
Evolutionary Strategies for the Design of Binary
Linear Codes

Claude Carlet1,2, Luca Mariot3, Luca Manzoni 4, and Stjepan Picek5

1 Department of Mathematics, Université Paris 8
2 Rue de la Liberté, 93526 Saint-Denis Cedex, France

2 University of Bergen, Bergen, Norway
claude.carlet@gmail.com

3 Semantics, Cybersecurity & Services Group, University of Twente
Drienerlolaan 5, 7522 NB, Enschede, The Netherlands

l.mariot@utwente.nl
4 Department of Mathematics and Geosciences, University of Trieste

Via Valerio 12/1, Trieste, Italy
lmanzoni@units.it

5 Digital Security Group, Radboud University
PO Box 9010, Nijmegen, The Netherlands

stjepan.picek@ru.nl

Abstract. The design of binary error-correcting codes is a challenging
optimization problem with several applications in telecommunications and
storage, which has also been addressed with metaheuristic techniques and
evolutionary algorithms. Still, all these efforts focused on optimizing the
minimum distance of unrestricted binary codes, i.e., with no constraints on
their linearity, which is a desirable property for efficient implementations.
In this paper, we present an Evolutionary Strategy (ES) algorithm that
explores only the subset of linear codes of a fixed length and dimension.
To that end, we represent the candidate solutions as binary matrices and
devise variation operators that preserve their ranks. Our experiments
show that up to length n = 14, our ES always converges to an optimal
solution with a full success rate, and the evolved codes are all inequivalent
to the Best-Known Linear Code (BKLC) given by MAGMA. On the
other hand, for larger lengths, both the success rate of the ES, as well as
the diversity of the evolved codes, start to drop, with the extreme case of
(16, 8, 5) codes which all turn out to be equivalent to MAGMA’s BKLC.

Keywords: Error-Correcting Codes · Boolean Functions · Algebraic Normal
Form · Evolutionary Strategies · Variation Operators

1 Introduction

A central problem in information theory is the transmission of messages over
noisy channels. To this end, error-correcting codes are usually employed to add
redundancy to a message before sending it over a channel. A common setting is

2 C. Carlet et al.

to consider messages over the binary alphabet F2 = {0, 1}, under the hypothesis
of a binary symmetric channel [1]. To be useful in practice, a binary code must
have the following properties: (a) a high minimum Hamming distance, (b) a high
number of codewords, and (c) an efficient decoding algorithm. While (a) and (b)
induce a direct trade-off, property (c) is usually addressed by requiring that the
code is linear, i.e., that it forms a k-dimensional subspace of Fn

2 .

The design of a good binary code is a combinatorial optimization problem
where the objective is to maximize the minimum distance of a set of codewords,
and it is equivalent to finding a maximum clique in a graph [2]. Several optimiza-
tion algorithms have been applied to solve this problem, including evolutionary
algorithms [3–6] and other metaheuristics [5,7–10]. Most of these works target the
construction of unrestricted binary codes without any linearity requirement. The
only exception is [4], where genetic algorithms are used to evolve the generator
matrices of linear codes, but without preserving their ranks; thus, the dimension
of the evolved codes can vary.

In this paper, we propose for the first time an Evolutionary Strategy (ES)
algorithm for the design of binary linear codes with the best possible minimum
distance d for a given combination of length n and dimension k. We adopt a
combinatorial representation that allows the ES to explore only the set of k-
dimensional subspaces of Fn

2 . The ES encodes a candidate solution as a k × n
binary generator matrix of full rank k. On account of a recent result proved in [11],
the fitness of a matrix is evaluated as the number of monomials of degree less
than d in the Algebraic Normal Form (ANF) of the indicator Boolean function of
the linear code. Next, for the variation operators, we consider both a classical ES
using only mutation and a variant combining mutation and crossover. Both types
of operators are designed so that the rank of the offspring matrices is preserved.

We evaluate experimentally our approach over five different instances of linear
codes for lengths ranging from n = 12 to n = 16 and dimension set to k = ⌊n

2 ⌋,
seeking to reach the bounds on the minimum distance reported in [12]. We test
four different versions of our ES algorithm, depending on the replacement strategy
(either (µ, λ) or (µ+ λ)) and whether the crossover is applied or not. All variants
achieve a full success rate up to length n = 14. Somewhat surprisingly, for the
larger instances n = 15 and n = 16, the simple (µ, λ) without crossover scores the
best performance. Indeed, we observe that the average fitness and distance of the
population in the (µ+ λ) variants quickly converge to a highly fit, low-diversity
area of the search space.

Finally, we investigate the diversity of the codes evolved by our ES algorithm
up to isomorphism. In particular, we test how many of our codes are inequivalent
to the Best-Known Linear Code (BKLC) constructed through the MAGMA com-
puter algebra system, and we group them into equivalence classes. Interestingly,
for lengths up to n = 14, all codes turn out to be inequivalent to MAGMA’s
BKLC, and they belong to a high number of equivalence classes. The situation
is, however, reversed for the larger instances: while for n = 15, there is still a
good proportion of inequivalent codes, for n = 16, all codes are equivalent to
MAGMA’s BKLC. Therefore, our ES essentially converges to the same solution.

Designing binary codes 3

2 Background

In this section, we cover all background information related to binary linear codes
and Boolean functions that we will use in the paper. The treatment is far from
exhaustive, and we refer the reader to [1,13] and [14] for a more complete survey
of the main results on error-correcting codes and Boolean functions, respectively.

