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Chapter I

Evolvable Fuzzy Hardware

for Real-time Embedded

Control in Packet Switching

Ju Hui Li I.1, Meng Hiot Lim I.2 and Qi Cao I.3

In this chapter, we describe a scheme to realize an evolvable fuzzy hardware (EFH) for
real-time packet switching problem. The common challenges of evolvable hardware
(EHW) implementation are issues pertaining to online adaptation, scalability and
termination of evolution [1]. The proposed EFH addresses these issues effectively.
A very interesting advantage of the proposed EFH is that the system performance
can be tuned intuitively through parametric adjustment of the fitness function. This
advantage gives the EFH system a very special property that conventional schedul-
ing methods cannot fulfill easily. For the hardware implementation of the EFH,
real-time fuzzy inference with high-speed context switching capability is necessary.
We address this aspect through implementation based on a context independent
reconfigurable fuzzy inference chip (RFIC).

I.1 Introduction to EHW and EFH

Evolvable hardware (EHW) is a new type of hardware whose architecture can be
evolved to suit the operating environment. In recent years, it has been attracting
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greater attention from researchers. The idea behind EHW is based on evolutionary
algorithm, a methodology to search the solution space to derive the appropriate
hardware architecture. EHW can be classified into extrinsic and intrinsic EHW
based on the scheme of evolution used. Extrinsic EHW relies on a simulated evolu-
tionary process independent of the hardware. It may rely on hardware description
languages (HDL), C or other programming languages to represent the circuit and
then rely on an evolutionary algorithm to evolve the hardware configuration. Only
the elite design is downloaded into the reconfigurable device. Intrinsic evolvability
means that the evolution and evaluation of solutions are carried out at the hardware
level of the EHW system. In principle, intrinsic EHW can modify its own hardware
configuration and behavior autonomously. If the environment changes, the behavior
or architecture will also change to maintain an acceptable level of system perfor-
mance. Currently, there has been great progress made for extrinsic type of EHW
[2, 3, 4, 5, 6, 7].

There are also research works that focused on intrinsic EHW. In some reported
works, the researchers rely on a semi-intrinsic approach. They use software to realize
the evolution part and hardware to carry out evaluation of the derived architecture.
After the evolution process, the best chromosome is implemented in hardware. This
scheme can be called offline adaptive intrinsic EHW. Most of the works on intrinsic
EHW up to now can be found in [8, 9, 10]. This type of EHW generally has some
advantages over extrinsic EHW. Since it carries out the evaluation in hardware,
the evaluation process is very fast, and the performance of the elite is not affected
by error in the simulation model. Intrinsic EHW is useful for applications that
require online and real-time system reconfiguration. However, the implementation
of intrinsic EHW still poses significant challenges for such promising areas.

From the perspective of evolution granularity, current EHW can be classified
into three types: transistor level, gate level and function level. Among the three,
the transistor level represents the lowest level of evolution granularity. This gives the
greatest flexibility because transistors are the smallest components of any circuit.
Gate level EHW means that logic gates are the smallest configurable components of
the EHW [11, 12, 13, 14, 15, 16, 17]. Functional level EHW carries out the evolution
of macro units (adder, multiplier, sine, cosine, etc.) implemented on a special type of
FPGA [2, 18, 19]. There are many functional processing units (FPU) in the FPGA
chip. Each FPU can be configured to perform one of the high-level functions such as
addition, subtraction, multiplication, division, sine and cosine. The functions and
connections of FPUs are configured based on the elite chromosome. Most of the
EHW reported can be categorized into one of these three levels. The limitations of
these forms of EHW imply that evolutions can only be done extrinsically or in some
instances, intrinsically but in an offline adaptive manner.

For the implementation of intrinsic evolvable and online adaptive EHW, there
are three main open issues that need to be addressed [1]. These issues are briefly
outlined below.
Online adaptation: This means that the system hardware is required to adapt dur-
ing the normal operation. Online adaptation is very hard to realize because the
system has to reconfigure the hardware for every chromosome in order to carry out
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the evaluation. Some chromosomes may inevitably result in very poor performance.
If these chromosomes are evaluated by reconfiguring the hardware, they may poten-
tially result in some damages or disastrous outcome.
Scalability : This refers to the extensibility of the scheme to handle more complex
architecture or configurations. For a typical EHW, the chromosome length may be
hundreds or even thousands of genes for a complicated system. The search space
represented by a chromosome may be very big. Hence the search by the genetic
algorithms (GA) for a good solution in such a big solution space may take a very
long time.
Termination of evolution: Termination pertains to criteria or conditions for stop-
ping the evolution process. For example, one commonly used criterion is the number
of runs. With a GA scheme, there is no guarantee as to the number of runs required
before a desirable solution can be found. This can be a significant drawback for
real-time operation.

