
Summary on the Human Competitiveness

of TestFul

Matteo Miraz
Dipartimento di Elettronica e Informazione, Politecnico di Milano

piazza Leonardo da Vinci, 32
20133 - Milano (Italy)

email: miraz@elet.polimi.it
phone: +39 02 2399 3770

June 6, 2011

1 Introduction

Software testing should be a fundamental activity of any software development
process: even if a systematic testing activity does not guarantee error-freeness,
a good and sound campaign would increase the quality of the product. Tassey[9]
estimated in $20 billion the amount of money that could be saved every year if
better testing were performed.

Beizer[3] estimated that an adequate testing campaign might require up to
half of the software development effort. To alleviate this burden, the research
community have proposed several ways to (semi-)automatically generate test
data. These approaches rely on deterministic techniques, well-established in
the Software-Engineering world (e.g., SAT solvers). However, the proposals
presented so far “face challenges in generating test inputs to achieve high struc-
tural coverage when they are applied on complex programs in practice”[11].

To move beyond these problems, we employ an Evolutionary Algorithm and
we propose TestFul . It uses a holistic approach to make the state of object
evolve, to enable all the features the class provides, and to generate the short-
est test with the utmost coverage for the class under test. We employ several
complementary coverage criteria to drive the evolutionary search. We aim to
generate tests with high fault detection effectiveness. To this end, we consider
the system from complementary perspectives and we combine white-box analy-
sis techniques with black-box ones. The evolutionary search is completed with
a local one, and we establish a synergic cooperation between them. The evo-
lutionary search concentrates on evolving the state of objects, while the local
search detects the functionality not yet exercised, and directly targets them.

The results we achieved so far exceeded our expectations. Since the early
stages of TestFul , we were noticed how it outperforms other automated ap-

1

proaches [6]. Recently, we shift our focus on the human-competitiveness of
our approach. This paper briefly summarizes the main results we achieved so
far. Section 2 considers a controlled experiments, where students were asked
to generate tests for non-trivial classes. Section 3 instead presents a error in
a widespread library (the standard Java collections) which other automated
approaches does not find (but it is present in the official bug database).

2 Controlled Experiment

To investigate the effectiveness in detecting faults, that is the quality, of gen-
erated tests, we employed mutation analysis [4, 1]. Mutant operators generate
multiple mutated version of the code of interest, each one with a single fault
seeded. Tests are judged according to the number of mutated versions they are
able to detect (kill). However, the application of mutant operators might create
equivalent mutants, which are semantically identical to the original program,
hence tests cannot kill them. For example, a > b and a ≥ b are equivalent if a
cannot be equal to b. To correctly judge the fault-detection ability of tests, one
should (manually) identify and prune equivalent mutants.

Although mutation analysis requires huge computational effort, it provides
a good estimation of the fault-detection abilities of tests [1], allowing one to
compare different ways to generate them.

In particular, Mouchawrab et al. [7] compare the fault detection effectiveness
of state testing against structural testing on classes with state-driven behavior.
They performed a series of controlled experiments involving students from two
universities: Carleton university (Canada) and Università del Sannio (Italy).
One of the three projects1 they use as benchmark is OrdSet, which manages a
bounded and ordered set of integers, and provides operations to add and remove
an element, and merge two sets. Even if this project comprises a single class
with a limited number of lines of code, its complexity is comparable to the other
two projects of their study.

Since the source code of class OrdSet and the mutants they used are publicly
available —through the Software Infrastructure Repository [5]— and [7] pro-
vides sufficient data, we replicated the statistical study. However the authors
did not provide the tests they used in their experiments (because of copyright
issues) and thus we could only perform a comparison on the overall mutation
score, while we could not compare the non-equivalent mutation score or verify
whether the student-written tests and those generated by TestFul are comple-
mentary.

Mouchawrab et al. used MuJava to automatically generate a large set of
mutants (more than 800), but they did not remove or mark the equivalent ones,
hence we performed this task manually. Table 1 reports the average mutation
score and the standard deviation of the tests reported in [7]2 and those generated

1The other two projects used in [7] manage multi-threaded applications, which are currently
not supported by TestFul .

2For the sake of simplicity, we use the same notation used in [7], and we label with “code”

2

Table 1: Mutation score and t-tests results.

Provenience
all mutants

p-value
mean (std)

Carleton Code 56.15% (19.99%) 0
Carleton State 50.27% (17.20%) 0
Sannio Code 70.31% (12.69%) 0.0004
Sannio State 71.96% (12.41%) 0.0004
TestFul “du” 89.32% (0.18%) —

by the three configurations of TestFul . With these last tests, we were also able
to prune equivalent mutants and thus we also report the mutation score for
non-equivalent mutants.

According to these data, TestFul outperforms the tests generated by the
students, since its tests have both a higher average mutation score and a lower
standard deviation. To have a statistical confirmation of this conjecture, we
also performed a statistical hypothesis test between H0 : “There is no statistical
difference between the quality of the tests created by TestFul and those generated
by human beings” vs H1 : “There is statistical difference between the quality of
the tests created by TestFul and those generated by human beings”, and the
p-values are reported in Table 1.

All the p-values are close to 0, hence we can safely reject the null hypothesis
and state that tests generated by TestFul are better than those created by
human beings.