2.1 Binary Linear Codes

Let F2 = {0, 1} denote the finite field with two elements. For any n ∈ N, the
n-dimensional vector space over F2 is denoted by Fn

2 , where the sum of two
vectors x, y ∈ Fn

2 corresponds to their bitwise XOR, while the multiplication of
x by a scalar a ∈ F2 is defined as the logical AND of a with each coordinate
of x. The Hamming distance dH(x, y) of two vectors x, y ∈ Fn

2 is the number of
coordinates where x and y disagree. Given x ∈ Fn

2 , the Hamming weight of x is
the number of its nonzero coordinates, or equivalently the Hamming distance
dH(x, 0) between x and the null vector 0.

A binary code of length n is any subset C of Fn
2 . The elements of C are also

called codewords, and the size of C is usually denoted by M . The minimum
distance d of C is the minimum Hamming distance between any two codewords
x, y ∈ C. One of the main problems in coding theory is to determine what is the
maximum number of codewords A(n, d) that a code C of length n and minimum
distance d can have. Several theoretical bounds exist on A(n, d). For example,
the Gilbert-Varshamov bound and the Singleton bound, respectively, give a lower
and an upper bound on A(n, d) as follows:

2n∑d−1
i=0

(
n
i

) ≤ A(n, d) ≤ 2n−d+1 . (1)

More refined bounds exist, such as the Hamming bound, for which we refer the
reader to [13]. A slightly different but equivalent problem is to fix the length
n and size M of a code and then maximize the resulting minimum distance d
according to an analogous upper bound.

A binary code C ⊆ Fn
2 is called linear if it forms a vector subspace of Fn

2 .
In this case, the size of the code can be compactly described by the dimension
k ≤ n of the subspace. Indeed, the encoding process amounts to multiplying a
k-bit vector m ∈ Fk

2 by a k × n generator matrix GC , which spans the code C
(and, therefore, Gc has rank k). The resulting n-bit vector c = mGC ∈ C will be
the codeword corresponding to the message m. Thus, the size of C is M = 2k. A
linear code of length n, dimension k, and minimum distance d is also denoted
as an (n, k, d) code. Some of the bounds mentioned above can be simplified if
one is dealing with a linear code. For example, the Singleton bound for a (n, k, d)
linear code becomes

k ≤ n− d+ 1 , (2)

which also gives an upper bound on the minimum distance d as d ≤ n− k + 1.

4 C. Carlet et al.

2.2 Boolean Functions

A Boolean function of n ∈ N variables is a mapping f : Fn
2 → F2, i.e., a function

associating to each n-bit input vector a single output bit. The support of f is
defined as supp(f) = {x ∈ Fn

2 : f(x) ̸= 0}, i.e., the set of all input vectors that
map to 1 under f . The most common way to represent a Boolean function is
by means of its truth table: assuming that total order is fixed on Fn

2 (e.g., the
lexicographic order), then the truth table of f is the 2n-bit vector specifying for
each input vector x ∈ Fn

2 the corresponding output value f(x) ∈ F2.

A second representation method for Boolean functions commonly used in
cryptography and coding theory is the Algebraic Normal Form (ANF). Given
f : Fn

2 → F2, the ANF of f is the multivariate polynomial in the quotient ring
F2[x1, . . . , xn]/(x1 ⊕ x2

1, . . . , xn ⊕ x2
n) defined as follows:

Pf (x) =
⊕

I∈2[n]

aI

(∏
i∈I

xi

)
, (3)

with 2[n] being the power set of [n] = {1, · · · , n}. The coefficients aI ∈ Fn
2 of the

ANF can be computed from the truth table of f via the Möbius transform:

aI =
⊕

x∈Fn
2 :supp(x)⊆I

f(x) , (4)

where supp(x) = {i ∈ [n] : xi ̸= 0} denotes the support of x, or equivalently the
set of nonzero coordinates of x.

The degree of a coefficient aI corresponds to the size of I (that is, to the
number of variables in the corresponding monomials). Then, the algebraic degree
of f is defined as the largest monomial occurring in the ANF of f , or equivalently
as the cardinality of the largest I ∈ 2[n] such that aI ̸= 0.

The algebraic normal form of Boolean functions can be used to characterize
the minimum distance of binary linear codes, as shown by C. Carlet [11]:

Proposition 1. Let C ⊆ Fn
2 be a (n, k, d) binary linear code, and define the

indicator of C as the Boolean function 1C : Fn
2 → F2 whose support coincides

with the code, i.e., supp(1C) = C. Then,

d = min{|I| ∈ 2[n] : aI = 0} , (5)

where aI denotes the coefficients of the ANF of 1C .

In other words, one can check if a binary linear code of length n and dimension
k has minimum distance d by verifying that all monomials of degree strictly
less than d appear in the ANF of the indicator function 1C while the smallest
non-occurring monomial has degree d. This observation will be used in the next
sections to define a fitness function for our optimization problem of interest.

Designing binary codes 5

3 Related Works

El Gamal et al. [7] were the first to investigate the design of unrestricted codes by
simulated annealing (SA). Their results showed that SA was capable of finding
many new constant-weight and spherical codes, in some cases improving on the
known bounds for A(n, d). The first application of Genetic Algorithms (GAs) to
evolve error-correcting codes with maximal distance was proposed by Dontas and
De Jong [3]. The authors encoded a candidate solution as a bitstring of length
n ·M , representing the concatenation of M codewords of length n, and maximized
two fitness functions based on the pairwise Hamming distance between codewords.
Using the same encoding and fitness, Chen et al. [5] developed a hybrid algorithm
combining GA and SA to design error-correcting codes.