In order to perform online adaptive and intrinsic evolvable hardware, we pro-
pose a new form of EHW that is referred to as evolvable fuzzy hardware (EFH).
EFH can be viewed as a form of evolvable fuzzy system (EFS) whereby the fuzzy
inference system is implemented in hardware to deliver real-time inference through-
put. Furthermore, the domain knowledge of the fuzzy system should be able to
support online real-time reconfiguration. EFH can overcome the disadvantages of
the other three EHWs described earlier and is amenable to intrinsic evolution and
online adaptation. Earlier in [20], we proposed EFS for ATM cell scheduling. In
that system, the EFS searches for an appropriate fuzzy rule set to carry out the
scheduling task on dynamically changing cell flows. The evolutionary search pro-
cess does not cause any interruption in the system operation. After a good fuzzy
rule set is found, the old one is replaced immediately. From simulation results, it
was shown that EFS is capable of dynamic real-time adaptation to deliver robust
performance. To further support our work, we have also proposed a reconfigurable
fuzzy inference chip (RFIC) whereby the context can be changed or reconfigured
online [21]. By combining the advantages of the EFS and RFIC, we demonstrate in
this work how intrinsic evolvable and online adaptive EFH can be implemented.

In Section 2, we introduce the real-time packet switching problem, an application
for demonstrating the viability of the EFH. In Section 3, we describe specifically how
the implementation challenges of the intrinsic EFH are addressed. In Section 4, we
describe the detailed formulation of the fitness function adopted in our EFH. In
Section 5, we present the simulation results of applying EFH to solve the real-time
problem. Certain desirable properties of the EFH in dealing with the real-time
problem are also discussed in this section. In Section 6, we outline details on how
the EFH can be implemented from a system’s perspective. Finally, we offer some
concluding remarks for our work on EFH.

I.2 Packet switching

Packet switching is a backbone of modern communication networks. Because of the
characteristics of the various services supported by the network, the management of
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the bandwidth resources is very critical. The multiplexer is an important component
used to administer the sharing of bandwidth among different cell flows. It is mainly
employed to provide a means of sharing high-speed link for network terminations
or network inter-nodes. Time division scheme is adopted in the multiplexer. The
output link can be divided into different time slots. At anytime, only one input flow
is accorded the priority of sending packets through the output channel. The simpli-
fied block architecture of the multiplexer is as shown in Figure I.1. For illustration,
we classify the services into two types, class1 and class2. In the block diagram,
BUF1 and BUF2 refer to buffers for class1 and class2 respectively. MP represents
the time division multiplexing system for transmitting packets through the OUT
channel. The switching control block is a part of the hardware that handles cell
scheduling. When the OUT channel is available, the switching control block decides
on which cell flow to be sent.

For packet switching, class1 can be a form of CBR (Constant Bit Rate) traffic,
rt-VBR (real-time Variable Bit Rate) or both. The class2 traffic type may refer to
nrt-VBR (non-real-time Variable Bit Rate), UBR (Unspecified Bit Rate) or ABR
(Available Bit Rate) [22]. While class1 type is delay sensitive, class2 is considered
to be not sensitive to delay. These two sources of cell flow must be multiplexed on
the output channel (OUT) by the MP unit through time division. The capacities
of OUT and the input channels are fixed. In this problem, the QoS (Quality of
Service) of the system can be evaluated by class1 cell delay, class2 cell loss and the
balance between class1 cell loss and class2 cell loss. The ideal case is that class1 cell
delay and class2 cell loss are very small and there is also a good balance established
between class1 cell loss and class2 cell loss.

The application of EHW in ATM cell scheduling has been reported in Liu et. al
[2, 3]. In their works, the authors presented schemes of functional EHW to solve the
problem of cell scheduling. The functional EHW system successfully achieved a cir-
cuit that had service performance similar to that of traditional scheduling schemes.
However, the scheme has some significant limitations, hence not suitable for practical
applications. The main limitation of the system is its inability to evolve intrinsi-
cally. Another limitation is that the system had to rely on an external computation
platform to carry out evolutionary process due to its large search space. Finally,
the system faces the limitation of being trained and tested only on fixed cell flow
patterns. In a practical system, the cell flows can change dramatically. There was
no effective scheme in this system to adjust the system along with the changing cell
flows.

