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ABSTRACT
Path planning, the task of �nding an obstacle-avoiding, shortest-
length route from source to destination is an interesting theoretical
problem with numerous applications. We present an improved
genetic algorithm for path planning in a continuous, largely un-
constrained real-world environment. We introduce a new domain-
speci�c crossover operator based on path intersections. We also
implement a new path correction operator that eliminates obstacle
collisions from a path, leading to a dramatic search improvement
despite the conceptual simplicity of the correction. Finally, in place
of a standard binary measure of obstacle collisions, we present a
new optimization objective measuring the degree to which a path
intersects obstacles. Due to these improvements, individually and
in combination, our algorithm is able to solve scenarios that are con-
siderably more complex and exist in a more general environment
than those that appear in the literature. We demonstrate the utility
of our system through testing onboard an autonomous micro aerial
vehicle. Further, our approach demonstrates the utility of domain-
speci�c genetic operators for path planning. We hypothesize that
such operators may be bene�cial in other domains.
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Figure 1: Example evolved path for Map 1, shown here in a simulator with
satellite imagery.

1 INTRODUCTION
In this paper, we investigate a Genetic Algorithm (GA) approach
to path planning for Micro Aerial Vehicles (MAVs). �is approach
evolves GPS coordinate-based paths onboard an MAV that can then
�y the path in a real, obstacle-�lled environment, as shown in
Figure 1. We examine domain-speci�c adaptations to the algorithm
that we expect to be transferable to other path planning problems
and show that leveraging knowledge of the problem can lead to
signi�cant performance gain with minimal computational cost.

Path planning refers to the problem of �nding a viable route from
a source location to a destination within a given environment [16].
�e primary algorithmic objective is to optimize some quantity,
most o�en path length. In real world situations, additional objec-
tives may be necessary or desirable. Examples include minimizing
the number of waypoints or the sum of the angles of the turns that
the robot is required to make [1, 13, 17, 24, 26], maximizing the
safety of the resulting path [1, 17], and maintaining a minimum or
maximum distance from obstacles or the terrain [13, 24, 26]. �us,
path planning is o�en a multi-objective optimization problem.

A range of approaches have been applied to path planning. �ese
include both exact and heuristic algorithms [16], with the choice of
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type usually dependent on the constraints and goals of the system.
Exact methods can be computationally expensive but are guaranteed
to �nd a solution or prove that none exists. Heuristic methods focus
on a more practical perspective, �nding the best solution possible
within a given time. Speci�c examples of algorithms that have
been studied include, but are not limited to, A* [6, 10, 18], cell
decomposition [5], potential �elds [2], bug algorithms [3], neural
networks [12], and evolutionary algorithms.

Evolutionary algorithms are good candidates for this problem
because they have been shown to be capable of evolving paths in
both static and dynamic environments, in which obstacle locations
are not known in advance or may move [4, 6, 9, 14, 15]. While most
GA approaches to path planning are conducted only in simulation
[1, 6, 9, 13–15, 17–19, 22, 23], there are examples in which evolved
paths are executed on physical robots and vehicles [4, 20, 21].

Limitations of most previous work using GAs for path planning
in a manmade environment (one that includes, for example, build-
ings) are that the environment is discrete, obstacles are axis-aligned
quadrilaterals, and motion is monotonic. We remove all of these
constraints, allowing for much more realistic and di�cult problem
instances to be solved. In fact, a dramatic increase in a GAs ability
to solve di�cult problem instances is one of the main contributions
of this work.

Because our algorithm can run on board a real MAV, our ap-
proach is guided by two main requirements. First, our system must
be able to work in a real-valued rather than discrete environment
for compatibility with the standard GPS coordinate system. Second,
the limited energy resources on board an MAV means that a fast,
e�cient algorithm is required.