McGuire and Sabin [4] employed a GA to search for linear codes. To enforce
the linearity of the evolved codes, the genotype of the candidate solutions were
k ·n bitstrings, which represented the concatenation of the rows of k×n generator
matrices. However, the authors used crossover and mutation operators that do
not preserve the ranks of the resulting matrices. Therefore, the dimension of the
codes evolved by their GA is not fixed, contrary to what is claimed in the paper.

Alba and Chicano [8] designed a so-called Repulsion Algorithm (RA) for
the error-correcting codes problem that takes inspiration from electrostatic
phenomena. In particular, the codewords are represented as particles obeying
Coulomb law, and their next position on the Hamming cube is determined
by computing the resultant force vectors. Cotta [9] experimented with several
combinations of Scatter Search (SS) and Memetic Algorithms (MAs) to evolve
codes of length up to n = 20 and M = 40 codewords. The results indicated that
both SS and MAs could outperform other metaheuristics on this problem.

Blum et al. [10] investigated an Iterated Local Search (ILS) technique and
combined it with a constructive heuristic to design error-correcting codes, showing
that it achieved state-of-the-art performances. McCarney et al. [6] considered GAs
and Genetic Programming (GP) to evolve binary codes, where the chromosome’s
genes represent the entire codeword rather than a single symbol, as in most other
approaches. The results on codes of length n = 12, 13, and 17 and minimum
distance 6 suggested that GP can outperform GA on this problem.

A few works address the construction of combinatorial designs that are
analogous to error-correcting codes through evolutionary algorithms. For example,
Mariot et al. [15] employed GA and GP to evolve binary orthogonal arrays, which
are equivalent to binary codes. Knezevic et al. [16] considered using Estimation of
Distribution Algorithms (EDAs) to design disjunct matrices, which can be seen
as superimposed codes. More recently, Mariot et al. [17] proposed an evolutionary
algorithm for the incremental construction of a permutation code, where the
codewords are permutations instead of binary vectors.

Although in this paper we use Boolean functions to compute the fitness, we
note that their construction via metaheuristics is also a solid research thread,
especially concerning the optimization of their cryptographic properties. We refer
the reader to [18] for a survey of the main results in this area.

6 C. Carlet et al.

4 Evolutionary Strategy Algorithm

In this section, we describe the main components of our Evolutionary Strategy
(ES) algorithm used to evolve binary linear codes. As a reference for later, we
formally state the optimization problem that we are interested in as follows:

Problem 1. Let n, k ∈ N with k ≤ n. Find a (n, k, d) binary linear code C ⊆ Fn
2

reaching the highest possible minimum distance d.

Remark that the upper and lower bounds on the highest minimum distance
mentioned in Section 2.1 are not tight in general. However, for binary codes of
length up to n = 256, one can use the tables provided by Grassl [12] to determine
the best-known values. In particular, for the combinations of n and k that we
will consider in our experiments in Section 5, the lower and upper bounds on d
coincide. So, Problem 1 is well-defined for all instances considered in our tests.

4.1 Solutions Encoding and Search Space

As we discussed in Section 3, most of the works addressing the design of error-
correcting codes via metaheuristic algorithms usually target generic codes without
any constraint on their linearity. The only exception seems to be the paper by
McGuire and Sabin [4] where a GA evolves a generator matrix, but there is no
control on the dimension k of the corresponding code. As a matter of fact, if one
applies unrestricted variation operators on a matrix of rank k (such as one-point
crossover or bit-flip mutation), then the vectors in the resulting matrix might
not be linearly independent, and thus the associated code could have a lower
dimension. This might, in turn, pose issues because the optimal value of the
fitness function (which is related to the best-known minimum distance for a given
combination of n and k) can change during the evolution process.

In our approach, we consider the genotype of a candidate solution S as a
k × n binary matrix G of full rank k. Accordingly, the phenotype corresponding
to G is the code C which is the image of the linear map defined by G. Formally,
we can define the phenotype code as:

C = {c ∈ Fn
2 : c = x ·G, x ∈ Fk

2} . (6)

Therefore, the search space Sn,k for a given combination of code length n and
dimension k is the set of all k×n binary matrices of rank k, or equivalently the set
of all k-dimensional subspaces of Fn

2 , also called the Grassmannian Gr(Fn
2 , k) of

Fn
2 . It is known that the size of this space equals the Gaussian binomial coefficient(
n
k

)
2
, defined as [19]:(

n

k

)
2

=
(2n − 1)(2n−1 − 1) · · · (2n−k+1 − 1)

(2k − 1)(2k−1 − 1) · · · (2k−(k−2) − 1)
. (7)

It is clear from the expression above that the size of the Grassmannian grows very
quickly, and thus exhaustive search in this space becomes unfeasible already for

Designing binary codes 7

small values of n and k. For example, setting n = 12 and k = 6, the corresponding
Grassmannian is composed of about 2.3 · 1011 (230 billion) subspaces. This
observation provides a basic argument motivating the use of heuristic optimization
algorithms to solve Problem 1.