I.3 Solutions for open issues

In order to solve the packet scheduling problem, we design the system architecture,
incorporating evolutionary mechanisms as in Figure I.2. In this system, the training
buffers TB1 and TB2 are used to store class1 and class2 cells respectively. The size
of TB1 and TB2 is at least 2 or 3 times that of BUF1 and BUF2. When either TB1

or TB2 is full, the evolutionary process is triggered. Fitness evaluation is carried
out by subjecting each chromosome to the scheduling model according to the cell
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flow stored in TB1 and TB2. The purpose of the scheduling model is to emulate
the function of the multiplexer as in Figure I.1. After a specified number of cycles

S
w
i
t
c
h
i
n
g
 
C
o
n
t
r
o
l


M
P


B
U
F
1


B
U
F
2


c
l
a
s
s
1


c
l
a
s
s
2
 O
U
T


Figure I.1. Multiplexer scheme

and generations, if a chromosome that corresponds to a system rule set is better
than the working chromosome, the working chromosome is replaced immediately.
In order to prevent the search procedure from being trapped in a local region, after
a pre-specified number of generations, the whole evolutionary process is restarted,
from the point where the initial population is generated. This is essentially the start
of a new evolution cycle. Functionally, the scheduling model emulates the packet
switching to derive the cell delay and cell loss parameters. This is achieved by
a multiplexer model within the scheduling model block. The derived parameters
enable the fitness value to be calculated using the fitness function. Basically, the
evolution module evolves the appropriate rule set by interacting with the scheduling
model to evaluate the fitness of each evolved fuzzy rule set. When evolution is
triggered, it works in the background while the MP unit is in operation. With EFH,
the fuzzy inference circuit is a very important component and it directly affects the
speed of the system’s response to the changes in cell flow. Two high-speed fuzzy
inference components are required. One is in the scheduling model and another is
the RFIC block performing cell scheduling control.

During evolution, it is inevitable that poor quality chromosomes i.e., chromo-
somes that result in poor switching performance, are also evaluated. To avoid the
possibility of detrimental effects on the system performance by these chromosomes,
the scheduling model is incorporated in Figure I.2 to emulate the cell scheduling
process. This allows for evaluation of the evolved chromosomes in the background.
After the evolution process, only the final fuzzy rule set will be configured in the
RFIC block. In this way, we address the first major open issue of the intrinsic EHW.

In order to achieve online adaptation and intrinsic evolution for real-time control,
another issue that can be regarded as a sub-problem of online adaptation and intrin-
sic evolution, must also be addressed. During evolution, training data are required.
In [2], the EHW system uses the same data for training and testing. This scheme
can work well in applications when the real time data do not change dramatically.
But if the application scenario is significantly different from the training situation,
the system may not perform very well. This indicates that extensive data samples
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Figure I.2. Adaptation framework for EFH

are necessary for such an evolution scheme. If the real-time data change dramat-
ically, it is not practical to incorporate diversely representative real data samples
to train the system. For many real-time control areas, we believe that there is no
need to do so. In fact, we can apply the principle of “locality” to substantiate this
belief. For example, in computer operating system, the design of the cache memory
system is based on this principle. Accordingly in computer operating system, if a
program is accessing a certain part of the memory, then there is a great likelihood
that the program will also access the part of the memory within the same locality in
the next time period. In our EFH, we contend that there is a very high probability
that the data model within a small time window is the same as the model of data
samples in the previous time window. The locality proposition is valid if we assume
that the time window is small enough. For the CBR flow, since the cell rate is
constant [22, 23], the cell rate at any particular time period is the same as that of
the preceding time period. For VBR flow, which can be described by a two-phase
burst/silence model [2, 24, 25, 26, 27], cells can be sent equidistantly during the
burst period and no cells are transmitted during the silence period. The cell rate
during the burst period can be approximated based on the principle of “locality”.
But at the edge of the burst period and the silence period or vice versa, significant
error may occur. This kind of prediction error can be tolerated if the time window
is sufficiently small. Based on this justification, we can train the system using the
previous data flow to approximate the expected data model of the subsequent time
period. The smaller the time window, the more flexible the EFH adapts to the cell
flow. The best chromosome after an evolution process will be used to do scheduling
in the next time period.