In previous work, we demonstrate an evolutionary approach
to path planning in a complex, continuous, man-made, real-world
environment and show that a GA can successfully evolve viable
paths for an MAV [20, 21]. We found that a standard crossover
implementation was not e�ective. Related work suggests that in-
corporating domain-speci�c information into a GA can improve
the performance of the GA search process [9, 15, 24, 26]. We hy-
pothesize that tailor-made genetic operators that take advantage of
known problem characteristics may be bene�cial in directing the
GA exploration e�ectively. We expect that the bene�ts of such op-
erators may be transferable to other GAs solving the path planning
problem using a similar representation.

We demonstrate that path planning can be greatly enhanced
through use of domain-speci�c features. �ese features include
two novel genetic operators and one new optimization objective.
Individually and in combination, these improvements allow our
GA to solve signi�cantly more di�cult maps and do so with less
computation. Our results support the idea that domain-speci�c
knowledge can be used to improve a GA’s ability to �nd a solution.

2 THE PROBLEM
We de�ne path planning as a search for a minimum-length, obstacle-
avoiding path P through an environment E, represented as E (s, e,O )
where s is a �xed starting point, e is a �xed ending point, and O is
a (possibly empty) set of obstacles to avoid. In the work presented
here, the only validity criterion is that the number of obstacle
collisions is 0. �e obstacles speci�ed in a set O de�ne a map.

�e environments we consider are two dimensional. �is is a
necessary concession as the MAV is intended to operate in spaces
containing man-made structures. While 2-D building locations
are easily found, reliable 3rd dimension (height) information for
structures is not readily available. In addition, up-to-date �ight
regulations may also be di�cult to obtain. �us, all obstacles must
be avoided in two-dimensional space, since the algorithm cannot
know if it is safe or legal to �y over them. �e MAV �ies a planned
2-D path, at a �xed altitude, within a 3-D space.

Figure 2 shows the maps for which we present results. �ese,
and other maps on which we have tested our algorithm, are a mix
of real-world and contrived scenarios. While real environments
demonste the applicability of our system, they are considerably
easier to solve than those we devise for increased di�culty. Map 2
requires traversal of multiple narrow corridors connected by 180
degree turns. Maps 3 and 4 are progressively more di�cult versions
of a zigzag path. Map 3 adds a secondary zigzag that has shorter
path length but may be more di�cult to discover due to increased
distance from the starting point. Map 4 introduces a third, even
shorter path that is further still from, and on the opposite side of,
the starting point. Signi�cantly, solving maps 3 and 4 requires the
algorithm to �nd a path through the shortest of the possible tracks
– even a valid path through a longer track is considered a failure.
While our previous work is able to solve maps more di�cult than
most found in the literature, the new features introduced here are
required to reliably solve maps 2, 3, and 4.

When the contents of O are �xed, i.e. not updated during the
mission, the problem is called o�ine path planning. �is is fun-
damentally di�erent than online path planning, in which O may
be updated during the mission to include obstacles discovered or
moved during the mission. Online path planning involves continu-
ously recalculating the planned path to accommodate the changing
model of the environment. �e research presented here focuses
on o�ine path planning using a GA. �ough o�ine, our GA runs
onboard a MAV allowing new paths to be evolved in the �eld.

A path P is comprised of starting location s , followed by a se-
quence of ` > 0 GPS coordinates called waypoints, and terminated
with destination e . �at is, P = [s,w1,w2,w3, ...,w` , e], where adja-
cent elements are connected by straight segments. �e use of GPS
coordinates necessitates the use of real values. In contrast, much
of the literature on path planning focuses on algorithms that oper-
ate in discrete, �nitely subdivided, grid-like environments. Such
approaches simplify the path planning problem and are too limited
for practical applications, where GPS is the standard for accurate
navigation and organically shaped obstacles are commonplace.