In what follows, we will endow the Grassmannian Gr(Fn
2 , k) with a distance,

turning it into a metric space. This will be useful for studying the diversity of the
population evolved by the ES. In particular, let A,B ⊆ Fn

2 be two k-dimensional
subspaces of Fn

2 . Then, the distance between A and B equals:

d(A,B) = dim(A) + dim(B)− 2dim(A ∩B) = 2(k − dim(A ∩B)) . (8)

This distance was introduced by Kötter and Kschischang in [20] to study error-
correction in the setting of random network linear coding, where the transmitted
codewords are not vectors of symbols, but rather vector subspaces themselves.
Hence, the problem becomes to find a set of subspaces in the projective space
of Fn

2 (that is, the set of all subspaces of Fn
2), which are far apart from each

other under the distance defined in Eq. (8). In particular, this distance is the
length of a geodesic path joining the two subspaces A and B when seen as points
on the poset (partially ordered set) of the projective space of Fn

2 , where the
elements are ordered with respect to subset inclusion. In our case, the search
space Sn,k = Gr(Fn

2 , k) corresponds to the antichain of this poset that includes
all k-dimensional subspaces of Fn

2 .

4.2 Fitness Function

Many of the works surveyed in Section 3 optimize binary codes by maximizing a
fitness function that directly measures the pairwise Hamming distance between
the codewords. In this work, on the other hand, we define a new fitness function
that is based on the characterization of the minimum distance in terms of the
ANF of the indicator function proved in [11]. In particular, we use the fitness
function to count the number of coefficients of degree strictly less than d that
occur in the ANF of the indicator, with the objective of maximizing it. Formally,
given a code C of length n and dimension k, and denoting by aI the monomial in
the ANF of the indicator function 1C for I ∈ 2[n], the fitness of C is defined as:

fit(C) = {I ∈ 2[n] : |I| < d, aI ̸= 0}| . (9)

By Proposition 1, C is a (n, k, d) linear code if and only if all coefficients of degree
less than d are in the ANF of its indicator, and the optimal value for fit is:

fit∗n,d =

d−1∑
i=0

(
n

i

)
. (10)

To summarize, the fitness value of a solution G ∈ Sn,k is computed as follows:
1. Generate the linear code C as the subspace spanned by the matrix G.
2. Write the truth table of the indicator function 1C : Fn

2 → F2 by setting
f(x) = 1 if x ∈ C, and zero otherwise.

8 C. Carlet et al.

3. Compute the ANF of 1C using the Fast Möbius Transform algorithm.
4. Compute fit(C) using Eq. (9).
Although the Fast Möbius Transform yields a significant improvement in the
time complexity required to compute the ANF over the naive procedure, it is
still computationally cumbersome to compute it for Boolean functions with a
relatively high number of variables. For this reason, in our experiments, we limit
ourselves to linear codes of length up to n = 16.

4.3 Rank-Preserving Mutation and Crossover

We now describe the variation operators that we employed to generate new can-
didate solutions from a population of k-dimensional subspaces of Fn

2 , represented
by their generator matrices.

For mutation, we adopt the same operator proposed in [21]: there, the authors
were interested in evolving an invertible binary matrix that was used to define
an affine transformation for a bent Boolean function. The operator can be
straightforwardly adapted to our problem, even though we are not dealing with
invertible matrices. Indeed, the basic principle of [21] is to preserve the invertibility
of a square n× n binary matrix by keeping its rank equal to n. In our case, we
use the same idea to maintain the rank of a rectangular matrix. Specifically, given
a k × n binary matrix G of full rank k and a row i ∈ [k], the mutation operator
samples a random number r ∈ (0, 1) and checks whether it is smaller than the
mutation probability pmut. If this is the case, G is mutated as follows:
1. Remove the i-th row of G, obtaining a (k − 1)× n matrix G′ of rank k − 1.
2. Generate the subspace spanned by G′, denoted as span(G′), and compute

the complement C = Fn
2 \ span(G′).

3. Pick a random vector v ∈ C and insert it in G′ as a row in position i, obtaining
the mutated k × n matrix H.

By construction, the random vector v sampled in step 3 is linearly independent
with all vectors in the span of G′. Therefore, the mutated matrix H has the same
rank k as the original matrix G. The process is then repeated for all rows i ∈ [k].
One can notice that the two matrices G and H are at distance 2 under the metric
of Eq. (8), which is the minimum possible for distinct points in the Grassmannian
Gr(Fn

2 , k) [20]. Therefore, this operator effectively perturbs a candidate solution
by transforming it into one of its closest neighbors.

Given two k × n parent matrices G1, G2 of rank k, our crossover operator
generates an offspring matrix H in the following way:
1. Concatenate the rows of G1 and G2, thus obtaining a 2k × n matrix J .
2. Perform a random shuffle of the rows in J .
3. Generate H by selecting a subset of k linearly independent vectors from J .
Step 3 is performed incrementally: the offspring matrix H is filled by adding the
rows of J from top to bottom, checking if the current row is linearly independent
with all previously added ones. If it is not, then the row is discarded, and the
next one is attempted. Notice that it is always possible to find a set of k linearly
independent vectors in J to construct H since both G1 and G2 have rank k.
Thus, the worst case arises when all rows of one of the parents are in the span of

Designing binary codes 9

the other (i.e., G1 and G2 generate the same subspace). In this situation, the
offspring will also end up spanning the same subspace, although the generator
matrix might look different from the parents. From a linear algebraic point of
view, this eventuality corresponds to a change of basis on the same subspace.
By the above argument, it follows that also the crossover operator preserves the
rank k of the parents in the offspring.