To address the scalability issue, we adopt an evolutionary granularity at the
fuzzy rule level. In the EFH for packet switching, a chromosome can be represented
as a string of 25 integers. Each gene of a chromosome represents a fuzzy rule. For
this scheme, the search space is not too big compared to the search space in [2, 9],
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in which each chromosome is represented by a string comprising of hundreds of
integers or thousands of bits. The evolution time in the EFH is thus manageable.
The third issue to address is the termination of evolution. In many EHW systems,
the evolution system may require thousands of generations to get close to an optimal
chromosome. The extent of evolution time may limit the applicability of the system
for real-time application. In [2], in order to get a good functional EHW to do ATM
cell scheduling, the system evolved for 2500 generations with a population size of
400. In [9], in order to derive a circuit with Gaussian output voltage characteristic,
the evolvable hardware system has to evolve 10000 generations. The time scale
for evolution in these reported works is not appropriate if used in real-time intrinsic
EHW control system. For comparison, in the proposed EFH, a very small population
size and small number of the generations are important features of the evolutionary
process. In order to prevent the system from adopting a very poor performing fuzzy
rule set, we defined a core rule set in the system derived based on the analysis of
the problem through human intuition. The core rule set is also used as the startup
rule set. If the EFH system is not able to find a chromosome that is better than
the core rule set within a fixed number of generations, the core rule set is adopted.
The appropriate number of generations for each evolutionary cycle is determined
through experimentation. The objective of the evolution is to get a fuzzy rule set
better than the working chromosome for the cell flow of the following time period.
Even if the derived fuzzy rule set is not optimal, it is deemed to be sufficient. By
adopting this idea, the criterion for the termination of evolution can be satisfactorily
managed.

I.4 Evolution scheme

To carry out evolution, GA manipulates a population of chromosomes. These chro-
mosomes are solution representations denoting the application domain fuzzy rule
sets,when decoded. In the rest of this section, we will first introduce the fuzzy sys-
tem and its coding scheme. Then we will describe the inference scheme and the
fitness function of this system.

I.4.1 Genetic coding

A fuzzy system can be formally defined as an application or system, which employs
a fuzzy control algorithm. In general, the fuzzy control algorithm refers to a set of
if-then rules with linguistic values and fuzzy variables. The values are specified as
fuzzy concepts defined by membership functions. Fuzzy system implicitly means a
set of rules and membership functions.

Suppose a fuzzy system has q input variables x1, x2, . . ., xq and single output
control variable y, a typical rule for the fuzzy system will be “if < x1 is A1 > and
< x2 is A2 > . . . and < xq is Aq > then < y is D >”. A1, A2, . . ., Aq and D are fuzzy
concepts or linguistic values. Usually, the development of a fuzzy system involves
specifying a finite set of labels to represent the linguistic values for describing each
of the variables. If the number of labels for the input variables x1, x2, . . ., xq are
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ξ1, ξ2, . . ., ξq respectively, then the number of rules that one can declare will be
ξ1× ξ2× . . . ×ξq. We refer to this as the maximum or exhaustive rule set. An n-rule
fuzzy system would therefore refer to a system with n being less than or equal to
ξ1 × ξ2× . . . ×ξq. This is refered to as an n-rule constrained fuzzy system or simply
an n-rule fuzzy system [28, 29, 30].

To begin with, we define two symbols for the inputs, c1 and c2. The symbol c1

refers to the status of class1 cell flow, which is a function of V 1 and V max. V1 is
the current cell rate of class1 cell flow while Vmax is the line capacity. The symbol
c2 refers to the buffer status of BUF2. It is a function of L2 and Lmax. L2 is the
number of empty units in BUF2 while Lmax is the length of BUF2. For c1 and c2,
the memberships are characterized by the term set {VS, S, M, L, VL} as depicted in
Figure I.3. These are standard triangular membership functions. The output SEL
of the fuzzy switching control block (see Figure I.2) is characterized by the term
set {T, F}. Both T and F are singletons, or fuzzy sets with impluse membership
functions as shown in Figure I.4. Functionally, a T or true means that the MP unit
allocates time slots to cater for the class1 cell flow in BUF1. An output F or false
implies that switching is reverted to cells in BUF2.