�ere are many possible optimization objectives for path plan-
ning. Our baseline algorithm minimizes three objectives: number
of waypoints, path length, and number of obstacles hit. �e num-
ber of waypoints is |P | − 2, denoted ` in the path de�nition above.
Minimizing waypoints has two bene�ts: (1) simplifying the mission
and (2) reducing runtime as there is a dependence on the number
of path segments. Path length is de�ned as:

len = d (s,w1) + d (w` , e ) +
`−1∑
i=1

d (wi ,wi+1)
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Figure 2: Environments for which results are reported. Map 1 represents actual buildings on a large college campus. Maps 2, 3, and 4 were contrived to be
di�cult to solve within the path length threshold. On each map, a path approximating the optimal path is shown in yellow. We note that due to the distance
threshold, only runs that �nd a path with length within 5% of optimal are considered successful. �is limits success to those paths that use the same passage (or,
in the case of Map 2, one that is symmetric) through the obstacles as the optimal path.

where d (x ,y) is the Euclidean distance from x to y. �e number
of obstacles hit is simply a count of the obstacles intersected by at
least one path segment.

3 THE ALGORITHM
In this section, we describe our base algorithm, which is derived
from the well-known NSGA-II by Deb et al [8]. Although there are
more recent multi-objective evolutionary algorithms [7, 25], NSGA-
II is straightforward to implement, appropriate for the number
of objectives in our problem, and reasonably e�cient. To allow
for maximum �exibility in addressing domain-speci�c aspects of

path planning, we implemented the algorithm rather than use an
existing version such as DEAP [11].

A path consists of a sequence ofwaypoints, each a GPS coordinate
towhich theMAVwill travel. A genome corresponds to a path repre-
sented by a list of real-valued coordinate pairs, (latitude, lonдitude ).
For applied path planning algorithms, a real-valued genome is
be�er-suited than a binary representation as it allows for �ner
control of path evolution by the genetic operators.

For the population at generation 0, each member is created at
random with 2 to 6 waypoints. A geo fence parameter constrains
each waypoint to be within a speci�ed Euclidean distance of the
midpoint between the starting and ending points. �e purpose of
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Figure 3: Depiction of crossover version XO-R, in which cutpoint positions
are chosen at random.

this value is to mirror the geo fence within the �rmware in the
MAV’s �ight control board.

Let popx represent the population at generation дx . In the base
algorithm, populationpopx+1 is created from populationpopx using
a combination of mutation and single-point crossover, which we
denote XO-R due to random selection of the cut point. Figure 3
illustrates the e�ect of XO-R. Children created are placed in child
population popc . �e algorithm produces children until |popc | =
|popx | = n at which timepopx andpopc are merged into a combined
population pop with size 2n. popx+1 is obtained from pop using
standard selection based on non-dominated sorting [8].

Crossover events occur with probability popxo . �e base algo-
rithm uses single-point crossover. Due to the genome structure, cut
points must lie between waypoints and cannot occur before s or
a�er e . Parents are chosen in a binary tournament. �e cut point in
each parent is chosen independently as genome lengths can vary.

With probability 1 − pxo a mutation event occurs instead of a
crossover event. In this case, a single parent is chosen by binary
tournament. �e parent is copied and the copy mutated. We im-
plement four mutation operators, add, delete, swap, and move. add,
delete, and move each a�ect a single, randomly selected waypoint
while swap exchanges the position within the genome of two adja-
cent waypoints, also selected at random. When a member is chosen
for mutation, exactly one of the operators is applied. �e prob-
abilities of the operators are 0.25, 0.15, 0.1 and 0.5, respectively.
Mutations are subject to the geo fence parameter described above.

4 IMPROVEMENTS
In this section, we detail two new genetic operators and one new
objective that o�er a signi�cant decrease in the number of genera-
tions required to �nd solutions, as well as a dramatic increase in
the complexity of maps the algorithm can solve successfully.