5 Experiments

5.1 Experimental Setting

Evolutionary strategies are specified by two main parameters, the population size
λ and the reproduction pool size µ [22]. At each generation, the µ best parents
in the population are selected for reproduction (truncation selection). Then, in
the (µ, λ)-ES variant each selected individual generates µ/λ offspring individuals,
and their fitness is evaluated. In this case, the new offspring entirely replaces
the old population, and the process is then iterated. The (µ + λ)-ES variant
differs from the fact that the µ parents from the old population are brought into
the new population. To keep the population size fixed to λ in the (µ + λ)-ES
variant in our experiments, we generate (λ/µ)− 1 offspring individuals for each
selected parent. In classical ES, the parents usually create the offspring only by
applying a mutation operator. We also considered a variant of ES augmented with
crossover, which works as follows: each parent generates an offspring matrix by
first performing crossover with a random mate selected from the reproduction pool
of the µ best individuals. Then, the mutation is applied as usual. Therefore, in
our experiments, we considered four variants of ES, depending on the replacement
mechanism ((µ, λ) or (µ+ λ)), and whether crossover (χ) is applied or not.

Concerning the combinations of length n, dimension k, and minimum distance
d of the codes, we experimented over five problem instances: (12, 6, 4), (13, 6, 4),
(14, 7, 4), (15, 7, 5), and (16, 8, 5). In particular, we always set k = ⌊n/2⌋ since
this gives the largest search space possible for a given n. Starting from n = 12
yields the smallest instance that is not amenable to exhaustive search. The
corresponding minimum distance d (that represents the optimization objective)
has been taken from the tables reported in [12]. In all these cases, the lower and
upper bounds on d coincide, so these are the best minimum distances one can get
for these combinations of n and k. For the ES parameters, we set the population
size λ equal to the length n, and µ = ⌊n/3⌋. The mutation probability was set to
pmut = 1/n. These are the same parameters settings adopted for the ES in [21]
to evolve invertible binary matrices, and after a preliminary tuning phase, we
noticed that they also worked well on Problem 1. The fitness budget was set to
20 000 generations of the ES algorithm since we remarked that the best fitness
seldom improved after this threshold. Finally, we repeated each experiment over
100 independent runs to get statistically sound results.

Table 5.1 summarizes our experimental design with all relevant parameters,
along with the size of the corresponding search space Sn,k and the value of the
best fitness value for each considered problem instance.

10 C. Carlet et al.

(n, k, d) #Sn,k fit∗n,d λ µ pmut

(12, 6, 4) 2.31 · 1011 299 12 4 0.083
(13, 6, 4) 1.49 · 1013 378 13 4 0.077
(14, 7, 4) 1.92 · 1015 470 14 4 0.071
(15, 7, 5) 2.47 · 1017 1941 15 5 0.067
(16, 8, 5) 6.34 · 1019 2517 16 5 0.063

Table 1. Summary of the parameter settings, search space size, and best fitness value
for each problem instance.

5.2 Results

Table 2 reports the success rates of the four ES variants over 100 independent
runs for the five considered problem instances, that is, how many times they
converged to an optimal linear code. We denote a crossover-augmented ES variant
by appending +χ to it.

(n, k, d) (µ, λ)-ES (µ, λ)+χ-ES (µ + λ)-ES (µ + λ)+χ-ES
(12, 6, 4) 100 100 100 100
(13, 6, 4) 100 100 100 100
(14, 7, 4) 100 100 100 100
(15, 7, 5) 100 100 77 81
(16, 8, 5) 92 76 18 17

Table 2. Success rates (over 100 runs) of the four considered ES variants.

The first interesting remark is that all ES variants always converge to an
optimal solution up to length n = 14, seemingly indicating that Problem 1 is rather
easy on these problem instances, independently of the replacement mechanism
and the use of crossover. For (15, 7, 5), the (µ, λ) variants still converge in all runs,
while the (µ+ λ)-ES achieves a lower success rate, although still quite high. The
biggest difference can be seen in the largest problem instance (16, 8, 5). In this
case, the only variant reaching a very high success rate of 92% is the (µ, λ)-ES.
Somewhat surprisingly, adding crossover to this variant actually worsens the
performance. On the other hand, the (µ+λ)-ES variants reach a very low success
rate on this instance, independently of crossover. Therefore, in general, the main
factor influencing the performance is the replacement mechanism, rather than the
crossover. Apparently, letting the parents directly compete with their children as
in the (µ+ λ) variant is detrimental to this particular optimization problem.

To investigate more in detail the effects of the replacement mechanism and
the crossover operator, we plotted the distributions of the number of fitness
evaluations in Figure 1. In general, one can see that the number of fitness
evaluations necessary to converge to an optimal solution is not directly correlated
with the length of the code, and consequently with the size of the search space.
As a matter of fact, the median number of evaluations of (12, 6, 4) is always
higher than that required for (13, 6, 4) and (14, 7, 4). Indeed, the most evident
correlation is with the minimum distance, since for the two largest instances with
d = 5 the number of fitness evaluations is significantly higher. This is reasonable

Designing binary codes 11

(12,6,4) (13,6,4) (14,7,4) (15,7,5) (16,8,5)
Code Parameters (n,k,d)

101

102

103

104

105

Fit
ne

ss
 E

va
lu

at
io

ns

ES Variant
(,)-ES
(,)+ -ES
(+)-ES
(+)+ -ES

Fig. 1. Fitness evaluation distributions for the four considered ES variants.

since as reported in Table 5.1, the optimal fitness values for d = 5 are consistently
greater than for d = 4.