V
S


S


M


L


V
L


0
 0
.
2
5
 0
.
5
 0
.
7
5
 1


v
e
r
y
_
s
m
a
l
l
V
S

S
 s
m
a
l
l

M
 m
e
d
i
u
m

L
 l
a
r
g
e

V
L
 v
e
r
y
_
l
a
r
g
e


1


Figure I.3. Membership functions for c1 and c2
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Figure I.4. Membership functions for T and F

Based on the above characterization of the switching network, it is possible
to define the n-rule heuristics to control the switching behavior. With the fuzzy
memberships defined, one can rely on intuitive logic to define the necessary input-
output mappings as shown in Table I.1. The 25-rule system serves as the default
cell scheduling algorithm on system startup. We refer to this rule set as the core
rule set.

A fuzzy rule set can be represented as a string of integers. For example, the
genetic code for the 25-rule system in Table I.1 can be described by the string
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”2221122111221112111111111”. The allelic code 1 and 2 correspond to the labels
true and false respectively. The position of the gene in the string identifies a specific
rule in Table I.1 when interpreted accordingly in a row wise manner. If the value
of a gene is 0, it means that there is no specific fuzzy rule defined for the corre-
sponding input condition. The core rule set not only serves as the startup rule set,
but also provides a means to benchmark the performance during the evolution of
chromosomes. This scheme guarantees that the performance of the system is better
than or at least comparable to that of the core rule set.

Table I.1. A 25-rule fuzzy system for ATM cell scheduling

Fuzzy Variables
c1

VS S M L VL

c2

VS F F F T T

S F F T T T

M F F T T T

L F T T T T

VL T T T T T

I.4.2 Inference scheme

Each entry in Table I.1 can be interpreted as a statement of the form ”if antecedent1
and antecedent2 then conclusion”. The antecedent# represents the fuzzy conditions
for c1 or c2, characterized over the term set {V S, S, M , L, V L}. The conclusion

can be T or F . The degree of firing for each fuzzy rule is taken as the minimum
of the degrees of matching between the inputs c1 and c2 and the antecedents. The
aggregation is carried out by averaging the fuzzy conclusions derived from all the
rules.

Although we have shown a 25-rule system, for this evolvable system, the number
of the fuzzy rules can vary between 0 and 25. In order to manage the evolution time
and reduce the search space, we can fix the size of the rule set to be less than 25
as in [29], so that the evolution time can be managed. This is because the search
space for a reduced rule set is more manageable and hence the evolution efficiency
can be significantly improved.

I.4.3 Fitness function

According to the specifications of the problem, the capacity of the output channel is
fixed. This implies that no further adjustment on the output capacity can be made
to cater for fluctuations in demand. If the bandwidth is not big enough to meet
the demand of the two cell flows, servicing class1 cell would mean filling up the
class2 buffer and eventually resulting in cell loss for class2. Hence for a specified
requirement on the level of cell delay for class1, a certain expected level of class2 cell
loss is inevitable. In other words, the class2 cell loss is constrained by the desired
level of class1 cell delay that the system is trying to achieve.
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There is one main consideration in formulating the fitness function for the EFH.
This pertains to the class1 average cell delay. From the above discussion, it is
apparent that the level of class2 cell loss is negatively correlated to the average
class1 cell delay. Adjusting class1 cell delay will adversely affect the class2 cell loss.
Based on these justifications, the fitness function can be described explicitly as in
Eq.I.1.

F = κ − |AveDelay − λ × DelayFactor| (I.1)

In Eq.I.1, κ is a very large numerical constant. It is used to adjust the range of
fitness values such that F is proportional to the fitness measure of the chromosome.
The larger the fitness value, the fitter the chromosome. AveDelay is the average
delay of class1 cell units after all the cells in TB1 have been processed. DelayFactor

is a constant used as a reference for scaling the value of λ based on the desired class1

cell delay. λ is an adjustable coefficient to denote the desired level of average cell
delay for class1 cell units stored in TB1. In general, the system tries to search for
a chromosome with minimum |AveDelay − λ × DelayFactor|. Both the AveDelay

and DelayFactor in Eq.I.1 can be determined from Eq.I.2 and Eq.I.3 respectively.