4.1 Crossover Versions
�ough typical for genetic path planning algorithms, the single-
point crossover described in Section 3 is largely ine�ective [20].
�is is, perhaps, not surprising given that the genome represents
spatial information but there is no spatial basis for choosing cut
locations or applying crossover. To address this, we introduce a

Figure 4: Depiction of intersection crossover. �e top image shows two
intersecting paths. �e lower le� and right show the result using XO-I and
XO-I+, respectively.

new form of crossover speci�c to path planning, which we call
intersection crossover. �is operator allows crossover only between
genomes representing paths that intersect within the environment.

In intersection crossover, parent selection occurs via tournament
selection as for XO-R. Once parents have been chosen, crossover
occurs only if the paths they encode intersect. Otherwise, rather
than a�empt multiple times to choose intersecting paths, each
parent is copied and the copies mutated.

We implement two versions of intersection crossover: (1) XO-I
and (2) XO-I+. To de�ne them formally, let p1 and p2 be members of
the population with genomes 〈s,w01 , . . . ,wi ,wi+1, . . . ,w`1 , e〉 and
〈s,w02 , . . . ,w j ,w j+1, . . . ,w`2 , e〉, respectively. Further, let p1 and
p2 intersect at point y on path segments 〈wi ,wi+1〉 and 〈w j ,w j+1〉.

Figure 4 illustrates XO-I and XO-I+. In XO-I, child c1 = 〈s,
w01 , . . . ,wi ,w j+1, . . . ,w`2 , e〉 and child c2 = 〈s,w02 , . . . ,w j ,wi+1,
. . . ,w`1 , e〉. Informally, c1 includes the waypoints of p1 from s up
towi , the waypoint immediately before intersection point y, and
the waypoints of p2 fromw j+1, the waypoint immediately a�er y,
to e .

XO-I+ augments each child with intersection point y. �is yields
children c1 = 〈s, w01 , . . . ,wi , y,w j+1, . . . ,w`2 , e〉 and c2 = 〈s,
w02 , . . . ,w j ,y,wi+1, . . . ,w`1 , e〉.

4.2 Obstacle Intrusion
�e standard objective related to obstacle avoidance is a simple
count of the number of obstacles hit. Minimizing this quantity to
0 yields a collision-free path; however, this measure of collisions
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Figure 5: �e obstacle intrusion measure and path correction operator use
the same information in di�erent ways. Consider path p = 〈s, w1, w2, w3, e〉
through this simple map. �e value of the obstacle intrusion objective for
this input/path pair is A1

1 + A
2
1. Applying path correction to p results in path

p′ = 〈s, A, B, C, D, w1, E, F , G, w2, w3, e〉.

has a shortcoming: a path that crashes through the middle of an
obstacle is indistinguishable (with respect to that objective) from
one that only slightly clips a corner of an obstacle. �is limits the
evolutionary utility of the obstacle avoidance objective.

We present an alternative, real-valuedmeasure of collision, called
obstacle intrusion, based on the degree to which a path intersects
an obstacle. �e resulting �ner �tness granularity improves the
algorithm’s ability to distinguish and reward degrees of obstacle
intrusion, thus facilitating evolutionary search.

�e obstacle intrusion value is calculated as follows. �e points at
which the path enters and exits an obstacle oj ∈ O are determined.
As there can be multiple enter/exit pairs for oj , we denote the i-th
pair as pairi = (oj :in[i],oj :out [i]). Connected by the path segments
between them, each pair divides the obstacle into two regions with
areas Ai1 and A

i
2. �e obstacle intrusion value for pairi on obstacle

oj is I ij = min(Ai1,A
i
2). �e total obstacle intrusion value for oj is

Ij =
∑
i I

i
j and the total intrusion value for a population member as∑

j ∈ |O | Ij , the sum over all obstacles. See Figure 5.
It would likely improve evolution to have a separate objective

for each obstacle in the environment. However, this introduces
implementation problems as the number of objectives would be
both variable and large. While the objective as presented here is a
compromise in this sense, it proves extremely bene�cial in testing.