As expected, for the larger instances (15, 7, 5) and (16, 8, 5), a clear difference
emerges between the two replacement mechanisms, as already indicated by the
success rates. The (µ, λ) variants converge to an optimal solution more quickly
than the (µ+ λ) ones. On the other hand, up to (14, 7, 4) it is not possible to
distinguish the performances of the four evolutionary strategies by just looking
at the respective boxplots. For this reason, we used the Mann-Whitney-Wilcoxon
statistical test to compare two ES variants, with the alternative hypothesis that
the corresponding distributions are not equal, and setting the significance value
to α = 0.05. The obtained p-values show that the (µ, λ)-ES variants give an
advantage over the (µ+ λ)-ES without crossover for (12, 6, 4), while for (13, 6, 4),
only (µ, λ)+χ-ES is significantly better than (µ+λ)-ES (p = 0.007). For (14, 7, 4),
there is no significant difference between any two combinations of ES. Another
interesting insight from the statistical test concerns the effect of the crossover
operator. While for the instances up to (14, 7, 4) there is no significant difference
whether the ES is augmented with crossover or not (with the exception of (13, 6, 4)
where (µ+ λ) + χ is better than its counterpart without crossover, p = 0.031),
the situation is different with (15, 7, 5) and (16, 8, 5) for the (µ, λ) variants. In
these cases, using crossover actually worsens the convergence speed of the ES
algorithm. This is somewhat surprising, as one would expect that crossover allows
one to exploit the local search space more efficiently. Overall, our results show
that the simplest (µ, λ)-ES variants without a crossover is the best-performing
one over this optimization problem.

12 C. Carlet et al.

0 2500 5000 7500 10000 12500 15000 17500 20000
Generation

2360

2380

2400

2420

2440

2460

2480

2500

Av
er

ag
e

Fit
ne

ss

ES Variant
(,)-ES
(,)+ -ES
(+)-ES
(+)+ -ES

Fig. 2. Average population fitness for (16, 8, 5).

5.3 Solutions Diversity

To analyze more deeply the influence of the replacement mechanism and the
crossover operator on the performances of the ES algorithm, we ran again the
experiments for 30 independent repetitions on the (16, 8, 5) instance, where the
effects are more evident. We set the stopping criterion to 20 000 generations,
independently of the fact that an optimal solution might be found before. In each
run, we recorded every 40 generations the average fitness of the population and the
average pairwise distance between individuals, using Eq. (8). The corresponding
lineplots are displayed in Figures 2 and 3, respectively.

It is possible to observe that the behavior of the population stabilizes almost
immediately for all four ES variants. In particular, after the random initializa-
tion of the population where the fitness is relatively low and the solutions are
substantially different from each other, the situation is immediately reversed
in a few generations. Random perturbations continue to happen over the two
measured quantities (likely due to the effect of the mutation, which is used in all
variants), but no huge deviation occurs throughout the rest of the optimization
process. In general, the population of the ES quickly converges to a highly fit
area of the search space and with low diversity. This phenomenon is, however,
more evident for the two (µ + λ) variants, which achieve the highest average
fitness in the population and the lowest pairwise distance among individuals. The
(µ, λ) variant combined with crossover is instead characterized by a slightly larger
distance and lower fitness in the population but is still very close to the (µ+ λ)
variants. On the other hand, the simple (µ, λ)-ES is the combination reaching
both the highest distance and the lowest average fitness, which is consistent with
our earlier observation that this variant is the best-performing one. In particular,

Designing binary codes 13

0 2500 5000 7500 10000 12500 15000 17500 20000
Generation

2

4

6

8

10

12

14

Av
er

ag
e

Di
st

an
ce

ES Variant
(,)-ES
(,)+ -ES
(+)-ES
(+)+ -ES

Fig. 3. Average pairwise distance distributions for (16, 8, 5).

having a higher diversity might hamper the average fitness in the population,
but at the same time can help the population to escape local optima. The low
diversity observed in the (µ+ λ) variants indicates that the convex hull defined
by the population under the distance of Eq. (8) shrinks very quickly, and does
not grow anymore throughout the evolutionary process. Thus, if this convex hull
represents a highly fit area of the search space, which however does not contain a
global optimum, chances are that the population will remain stuck in that area.
Likely, this effect is further strengthened by the use of crossover.