Finally, as for costs, the tests generated by TestFul are (obviously) cheaper:
its generation is completely automatic and it only requires 30 minutes (instead
of the three or four hours given to the students). The cost for executing each
generated test is also reasonable with an average of 7ms.

2.1 Replicated Experiment

In order to gain higher confidence on the human-competitiveness of TestFul , we
performed a controlled experiment similar to the one presented in the previous
section. In particular, we focused on the students attending the “Software En-
gineering” course, which is taught on the last year of our Bachelor degree. The
course focuses on the fundamentals of software engineering, including object-
oriented programming and testing. The students were extremely motivated to
perform well in the experiments, because their final marks in the course also
depend on their performance in the experiment.

The results we achieve were similar to those achieved in the previous exper-
iment, and they are reported in Figure 1 and Table 2. In particular the latter
reports the p-value of the Wilcoxon test between TestFul and random-testing
and the test generated by the students. Again, there is statistical evidence that
TestFul generate tests with a higher quality than the students. Note that the

(C) the structural tests, and with “state” (S) the state tests.

3

random generation is one of the best available techniques to generate tests [2].
In line with our previous results [6], TestFul outperforms the random test gen-
eration.

Figure 1: Mutation Score

Table 2: Mutation score and t-tests results.

Provenience Samples
all mutants p-value

mean (std)

random 984 55.44% (2.22%) < 2.2e-16
Students 37 68.25% (13.54%) 2.26e-07

TestFul “du” 1000 79.31% (5.71%) —

3 Real Fault

We run TestFul on some classes of the Sun’s Java Collection Framework, and
we found a bug which is reported in the sun’s official bug database. Interest-
ingly, other automated approaches and sun’s paid programmers were not able to
find such error, albeit “container classes are the de facto benchmark for testing
software with internal state” [2].

Collections in package java.util are able to handle self-referring collections:

Collection<Object> c = new ArrayList<Object>();

c.add(c);

4

System.out.println(c.toString());

// prints "[(this Collection)]"

However, they are not able to deal with two collections that refer each other
reciprocally:

Collection<Object> a = new ArrayList<Object>();

Collection<Object> b = new ArrayList<Object>();

a.add(b);

b.add(a);

System.out.println(a.toString());

In this case, method toString enters an infinite recursive loop terminated
by the virtual machine by throwing a StackOverflowError. TestFul reported
such an error automatically, while several works on the automatic generation of
tests [10, 12, 8] targeted this package, but they did not discover it. The official
Java bug database reports the error as open issue (entry 4275605).

References

[1] James H. Andrews, Lionel C. Briand, Yvan Labiche, and Akbar Siami
Namin. Using mutation analysis for assessing and comparing testing cov-
erage criteria. IEEE TSE, 32(8):608–624, 2006.

[2] Andrea Arcuri. Longer is Better: On the Role of Test Sequence Length
in Software Testing. In Proceedings of the 3rd International Conference on
Software Testing, Verification and Validation (ICST), 2010.

[3] Boris Beizer. Software testing techniques (2nd ed.). Van Nostrand Reinhold
Co., New York, NY, USA, 1990.

[4] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data se-
lection: Help for the praticing programmer. IEEE Computer, 11(4):34–41,
Apr 1978.

[5] Hyunsook Do, Sebastian G. Elbaum, and Gregg Rothermel. Supporting
controlled experimentation with testing techniques: An infrastructure and
its potential impact. Empirical Software Engineering: An International
Journal, 10(4):405–435, 2005.

[6] Matteo Miraz, Luciano Baresi, and Pier Luca Lanzi. TestFul: an Evolu-
tionary Test Approach for Java. In Proceedings of the 3rd International
Conference on Software Testing, Verification and Validation (ICST), 2010.

[7] Samar Mouchawrab, Lionel C. Briand, Yvan Labiche, and Massimiliano Di
Penta. Assessing, Comparing, and Combining State Machine-Based Testing
and Structural Testing: A Series of Experiments. IEEE Transactions on
Software Engineering, 99(PrePrints), 2010.

5

[8] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball.
Feedback-Directed Random Test Generation. In Proceedings of the Inter-
national Conference on Software Engineering (ICSE), pages 75–84, 2007.

[9] G. Tassey. The Economic Impacts of Inadequate Infrastructure for Software
Testing. Technical report, National Institute of Standards and Technology
RTI Project, 2002.

[10] Paolo Tonella. Evolutionary Testing of classes. In Proceedings of the In-
ternational Symposium on Software Testing and Analysis (ISSTA), pages
119–128, 2004.

[11] Xusheng Xiao, Tao Xie, Nikolai Tillmann, and Jonathan de Halleux. Pre-
cise identification of problems for structural test generation. In Proceeding
of the 33rd international conference on Software engineering, ICSE ’11,
pages 611–620, New York, NY, USA, 2011. ACM.

[12] Tao Xie, Darko Marinov, Wolfram Schulte, and David Notkin. Symstra: A
framework for generating object-oriented unit tests using symbolic execu-
tion. In Nicolas Halbwachs and Lenore D. Zuck, editors, TACAS, volume
3440 of Lecture Notes in Computer Science, pages 365–381. Springer, 2005.

6