4.3 Path Correction
�e path correction operator eliminates obstacle collisions by “pulling”
a path o� of any obstacles it hits. Consider again the points at which
a path enters and exits an obstacle. �e algorithm determines the
shortest path, along the obstacle perimeter, between these two
points. It then replaces in the genome the path segments between
entry and exit with a new subpath following the shortest path along
the perimeter, translated 1m outside the perimeter. Figure 5 shows
the e�ect of path correction.

If used, path correction can be applied once, to the initial popu-
lation, or repeatedy at some �xed interval. When path correction

is applied to the initial population, we denote it IPC. When it is ap-
plied at a �xed interval of x generations, we denote it RPC-x . RPC-0
denotes the case in which path correction is not applied repeatedly.
We hypothesize that applying path correction too frequently might
inhibit evolution by limiting exploitation.

5 EXPERIMENTAL SETUP
�e experiments we describe are designed to evaluate the e�ective-
ness of the new operators and optimization objective we introduce.
Each experiment consists of 80 trials where each trial includes runs
with each of the combinations of parameters being tested. Trials
are run for all four maps. Within a trial, the initial population is the
same for each run to eliminate a source of variability. Experiments
are run on the Stampede supercomputer at the Texas Advanced
Computing Center. Each standard compute node on Stampede in-
cludes two Intel Xeon E5-2680 8 core Sandy Bridge processors and
32GB of RAM.

�e values of several parameters used in this work were es-
tablished empirically in prior works [20, 21]. �ese include the
probabilities with which the four mutation operators are applied
(0.25, 0.15, 0.1, 0.5, respectively), and the post-crossover mutation
probability (0.0). In addition, the utility of the waypoint count
objective is found to be somewhat bene�cial. Other parameter val-
ues are established empirically as part of this work, including the
crossover probability (0.4) and whether path correction is applied
to generation 0 (no).

As discussed in Section 2, successful path planning requires
satisfying the validity conditions aswell asminimizing, to the extent
possible, the optimization objectives. Given our desire to improve
the e�ciency of path planning, we also examine the number of
generations required to �nd a valid path of acceptable length. As
unsuccessful runs are expensive, we measure the success rates
of the trials. In this context, success is de�ned as �nding a path
within 5% of optimal in fewer than a speci�ed maximum number
of generations. For these experiments the maximum generations is
3000. Within the set of successful runs, we track the mean number
of generations and the standard deviation.

Table 1 summarizes our sequence of experiments. We conduct
the experiments in sequence so that once we establish the utility
of a feature, it can be used, or excluded, to enhance overall perfor-
mance in subsequent experiments. �us, experiments listed lower
in Table 1 include most or all of the features described.

6 RESULTS & DISCUSSION
For each map tested, we establish an optimal path length. A run is
considered successful if it �nds a valid path with a length within
5% of optimal. �e success rate is the percentage of runs that are
successful. For each experiment, we report the success rate (S-R),
the mean number of generations required for success (S-M), and
the standard deviation in the number of generations (S-SD).

6.1 E�ects of obstacle intrusion
To determine the impact of obstacle intrusion, we run trials that
isolate it from the path correction operator. For the maps tested,
we present strong evidence that all aspects of the algorithm’s per-
formance bene�t from employing this new objective. Speci�cally,
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Feature Values Tested Explanation Other Parameters Results
obs intrusion o�, on RPC-0, XO-I+ Table 2
path correction RPC-0 no path correction obs intrusion

IPC path correct initial population
RPC-100 path correct every 100 generations
IPC ∧ RPC-100 path correct initial pop & every 100 gens

correction interval RPC-1, RPC-5, RPC-20, RPC-50, RPC-100 path correction every X generations obs intrusion, XO-I+ , [IPC: o�, on] Figure 6
crossover XO-O� no crossover obs intrusion, [RPC-0, RPC-20] Table 3

XO-R random cutpoint crossover
XO-I intersection crossover
XO-I+ intersection crossover, point added

avg move 8, 12, 16, 24, 32, 40, 48, 64 average distance of move mutation obs intrusion, RPC-20,
[XO-O�, XO-R, XO-I, XO-I+]

Table 1: Overview of the experiments reported. �e �rst and second columns list the feature that is the primary subject of the experiment and the values being
tested. �e 4th column provides values for other relevant parameters. As indicated, some experiments used all new features in concert. �e last column provides
pointers to where data can be viewed.