As a final analysis, we investigated the diversity of the optimal codes produced
by the four ES variants in terms of code isomorphism. Two codes C,D ⊆ Fn

2 are
called isomorphic if there exists a sequence of permutations on the coordinates
of the codewords and on the symbols set that transforms C into D [13]. We
used the computer algebra system MAGMA since it has two built-in functions
useful for our purpose: the function IsIsomorphic takes as input the generator
matrices of two (n, k, d) linear codes and checks whether they are equivalent
up to isomorphism or not. The function BKLC, instead, returns the generator
matrix of the best-known linear code for a specific combination of length n and
dimension k. In particular, all such codes reach the bound on the minimum
distance reported in Grassl’s table [12], which we used as a reference to select
the problem instances for our experiments. Therefore, we first used these two
functions to check whether the codes produced by our ES variants are isomorphic
to the best-known linear codes. Further, we compared the codes obtained by the
ES algorithm among themselves, to check how many isomorphism classes they
belong to. Table 3 summarizes this analysis by reporting the number of codes

14 C. Carlet et al.

(n, k, d) (µ, λ)-ES (µ, λ)+χ-ES (µ + λ)-ES (µ + λ)+χ-ES
#non-iso #eq #non-iso #eq #non-iso #eq #non-iso #eq

(12, 6, 4) 100 23 100 22 100 22 100 22
(13, 6, 4) 100 85 100 81 100 78 100 79
(14, 7, 4) 100 89 100 94 100 95 100 93
(15, 7, 5) 72 5 63 6 51 5 44 5
(16, 8, 5) 0 1 0 1 0 1 0 1

Table 3. Number of non-isomorphic codes to the BKLC (#non-iso) and equivalence
classes (#eq) found by the four considered ES variants.

that are not isomorphic to the BKLC and the number of isomorphism classes,
for each combination of problem instance (n, k, d) and ES variant.

The first remarkable finding that can be drawn from the table is that all four
ES variants always discover codes that are inequivalent to the BKLC for the
smaller instances with minimum distance d = 4. Moreover, such codes belong
to a high number of equivalence classes, so they are also quite diverse among
themselves. From this point of view, there is also no particular difference between
different ES variants. For (15, 7, 5) one can remark a lower diversity since more
codes turn out to be equivalent to the BKLC. Moreover, there is a noticeable
difference between the (µ, λ) and the (µ+ λ) variants, with the former scoring
a higher number of codes inequivalent to the BKLC than the latter. Further,
in general, the number of isomorphism classes drops substantially, with only 5
or 6 classes grouping all evolved codes. This phenomenon is even more extreme
for the (16, 8, 5) instance: in this case, all discovered codes are equivalent to the
BKLC provided by MAGMA, and thus they all belong to the same equivalence
class. This fact is independent of the underlying ES variant.

6 Conclusions and Future Work

To conclude, we summarize our experimental findings and discuss their relevance
concerning the design of binary linear codes using evolutionary algorithms:
– The proposed ES algorithm easily converges to an optimal solution for
the smaller problem instances of (12, 6, 4), (13, 6, 4), and (14, 7, 4), with no
significant differences among the four tested variants. On the other hand,
there is a huge increase in the difficulty of the problem for the larger instances
of (15, 7, 5) and (16, 8, 5), although the simple (µ, λ)-ES variant is able to
maintain a very high success rate.

– Contrary to our initial expectation, the crossover operator that we augmented
our ES with either does not make any difference on the performances of the
algorithm or even deteriorates them over the harder instances. We speculate
that this is due to the small variability offered by the crossover since it is
based on the direct selection of the vectors from the parents, rather than on
the vectors spanned by their generator matrices.

– The optimal codes obtained by the ES are quite interesting from a theoretical
point of view, as most of them for small instances are not equivalent to the
best-known linear code produced by MAGMA, and moreover, they belong to

Designing binary codes 15

a high number of isomorphism classes. The fact that all codes instead turn out
to be equivalent to the BKLC for (16, 8, 5) is curious, and we hypothesize that
this is related to the specific structure of the search space for this instance,
where the global optima might be very sparse.
Overall, our results suggest that ES represents an interesting tool to discover

potentially new linear codes, and prompt us to multiple ideas for future research.
One obvious direction is to apply the ES algorithm over larger instances. However,
the computation of the fitness function could become a significant bottleneck in
this case. Indeed, our Java implementation of the ES algorithm takes around
20 minutes to perform 20 000 generations on a Linux machine with an AMD
Ryzen 7 processor, running at 3.6 GHz. Therefore, it makes sense to explore
also with other fitness functions, maybe without relying on the characterization
through the ANF of the indicator function. A second interesting direction for
future research concerns the study of the variation operators proposed in this
paper, especially with respect to their topological properties. In particular, we
believe that both operators can be proved to be geometric in the sense introduced
by Moraglio and Poli [23]. This might in turn give us some insights related to
the structure of the Grassmannian metric space under the distance defined in
Eq. (8) and thus help us in designing better crossover operators for this problem.
One idea, for instance, could be to follow an approach similar to those adopted
for fixed-weight binary strings in [24].

References

1. McEliece, R.J.: The theory of information and coding. Number 86. Cambridge
University Press (2004)

2. Karp, R.M.: Reducibility among combinatorial problems. In Miller, R.E., Thatcher,
J.W., eds.: Proceedings of a symposium on the Complexity of Computer Computa-
tions, held March 20-22, 1972. The IBM Research Symposia Series, Plenum Press,
New York (1972) 85–103

3. Dontas, K., Jong, K.A.D.: Discovery of maximal distance codes using genetic
algorithms. In: Proceedings of IEEE TAI 1990, IEEE Computer Society (1990)
805–811

4. McGuire, K.M., Sabin, R.E.: Using a genetic algorithm to find good linear error-
correcting codes. In George, K.M., Lamont, G.B., eds.: Proceedings of the 1998
ACM symposium on Applied Computing, SAC’98, Atlanta, GA, USA, February 27
- March 1, 1998, ACM (1998) 332–337

