
Научно-технический вестник информационных технологий, механики и оптики, 2023, том 23, № 1 
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2023, vol. 23, no 1 97

 НАУЧНО-ТЕХНИЧЕСКИЙ ВЕСТНИК ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

 январь–февраль 2023 Том 23 № 1 http://ntv.ifmo.ru/

 SCIENTIFIC AND TECHNICAL JOURNAL OF INFORMATION TECHNOLOGIES, MECHANICS AND OPTICS

 January–February 2023 Vol. 23 No 1  http://ntv.ifmo.ru/en/

 ISSN 2226-1494 (print)  ISSN 2500-0373 (online)

январь–февраль 2023 Том 23 Номер 1

© Maslyaev M.A., Hvatov A.A., 2023

doi: 10.17586/2226-1494-2023-23-1-97-104

Multiobjective evolutionary discovery of equation-based analytical models  
for dynamical systems

Mikhail A. Maslyaev1, Alexander A. Hvatov2

1,2 ITMO University, Saint Petersburg, 197101, Russian Federation
1 mikemaslyaev@itmo.ru, https://orcid.org/0000-0001-5595-0802 
2 alex_hvatov@itmo.ru, https://orcid.org/0000-0002-5222-583X

Abstract
In this article, an approach to modeling dynamical systems in case of unknown governing physical laws has been 
introduced. The systems of differential equations obtained by means of a data-driven algorithm are taken as the desired 
models. In this case, the problem of predicting the state of the process is solved by integrating the resulting differential 
equations. In contrast to classical data-driven approaches to dynamical systems representation, based on the general 
machine learning methods, the proposed approach is based on the principles, comparable to the analytical equation-based 
modeling. Models in forms of systems of differential equations, composed as combinations of elementary functions and 
operation with the structure, were determined by adapted multi-objective evolutionary optimization algorithm. Time-
series describing the state of each element of the dynamic system are used as input data for the algorithm. To ensure 
the correct operation of the algorithm on data characterizing real-world processes, noise reduction mechanisms are 
introduced in the algorithm. The use of multicriteria optimization, held in the space of complexity and quality criteria 
for individual equations of the differential equation system, makes it possible to improve the diversity of proposed 
candidate solutions and, therefore, to improve the convergence of the algorithm to a model that best represents the 
dynamics of the process. The output of the algorithm is a set of Pareto-optimal solutions of the optimization problem 
where each individual of the set corresponds to one system of differential equations. In the course of the work, a library 
of data-driven modeling of dynamic systems based on differential equation systems was created. The behavior of the 
algorithm was studied on a synthetic validation dataset describing the state of the hunter-prey dynamic system given by 
the Lotka-Volterra equations. Finally, a toolset based on the solution of the generated equations was integrated into the 
algorithm for predicting future system states. The method is applicable to data-driven modeling of arbitrary dynamical 
systems (e.g. hydrometeorological systems) in cases where the processes can be described using differential equations. 
Models generated by the algorithm can be used as components of more complex composite models, or in an ensemble 
of methods as an interpretable component. 
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Аннотация 
Предмет исследования. В работе предложен метод моделирования динамических систем при условии, что 
управляющие процессом физические законы неизвестны. В качестве искомых моделей приняты полученные 
при помощи управляемого данными алгоритма системы дифференциальных уравнений. В результате решается 
задача прогнозирования состояния процесса при помощи интегрирования результирующих дифференциальных 
уравнений. В отличии от классических подходов к воспроизведению динамических систем на основе данных, 
основанных на общих принципах машинного обучения, предложенный алгоритм позволяет сформировать 
модели процессов, сопоставимые с аналитическими. Метод. В качестве модели процесса приняты системы 
дифференциальных уравнений, представленные через комбинации элементарных функций и операторов, 
определенные при помощи адаптированного эволюционного алгоритма многокритериальной оптимизации. 
В качестве входных данных для алгоритма использованы временные ряды, описывающие состояние каждого 
элемента динамической системы. Для обеспечения работы алгоритма на данных, характеризующих реальные 
процессы, в алгоритм включены механизмы компенсации шума. Использование многокритериальной 
оптимизации, проводимой в пространстве критериев сложности и качества отдельных уравнений системы 
дифференциальных уравнений, позволило улучшить разнообразие предлагаемых кандидатных решений. Также 
получена высокая сходимость алгоритма, что обеспечило поиск модели, наилучшим образом показывающей 
динамику процесса. Результатом работы алгоритма является множество Парето-оптимальных решений 
оптимизационной задачи, каждое из которых соответствует одной системе дифференциальных уравнений. 
Основные результаты. В ходе работы создана библиотека управляемого данными моделирования динамических 
систем на основе систем дифференциальных уравнений. Поведение алгоритма исследовано на синтетическом 
валидационном наборе данных, описывающем состояние динамической системы «охотник-жертва», заданной 
уравнениями Лотки–Вольтерра. Предложен интегрированный в алгоритм механизм прогнозирования 
состояний системы, основанный на решении сформированных уравнений. Практическая значимость. 
Метод применим к управляемому данными моделированию произвольных динамических систем (например, 
гидрометеорологических) в случаях, когда процессы могут быть описаны при помощи дифференциальных 
уравнений. Сформированные алгоритмом модели можно использовать в качестве компонент более сложных 
композитных моделей, или в ансамбле методов как интерпретируемую составляющую.
Ключевые слова
определение дифференциальных уравнений, эволюционная оптимизация, многокритериальная оптимизация, 
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Introduction