Success Rate (S-R) Success Mean (S-M) Success SD (S-SD)
O� On O� On O� On

Map 1 37.50% 100.00% 903.86 162.23 870.03 76.62
Map 2 0.00% 67.42% N/A 1473.57 N/A 678.06
Map 3 0.00% 82.11% N/A 831.99 N/A 388.29
Map 4 1.09% 77.17% 12.00 71.21 N/A 41.75
Average 9.65% 81.67% 457.93 634.75 870.03 296.19

Table 2: E�ect of obstacle intrusion on all maps.
Comparison of runs on maps 1 through 4 with obstacle intrusion o� and on.
Runs were performed without path correction and with XO-I+. S-M and S-SD
are presented as number of generations.

success rate increases dramatically, mean generations decrease,
standard deviations of generations for successful runs decrease,
and the percentage of successful runs drastically increases.

In particular, only the least complex map, map 1, has signi�cant
success (37.5%) without obstacle intrusion. Maps 2, 3, and 4 have
success rates of 0%, 0%, and 1.09%, respectively. �e 1.09% value for
map 4 represents a single successful run. With obstacle intrusion
enabled, the success rates jump to 100%, 67.42%, 82.10%, and 77.17%,
respectively.

When examining the mean number of generations, there is a
seemingly negative e�ect of obstacle intrusion on map 4. �is is due
to an outlying event where a single success is achieved extremely
fast while obstacle intrusion is o�. �us, the mean generation
measure is arti�cially low for the obstacle intrusion case. �is
behavior, however, is not representative of having obstacle intrusion
turned o� for said map, as evidenced by the 1% success rate, as
opposed to the 77% success rate obtained when obstacle intrusion
is on. Table 2 summarizes our results.

We further analyze the cost of obstacle intrusion in terms of
actual runtimes. �e goal is to ensure that a decrease in the number
of mean generations is not o�set by a commensurate increase in
the time to evolve each generation. With obstacle intrusion on,
each generation can take up to 3 times as long as generations with
obstacle intrusion o�. However, since the success rates increase
dramatically and the overall number of generations decreases, the
additional time per generation is warranted. Only map 1 has su�-
ciently high success rates in both cases to allow meaningful com-
parison. Average time for successful runs with obstacle intrusion
o� is 170.85 versus 50.32 seconds when the objective is on.

6.2 E�ects of path correction
Figure 6 summarizes the results of the path correction tests. �e
graph shows that, on the less deceptive maps (namely, maps 1 and
2), most path-correction interval setups succeed in all cases (light
blue and black lines) with the exceptions of “never” (RPC-0) and
“only on the initial generation”(IPC & RPC-0). Nevertheless, the
number of generations required to �nd a successful path does vary
with parameters. On these maps, path-correcting more o�en tends
to lead to improved results; however, the di�erences are modest.

On the more deceptive maps (i.e. maps 3 and 4), path-correction
setups have a stronger distinguishing e�ect (note the di�erences
among the yellow and green bars across the path-correction inter-
vals). Speci�cally, not validating the initial population appears to
allow for increased initial exploration, an e�ect that is strength-
ened when the path-correcting interval is larger, thus increasing
the initial exploration period (note the generally lower bars on
the le�-most set of RPC-1 – RPC-100 intervals, versus the taller
bars on the right-most set of IPC & RPC-1 – RPC-100 in �gure 6).
Based on these �ndings, it appears that waiting to path-correct the
population is likely to lead to be�er exploration of the solution
space. In our experiments, best overall performances, as measured
by a combination of high success rate and low average number of
generations, are obtained by the setups of path-correcting every
20 or every 50 generations, coupled with NOT path-correcting the
initial population.

