maintenance. GenProg requires
test cases and developer validation of candidate repairs, but
reduces the cost of actually generating a code patch. While
these results are only a first step, they have implications for
the future of automated program repair. For example, part
of the high cost of developer turnover may be mitigated by
using the time saved by this technique to write additional
tests, which remain even after developers leave, to guide
future repairs. GenProg could also be used to generate fast,
cheap repairs that serve as temporary bandages and provide
time and direction for developers to find longer-term fixes.

We directly measure the time and monetary cost of our
technique by using public cloud computing resources. Our
105 runs can be reproduced for $403: this can be viewed
as $7.32, and 96 minutes, for each of 55 bug repairs. While
we do not have a quantitative theory that fully explains how
GenProg works, the systematic benchmark suite presented
here will allow us to investigate such issues in the future.
We consider our results to be strongly competitive, and hope
that they will increase interest in this research area.
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