Systems of Ordinary or Partial Differential Equations 
(ODEs and PDEs) are powerful tools that can describe 
complex dynamics of structures involving multiple 
variables. While many tools can be used for creating 
mathematical models for processes, such as classical 
machine learning models, or unconventional ones, like 
Bayesian networks [1], they tend to have strict limitations 
to their applications. In cases of many real-world systems, 
in addition to the issues above, these models are often 
abstracted from the intrinsic physical principles guiding 
the system. The classical approach to deriving systems of 
differential equations necessitates the use of mathematical 
analysis in combination with an in-depth understanding of 
the process. The data-driven approach to system discovery 
involves the creation of an individual differential equation 

for each dependent variable that can be measured from a 
system.

The forms of the discovered models containing 
systems of differential equations are selected due to the 
prevalence of differential equation in physical systems. 
For example, flow of viscous fluid is governed by Navier-
Stokes equations that are a system of partial differential 
equations. Dynamics and interactions between electric 
and magnetic components of the electromagnetic field are 
described with Maxwell’s equations which are a system of 
PDE as well. Many simpler systems, such as rotation of the 
spherical pendulum, can be defined with system of ordinary 
differential equations.

Apart from the descriptive possibilities, provided by 
models in forms of systems of differential equations, 
obtained systems can be solved to predict further states of 
the process. While the toolkit for the automatic solution of 
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systems of ordinary/partial differential equations is out of 
scope of this study, several studies have been conducted 
towards implementing equation-solving module into the 
frameworks of differential equations discovery, as in work 
[2]. With this ability to solve model equations, the system 
dynamics can be propagated into the future.

Analysis of existing approaches

Creating models for dynamical systems governed by 
differential equations has recently drawn interest. The first 
perspective to the task involves developing substitutes 
for the equations in forms of propagation operators that 
map the state of the system forward in time like in [3] 
or [4]. Dynamic Mode Decomposition (DMD) involves 
approximation of the system dynamics with a finite-
dimensional linear operator. While that can be useful for 
multiple real-world applications where the propagator is 
linear, many other cases involve non-linear dynamics that 
cannot be fully explained with DMD approach.

A number of data-driven solutions to the problem 
of explaining dynamical system with explicitly derived 
governing equations have been developed. Here, we 
will inspect methods that are applicable not only for 
problems of discovering Ordinary Differential Equations 
(ODE) and systems of ODEs, but also for tasks of partial 
differential equations discovery. The first problem has 
sufficient solution in forms of Multilayer Stochastic Models 
(MSMs) proposed by Kondrashov, Chekroun and Ghil 
in [5]. However, due to the non-Markovian approach, 
the approach is not extendable to the problems of partial 
differential equations.

The earliest advances were made with the symbolic 
regression [6]. Governing equations are viewed as 
computational tree graphs where leaves are inputs, and on 
the other levels various operators are located. The search 
of the equation can be done with the typical graph-targeted 
evolutionary optimization algorithms. More contemporary 
approaches are represented by sparse regression based 
models developed in many works, including Kaheman et al. 
in [7] and Berg & Nystrom in [8], and with artificial neural 
networks (ANN) representation of the dynamical system. 
While there are multiple approaches to discover differential 
equations with artificial neural networks, notable ones 
include PINN [9], PDE-Net, developed by Long et al. [10], 
and physics-informed neural networks by Raissi et al. [11].