Additionally, when comparing path-correction intervals against
runs with no path-correction (RPC-0), we see that the di�erence
can be stark but is map speci�c. For example, while only a small
di�erence is observed on map 1 (compare �rst dark blue bar to the
others), map 2 strongly bene�ts from path-correcting at any interval
(compare the �rst red bar on the graph to the others). On maps 3
and 4, however, the bene�t of path-correction isn’t as clear. In fact,
many setups lead to severely decreased success rates. Nevertheless,
among the bene�cial setups we observe an increase in the number
of successful runs and a decrease in the number of generations and
even standard deviations.

While future testing will include a variety of larger maps, real
world scenarios are generally likely to be less deceptive than the
scenarios tested in this work (closer to map 1, for instance). Never-
theless, since the speci�cs of the deceptiveness may vary, future
algorithm improvements would likely revolve around increasing
its adaptability to the unpredictable nature of the map. Since it is
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Figure 6: Results for experiments on the frequency with which path correction is applied. IPC indicates that members of the initial population were path
corrected. Obstacle intrusion was on in all cases. �e lines and scale on the right indicate success rates for each of the four maps.

XO-O� XO-R XO-I XO-I+
RPC-0 RPC-20 RPC-0 RPC-20 RPC-0 RPC-20 RPC-0 RPC-20

Map 1
S-R 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
S-M 503.60 38.09 337.85 35.25 259.28 31.96 163.66 32.18
S-SD 255.55 7.98 193.14 5.81 128.67 6.85 75.29 7.09

Map 2
S-R 0.00% 99.87% 0.00% 100.00% 0.00% 100.00% 59.00% 100.00%
S-M N/A 79.75 N/A 71.42 N/A 43.48 1501.58 46.90
S-SD N/A 65.00 N/A 17.20 N/A 9.39 611.63 15.31

Map 3
S-R 4.26% 85.16% 1.06% 82.55% 52.13% 87.89% 69.15% 80.99%
S-M 2250.25 184.03 2898.00 259.66 2126.94 136.69 734.38 160.24
S-SD 491.19 282.42 0.00 474.73 528.17 282.65 280.95 345.63

Map 4
S-R 71.88% 90.89% 80.21% 82.55% 82.29% 86.98% 69.79% 85.81%
S-M 73.20 65.32 287.22 259.66 86.63 44.79 130.31 58.83
S-SD 34.08 77.15 581.00 474.73 228.90 45.55 374.46 94.83

Across Four Maps
S-R 44.03% 93.98% 45.32% 92.32% 58.61% 93.72% 74.49% 91.70%
S-M 942.35 91.79 1174.36 104.97 824.28 64.23 632.48 74.54
S-SD 260.27 108.13 258.05 143.30 295.24 86.11 335.58 115.72

Table 3: Crossover comparisons across four maps.
Comparison of no path-correction (RPC-0) versus path correction every 20th
generation, without validating the initial population (RPC-20), across muta-
tion distances centered at 8, 12, 16, 24, 32, 40, 48, and 64 meters. S-R, S-M, and
S-SD represent success rate and the mean and standard deviation, in number
of generations, for successful runs.

generally advisable to conduct multiple evolution runs, one sensible
option is to employ various path-correction intervals across these
runs to mediate the impossibility of knowing the speci�cs of the
sought a�er path before it is found by the GA.

6.3 E�ects of crossover versions
Table 3 compares the e�ects of having no crossover versus standard
random cut-point crossover (XO-R) versus two new crossovers that
employ path intersections as the basis for de�ning cut points (XO-I
and XO-I+).