5. Chen, H., Flann, N.S., Watson, D.W.: Parallel genetic simulated annealing: A
massively parallel SIMD algorithm. IEEE Trans. Parallel Distributed Syst. 9(2)
(1998) 126–136

6. McCarney, D.E., Houghten, S.K., Ross, B.J.: Evolutionary approaches to the
generation of optimal error correcting codes. In Soule, T., Moore, J.H., eds.:
Proceedings of GECCO ’12, ACM (2012) 1135–1142

7. Gamal, A.A.E., Hemachandra, L.A., Shperling, I., Wei, V.K.: Using simulated
annealing to design good codes. IEEE Trans. Inf. Theory 33(1) (1987) 116–123

8. Alba, E., Chicano, J.F.: Solving the error correcting code problem with parallel
hybrid heuristics. In Haddad, H., Omicini, A., Wainwright, R.L., Liebrock, L.M.,
eds.: Proceedings of SAC 2004), ACM (2004) 985–989

16 C. Carlet et al.

9. Cotta, C.: Scatter search and memetic approaches to the error correcting code
problem. In Gottlieb, J., Raidl, G.R., eds.: Evolutionary Computation in Combina-
torial Optimization, 4th European Conference, EvoCOP 2004, Coimbra, Portugal,
April 5-7, 2004, Proceedings. Volume 3004 of Lecture Notes in Computer Science.,
Springer (2004) 51–61

10. Blum, C., Blesa, M.J., Roli, A.: Combining ils with an effective constructive
heuristic for the application to error correcting code design. In: Metaheuristics
International Conference (MIC-2005), Vienna, Austria. (2005) 114–119

11. Carlet, C.: Expressing the minimum distance, weight distribution and covering
radius of codes by means of the algebraic and numerical normal forms of their
indicators. Advances in Mathematics of Communications (2022) 0–0

12. Grassl, M.: Bounds on the minimum distance of linear codes and quantum codes.
Online available at http://www.codetables.de (2007) Accessed on 2022-11-13.

13. Huffman, W.C., Pless, V.: Fundamentals of error-correcting codes. Cambridge
university press (2010)

14. Carlet, C.: Boolean functions for cryptography and coding theory. (2021)
15. Mariot, L., Picek, S., Jakobovic, D., Leporati, A.: Evolutionary search of binary

orthogonal arrays. In Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete,
L., Whitley, L.D., eds.: Parallel Problem Solving from Nature - PPSN XV - 15th
International Conference, Coimbra, Portugal, September 8-12, 2018, Proceedings,
Part I. Volume 11101 of Lecture Notes in Computer Science., Springer (2018)
121–133

16. Knezevic, K., Picek, S., Mariot, L., Jakobovic, D., Leporati, A.: The design of
(almost) disjunct matrices by evolutionary algorithms. In Fagan, D., Mart́ın-
Vide, C., O’Neill, M., Vega-Rodŕıguez, M.A., eds.: Theory and Practice of Natural
Computing - 7th International Conference, TPNC 2018, Dublin, Ireland, December
12-14, 2018, Proceedings. Volume 11324 of Lecture Notes in Computer Science.,
Springer (2018) 152–163

17. Mariot, L., Picek, S., Jakobovic, D., Djurasevic, M., Leporati, A.: On the difficulty
of evolving permutation codes. In Laredo, J.L.J., Hidalgo, J.I., Babaagba, K.O.,
eds.: Applications of Evolutionary Computation - 25th European Conference,
EvoApplications 2022, Held as Part of EvoStar 2022, Madrid, Spain, April 20-22,
2022, Proceedings. Volume 13224 of Lecture Notes in Computer Science., Springer
(2022) 141–156

18. Mariot, L., Jakobovic, D., Bäck, T., Hernandez-Castro, J.: Artificial intelligence
for the design of symmetric cryptographic primitives. In: Security and Artificial
Intelligence. (2022) 3–24

19. Mullen, G.L., Panario, D., eds.: Handbook of Finite Fields. Discrete mathematics
and its applications. CRC Press (2013)

20. Koetter, R., Kschischang, F.R.: Coding for errors and erasures in random network
coding. In: IEEE International Symposium on Information Theory, ISIT 2007, Nice,
France, June 24-29, 2007, IEEE (2007) 791–795

21. Mariot, L., Saletta, M., Leporati, A., Manzoni, L.: Heuristic search of (semi-)bent
functions based on cellular automata. Nat. Comput. 21(3) (2022) 377–391

22. Luke, S.: Essentials of Metaheuristics. Lulu (2015) 2nd ed.
23. Moraglio, A., Poli, R.: Topological crossover for the permutation representation.

In Rothlauf, F., ed.: Genetic and Evolutionary Computation Conference, GECCO
2005, Workshop Proceedings, Washington DC, USA, June 25-26, 2005, ACM (2005)
332–338

24. Manzoni, L., Mariot, L., Tuba, E.: Balanced crossover operators in genetic algo-
rithms. Swarm Evol. Comput. 54 (2020) 100646

http://www.codetables.de

	Evolutionary Strategies for the Design of Binary Linear Codes
	Introduction
	Background
	Binary Linear Codes
	Boolean Functions

	Related Works
	Evolutionary Strategy Algorithm
	Solutions Encoding and Search Space
	Fitness Function
	Rank-Preserving Mutation and Crossover

	Experiments
	Experimental Setting
	Results
	Solutions Diversity

	Conclusions and Future Work