AveDelay =
1

τ
×

∑τ
i=1 m(i) (I.2)

DelayFactor = ρ × υ (I.3)

In Eq.I.2, m(i) is the waiting time of the ith cell in TB1 before being sent out. τ is
a variable denoting the number of class1 cell units in TB1 sent during evaluation.
∑τ

i=1 m(i) is the sum of the cell delay of the cell units in TB1. In Eq.I.3, ρ is
a constant corresponding to the time required to send a cell through the output
channel. The value of ρ depends on the bandwidth capacity of the output channel.
The symbol υ denotes the size of TB#. With Eq.I.3, a reference value for the
possible delay of class1 cell units can be determined.

I.5 Simulation

In order to demonstrate the viability of the EFH scheme, we carried out simulations
of EFH in cell scheduling on two different scenarios. In the simulation, we assume
the capacity of the output channel (OUT) and the input channels to be 155.52MHz.
The two cell flows are as shown in Figure I.5.

For scenario1, class1 is the CBR cell flow with cell bit rate of 155.52MHz. class2

is VBR cell flow, also with a cell bit rate of 155.52MHz. The difference is that the
VBR specified has a 2ms ON time period and a 2ms OFF time period. This scenario
is a very extreme case used to test the system’s controllability. In order to simulate
the system performance on a more realistic cell flow, we can adopt scenario2. For
scenario2, class1 refers to CBR cell flow with a cell bit rate of 100MHz. class2 is
VBR cell flow with unknown random cell bit rate. The minimum cell bit rate for
VBR is 55.52MHz while the maximum is 155.52MHz. In these two scenarios, since
the sum of the CBR and VBR cell rate is larger than the OUT channel’s capacity,
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Figure I.5. Two classes of cell flows

cell loss is unavoidable. From a practical point of view, the second scenario is more
likely compared to the first scenario.

The simulation results are compared with the results of first-in first-out (FIFO)
and dynamically weighted priority scheduling (DWPS) [24]. FIFO is a very tradi-
tional scheduling method. It schedules the cell flows based on the arrival time of the
packets. FIFO can achieve very good balance between class1 cell loss and class2

loss, but it is very bad in terms of class1 cell delay performance. DWPS is a very
good algorithm for cell scheduling. It adjusts the priority according to the cell flow
scenarios. But the adaptation scheme of DWPS is not very efficient if the cell flow
changes dramatically. DWPS can be described by Eq.I.4. In Eq.I.4, υi is the fixed
priority for different cell flow inputs, a lower value indicates a higher priority. Ti(t)
is the waiting time of the oldest packet in the buffer of the ith channel. Qi is the
priority index associated with each cell. The lower the value, the higher the priority.
γ is an emphasis parameter and the recommended value is 0.9.

Qi =
υi

[Ti(t)]γ
(I.4)

I.5.1 Simulation results

For the simulation, the size of BUF1 and BUF2 is 100 cells, and the size of TB1 and
TB2 is 300 cells. In the fitness function, λ is 0.35. All the simulations are carried
out by using a C++ program. The setting for the parameters of the evolutionary
algorithm is as follows:

• population size=10;
• elite pool size=2;
• crossover probability=0.6;
• mutation probability=0.05;
• number of generation=9;
• number of evolutionary cycle=2.

We simulated each scheduling scheme for cell flows lasting 2 seconds. Figure I.6
and I.7 are the simulation results of FIFO, DWPS and EFH schemes on scenario1.
Figure I.8 and I.9 are simulation results for FIFO, DWPS and EFH schemes on
scenario2. The simulation results demonstrate the viability of the evolution scheme
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and that EFH can fulfill the cell scheduling task. For scenario1, EFH can achieve
lower class1 cell delay than FIFO and DWPS. The balance of class1 and class2

cell loss by using these three methods is acceptable. None of the schemes show
significant bias towards any of the two cell flows. For scenario2, the situation is
quite different. EFH can still achieve lower class1 cell delay with an acceptable
balance between class1 cell loss and class2 cell loss. The class1 cell delay by using
DWPS is higher than that of EFH and the balance between the class1 cell loss and
the class2 cell loss is not good. So according to the quality factors as discussed in
Section I.2, EFH can control the cell scheduling better than FIFO and DWPS when
the cell flow changes dramatically.
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Figure I.6. Cell delay for class1 and class2 in scenario1

I.5.2 Tunability of EFH

One advantageous property of EFH is that the system performance can be adjusted
very intuitively by decreasing or increasing the value of λ in Eq.I.1. The smaller
the value, the smaller the class1 cell delay. This property cannot be achieved con-
veniently using traditional scheduling methods. As in the above, the tunability of
EFH is demonstrated by simulation results on scenario1 and scenario2.