When looking at averages across all maps, we see that XO-R
leads to a comparable success rate as having no crossover, while
increasing both the number of generations to �nd a solution as well
as the standard deviation. �ese �ndings, along with the additional
cost of performing crossover, suggest that no crossover is preferred
to XO-R.

When comparing no crossover to XO-I and XO-I+, the new
crossovers have a de�nite advantage. Both new operators have
comparable success rates, coupled with a decreased number of
generations and standard deviation. On a map by map basis, the
advantages are not obvious on maps 1 and 2, but become more
apparent on maps 3 and 4, although no clear winner emerges. �e
superiority of the new crossovers stems from their leveraging of the
existing intersection points, which indicate the crossing paths are
spatially compatible and could exchange segments before and a�er
the intersection point. If paths do not already intersect, swapping
random segments is likely to be strongly disruptive to the formed
solutions, complicating exploitation of evolved sub-paths.

6.4 E�ects of mutation step size
To further verify the observed crossover di�erences, a number of
di�erent mutation sizes are tested (mutation distances centered at
8, 12, 16, 24, 32, 40, 48, and 64 meters). When looking at setups with
each of the di�erent mutation sizes for each of the four crossover
types (no crossover, XO-R, XO-I, and XO-I+), we see no clear win-
ning distance across all maps. While it is to be expected that the
ideal average path mutation distance is map speci�c, we are able to
observe a general trend: evolution behavior generally improves as
mutation distance increases, approaching some map-speci�c value,
and decreases again as this value is surpassed.

As before, onmaps 1 and 2 no signi�cant di�erences are observed
upon increasing mutation distances. On map 4, higher mutation
distances appear to be bene�cial. We believe this is a result of a
straight segment being part of the sought a�er, but more di�cult
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to �nd, ideal path. On Map 3, increasing average mutation size
beyond 40 m is no longer bene�cial, which can be explained by the
map’s lack of a straight path as found in map 4.

Based on our �ndings, an average mutation of 24-32 meters
appears to work well for the tested scenarios. For the obstacle
spacing and shapes present, these distances resulted in an e�ective
compromise between exploring the space and exploiting solution
features. Given that bene�cial mutation distances are map speci�c,
it would be sensible to incorporate dynamically adjusting muta-
tion distances. Note that since no winning mutation size emerged,
crossover comparison values presented in Table 3 are averaged
across all of the tested mutation distances (8 through 64 meters).

7 CONCLUSIONS
In this work, we present a GA for path planning in obstacle-�lled,
real-world environments and show that incorporating domain
knowledge into the genetic operators can bene�t GA performance
on this problem. We present two new domain-speci�c genetic
operators and a new domain-speci�c optimization objective that
dramatically improve the success rate of the algorithm and the num-
ber of generations required to achieve success. Further, the maps
for which the algorithm can successfully �nd paths are signi�cantly
more complex and di�cult to solve than in previous work.

In future work, we would like to conduct experiments to deter-
mine if using XO-I and XO-I+ in concert proves bene�cial. �is is
motivated by the data showing that for some maps XO-I is signif-
icantly be�er than XO-I+; for others, the situation is reversed. A
future goal is to �nd a way to leverage the bene�ts of both crossover
versions within a single run.

Some parameters, such as the move mutation distance and the
path correction frequency, demonstrate utility for all maps but
to varying degrees. For example, the algorithm performs be�er
with path correction every 50 generations for Map 3, but every 20
generations for othermaps. We speculate that it might be possible to
leverage features in the environment or observed rates of change in
evolutionary progress to adapt these parameter values dynamically.

Another useful future direction might be to explore improve-
ments to obstacle intrusion. For example, it may be possible to
maintain this objective value separately for each obstacle without
creating an unmanageably large number of objectives. Further, the
current implementation of obstacle intrusion is complex. It may be
possible to simplify the implementation and, in the process, make
the algorithm more e�cient.
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