Partial differential equation search with sparse 
regression uses LASSO operator that is applied to 
approximate time derivative with a library of candidate 
terms. That library has to contain all possible equation 
terms, and the usage of sparsity operator allows selection 
of only a few active feature terms. The main issues of this 
approach can be linked with its rigidity: the term library 
has to be extensive enough to contain all possible terms 
including all non-linear functions that can be present in 
equations. While many of the presented approaches can 
be applied to the systems of differential equations, their 
possibilities are limited by description of time dynamics 
of a vector variable, like in paper [12].

The algorithm described in this article is based on 
the multiobjective evolutionary optimization approach, 

where the model obtained is evaluated by several metrics 
describing quality and complexity of the equations of the 
system. Thus, the algorithm can provide the parsimonious 
model that is not overly complex but can sufficiently 
simulate the dynamics of the process. However, the 
problem of selecting that parsimonious model from the 
discovered Pareto frontier is the problem for another study. 
This paper is dedicated to the problem of discovering the 
optimal set of candidate equations for the further expert 
conclusions and applications.

Equation discovery problem

To describe some unstudied process, which involves 
multiple (n) dependent variables, we desire to derive a 
system of differential equations. Let us denote these variables 
in general problem statement as u = (u1(t, x), u2(t, x),  
..., un(t, x)). They are defined in the spatial domain Ω, 
represented by coordinates x, and dependent from time t. 
In case of a system of ordinary differential equations, the 
variables can be assumed to be only time-dependent (i.e., 
u1(t), u2(t), ..., un(t)).

For the equations search process, the algorithm requires 
sets of observations arranged on a rectangular grid. For 
the equation search process, the algorithm demands arrays 
of calculated derivatives. While in some cases these 
derivatives can be obtained directly, using measurement 
techniques, in others they necessitate a preprocessing phase 
where the derivatives are calculated numerically from 
the input data variables. While the numerical techniques 
of derivatives estimation are numerous [13], the most 
efficient approaches are finite-difference differentiation 
and analytical differentiation of variable-approximating 
polynomials. In many cases, additional smoothing is 
required to reduce magnitudes of noise in the data. Here, 
the algorithm employs Gaussian smoothing in the spatial 
domain, or replacement of the initial data fields with their 
artificial neural network approximation.

 S(u) = 
L1(u) = 0
…
Lk(u) = 0

,

where S(u) is the system of differential equations that 
involves variables u comprised of individual equations 
L1(u) to Lk(u).

The search for the optimal structures of equations in 
the system is done with the multi-objective optimization 
implemented with the Many-Objective Optimization 
Evolutionary Algorithm Based on Dominance and 
Decomposition (MOEA/DD), introduced in [14].

The search is performed in the criteria space of 
complexities C(Ljʹu) and modeling errors Q(Ljʹu) for each 
individual equation in a system. Therefore, the problem can 
be reformulated to 

 minimize F(S(u)) = f1(S(u)), …, fm(S(u))) = 
 = (C(L1ʹu), Q(L1ʹu), …, C(Lnʹu), Q(Lnʹu)).

Here the constraints are introduced in the equations 
construction logic rather than explicitly specified during 
the optimization problem statement.
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The complexity metric C(Ljʹu) is defined as a number of 
“active” tokens in the equation, i.e. ones presented in terms 
of non-zero coefficients.

The problem of selecting the most appropriate metric 
for evaluating the properties of process representation for 
the equation has been studied in work [2]. The best metrics 
for modeling quality are L2 norm of matrices of differential 
operator residuals represented by: 

 Q(Ljʹu) = ||Ljʹu||2

or the norm of matrices of differences between the input 
variable fields uj and the solutions ũj of corresponding 
equations 
 Q(Ljʹu) = ||uj – ũj||2.