The results of the simulation with different values of λ for scenario1 and sce-
nario2 are as shown in Figure I.10, I.11, I.12 and I.13. In Figure I.10 and I.11, when
λ is 0.4, the class1 cell delay and class1 cell loss are very small. Accordingly, the
class2 cell delay and cell loss are significant. If good balance of class1 cell loss and
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Figure I.7. Cell loss for class1 and class2 in scenario1
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Figure I.8. Cell delay for class1 and class2 in scenario2
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Figure I.9. Cell loss for class1 and class2 in scenario2

class2 cell loss is desired, a bigger value can be assigned to λ. In Figure I.10 and
I.11, both the class1 cell loss and class2 cell loss are moderate when λ is 0.6. For
situations where QoS for class2 needs to be significantly emphasized, the value of
λ can be increased. The larger the value for λ, the better the QoS for class2. For
example, it is clear from the plots in Figure I.10 and I.11 that λ=0.8 offers good
QoS for class2.

For the simulation results in Figure I.12 and I.13 on scenario2, the same conclu-
sion can also be derived. In principle, class1 cell delay can be adjusted in the range
from 0 to ρ×υ if λ is between 0 and 1. This means that class1 cell delay has a very
wide range of tunability. It further implies that class1 cell loss and class2 cell loss
are also tunable to a wide range. According to the fitness function, the acceptable
level of class1 cell delay can be decided based on the value of λ. On the other hand,
if one can decide on the satisfactory class1 cell delay to be achieved, the value of λ

can also be approximated.

I.6 Hardware implementation

According to the evolution scheme described by Figure I.2 in Section I.4, the chro-
mosomes need to be evaluated within a very short time period for each evolution. If
the whole evolution process can be completed within the time it takes to send one
cell packet through the OUT channel, and a good fuzzy rule set can be found dur-
ing this time period, the system will enjoy the greatest flexibility in adapting to the
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changing environment. On the whole, the performance of the system is very much
dictated by the quality of the rule set being applied. Each rule set instance is referred
to as a context, and is applicable to the current scenario of the operating environ-
ment. As context changes, the fuzzy inference circuit is required to accommodate
the new context without incurring significant overhead for setup. This implies that
a reconfigurable high-speed fuzzy inference circuit is very critical in EFH. In order
to achieve fast fuzzy inference and at the same time accommodate real-time online
context updating, we have proposed a hardware scheme for fuzzy inference called
reconfigurable fuzzy inference chip (RFIC) [21].

The novelty of the RFIC lies in its ability to accommodate an online context
change without interrupting the system operation. The block architecture of RFIC
is as shown in Figure I.14. The main component is the FIM (fuzzy inference map)
block. It adopts an implicit inference approach to deliver high inference speed for
applications with dynamically changing contexts. The current applicable context
is managed by the CMU (context management unit). It stores the working fuzzy
context and generates control signals such as Ena<x,y> and Sel<x,y> for the FIM.
AEM (address encoding mechanism) is the module that generates the address to
access the FIM partition blocks activated by the Ena<x,y> signals. The OAM (output
aggregation mechanism) is the dedicated circuit for fuzzy inference aggregation.

The proposed EFH system for cell scheduling is able to accommodate fuzzy rule
sets of up to 25 fuzzy rules. Hence, the FIM block incorporates 25 PBs (partition
blocks); PB<1,1>, PB<1,2> . . . PB<5,5>. Each PB is a mapping that accommodates
all the input situations with specific outputs. The mapping for each PB is created
based on a software fuzzy inference model. To illustrate the basic structure and
format of each PB, we can assume that the inputs and the membership functions
are digitized to 5 bits. A sample of the mapping data for PB<1,1> is presented
in Table I.2 for illustration. The left column of the table lists the addresses. The
whole address string is composed of three parts, i.e., the digitized values of Input1,
Input2 and Sel<1,1>. The data are made up of two parts. The most significant bit
is the fuzzy conclusion bit indicating T or F . The other bits represent the degree
of firing for the corresponding fuzzy rule. For example, refering to the first memory
unit in Table I.2, where both Input1 and Input2 equal to “00000”, the degree of
matching to the membership function VS is “11111”. So the corresponding datum
in the location is “0,11111”. Its first bit “0” represents the fuzzy conclusion T and
the other bits “11111” is the firing strength.

CMU stores the current application context and generates Ena<x,y> and Sel<x,y>

signals. For the application described, the size of the context register required is
50 bits. Each two-bit datum in the register represents a fuzzy rule. The position
of each two-bit datum in the 50-bit string identifies the specific rule of the context.
A “01” means the fuzzy conclusion is T and “10” indicates the fuzzy conclusion is
F . A “00” means that there is no fuzzy rule for the corresponding input situation.
Each Ena<x,y> signal can be generated by applying the logical OR operation to
the corresponding two bits. A value of “1” for Ena<x,y> indicates that PB<x,y>

is enabled, which otherwise is disabled. Sel<x,y> also depends on the specific two
bits and is connected to PB<x,y> separately. A “01” generates a “0” for Sel<x,y>
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and “10” produces a “1”. The circuit for OAM is as shown in Figure I.15. It is
made up of Ave 2 blocks and Ave 3 block. In this circuit, the most significant bit
of each datum shown in Table I.2 involve in the aggregration operation is a sign bit.
The output has 5 more bits than the input data in order to preserve calculation
precision. The control output is derived from the sign bit, i.e, the most significant
bit of the OAM output. A positive value indicates that the inference conclusion is
T and a negative means the conclusion is F .

Table I.2. FIM content in PB<1,1>

Address Data

00000,00000,0 0,11111

00000,00000,1 1,11111

00000,00001,0 0,11011

00000,00001,1 1,11011

00000,00010,0 0,10111

00000,00010,1 1,10111

.

.

.

.

.

.

00001,00000,0 0,11011

00001,00000,1 1,11011

.

.

.

.

.

.

00111,00111,0 0,00111

00111,00111,1 1,00111

I.7 Conclusions

There are several challenges to the application of evolvable hardware for solving time
critical problems. We highlighted three issues, namely online adaptation, scalabil-
ity as well as termination of evolution. To realize EHW capable of intrinsic online
evolution, these issues have to be considered. In this chapter, we proposed the
EFH scheme, a form of EHW whereby the fuzzy inference scheme is carried out in
hardware to achieve real-time operation. The scheme allows for updating of online
context and domain rules and further incorporating mechanisms to evolve a context
appropriate for the application scenario. In order to demonstrate the viability of our
proposed EFH, we simulated the control performance of the EFH in cell schedul-
ing and compared the results with some traditional scheduling methods. From the
simulation results, it can be seen that the EFH is capable of dealing with changing
cell flows much better than the traditional methods. Another significant advantage
of the EFH is tunability. This was also analyzed based on the simulation results.

18



I.7. CONCLUSIONS

C
M
U


F
I
M
 O
A
M

A
E
M


I
n
p
u
t
1
[
0
:
4
]


I
n
p
u
t
2
[
0
:
4
]


F
u
z
z
y
_
O
U
T


D
<
1
,
1
>
[
0
:
5
]


D
<
1
,
2
>
[
0
:
5
]


D
<
5
,
4
>
[
0
:
5
]


D
<
5
,
5
>
[
0
:
5
]


S
e
l
<
1
,
1
>


S
e
l
<
1
,
2
>


S
e
l
<
1
,
3
>


S
e
l
<
5
,
5
>


.
.
.


.
.
.



.
.
.



E
n
a
<
1
,
1
>
 E
n
a
<
1
,
2
>
 E
n
a
<
5
,
5
>
.
.
.


A
d
d
r
[
0
:
9
]

P
B
<
1
,
1
>


P
B
<
1
,
2
>


P
B
<
1
,
3
>


P
B
<
5
,
5
>


.
.
.


Figure I.14. Block architecture of RFIC
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Figure I.15. The hardware architecture of OAM
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Based on analysis of the simulation results, the EFH possesses significant advantages
over conventional scheduling methods. To implement the EFH, we described the
hardware implementation based on a context switchable RFIC to achieve real-time
high-speed fuzzy inferencing and high-speed context updating. By combining this
hardware scheme and the evolution scheme, an online adaptive and intrinsic evolv-
able EFH can be potentially realized using system-on-chip technology. Although we
demonstrated the application of EFH on packet switching, the application of EFH
is not limited to this. Some real-time control problems such as packet control in
parallel computer, token control in data flow machine, cell flow control in future
communication networks are potentially suitable application areas.
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