Due to the necessity to conduct optimization, having 
a limited number of candidate solutions, the implemented 
approach uses concept of domination for the proposed 
solutions to the problem of searching for systems of 
equations. It is said that candidate system S1(u) dominates 
candidate system S2(u) if for all optimized criteria fi: 
fi(S1(u)) ≤ fi(S2(u)) and for a single criterion fi: fi(S1(u)) <  
< fi(S2(u)). A solution is called Pareto-optimal if no other 
solutions dominate it. The objective of the implemented 
algorithm is to obtain a set of candidate solutions where 
each solution is Pareto-optimal. In addition to the Pareto-
optimal set, other non-dominated sets can be introduced 
by induction: n-th non-dominated level is comprised by 
solution that is not dominated by any solutions, except the 
ones on the n 1-th, or lower levels.

Approach description

In this section, we briefly describe the main diversions 
of our approach from the original algorithm [14] and 
case-specific solutions employed during the system of 
differential equations derivation, such as evolutionary 
operators. Following the optimization objectives stated in 
the previous section, the algorithm performs a simultaneous 
search of system equations and parameters which define the 
equations structures. The structure of an equation can be 
decomposed into a set of equation terms and a set of their 
real-valued coefficients ai as in:

 Lʹju = ∑iai∏jtij.

The terms of constructed equations are represented 
with a tokens product ∏jtij, tij ∈ T, elementary building 
blocks containing arbitrary user-defined functions. This 
approach enables the discovery of non-linear equations 
with compound structures that can be represented as a sum 
of product terms. During search of differential equations, 

various derivatives (e.g. ) are included into the pool T. 

Other case-specific functions or external variables can 
be included as tokens into the token pool to be available 
for the algorithm during equation search. For example, 
suppose a study objective is to discover the equation for 
the temperature dynamics in a medium. In that case, the 
velocity field of the medium can be considered an external 
variable.

To create a system that can model the studied process, it 
is possible to assume that each equation in the system must 
represent the spatial or temporal dynamics of at least one 
variable. By describing a variable dynamic, we understand 
that the equation contains corresponding derivatives of 
the variable. During the evolutionary search, evolutionary 
operators affecting the structures of the equations have to 
preserve the descriptive properties of such terms.

Evolutionary algorithm details

To start the evolutionary optimization, the algorithm 
has to construct the initial population P = S1(u), ..., S2(u) 
of randomly generated candidate systems of differential 
equations. As mentioned above, a system equation has to 
represent a corresponding variable’s dynamic. Therefore, 
during the initialization, a variable is assigned to each 
equation as its “main” one. Without loss of generality, we 
can assume that the i-th equation describes i-th variable.

To emphasize the duality of the system discovery, an 
individual encoding must represent both equations and 
meta-parameters of the equations. The chromosome of an 
individual contains computational graphs of the equations 
as “equation genes” and values of the parameters that 
define the creation of the equation. Equation graphs take 
the form of tree graphs, where the leaves are elementary 
functions stored in tokens, and intermediate nodes are 
product operators that form equation terms from factor 
tokens. The graph root comprises the summation operator 
which combines separate terms into the equation. The 
scheme of the equation system encoding is presented in 
Fig. 1.

A regularization tool has to be created to regulate the 
complexity of the equations proposed by the algorithm. Its 
main objective is to exclude terms with low significance 
and explanatory power in the resulting model. Selection 
of the terms can be made with sparse regression, operating 
with the LASSO operator: 

 ||Fkβ – Ftarget,k||22 + λ||β||1 – min
β

.

As the predicted value of the operator, a random 
equation term representing an “equation variable”, i.e., 
containing its derivative, is selected. LASSO operator 
can obtain a vector of term weights β with values of the 
terms in the left-hand side of the equation, evaluated on 
the space-time grid, normalized and combined into matrix 
Fk, with vector of right-hand part values of Ftarget,k. In 
the operator statement ||·||i, the i-th norm of the matrix is 
designated.

The sparsity constant parameter λ determines the 
penalty of optimized functional with respect to the values 
of weights in β, prioritizing setting zero coefficients to 
the less significant predictors. The algorithm can control 
the equation complexity by regulating the value of the 
sparsity constant. Higher values of λ promote equations 
with fewer numbers of terms, while lower values tend to 
lead to more complex equations. Due to the significance 
of the sparsity parameter for the equation definition, it is 
included for each equation in the system in the encoding 
of the individual.
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The coefficients of the equation are computed with 
linear regression where active terms from the left-hand part 
are combined into a matrix of predictors, and values of the 
term on the right part are used as a predicted value.

Evolutionary operators

The general idea of evolutionary operators affecting the 
population to obtain the set of optimal systems of equations 
is borrowed from the single-objective algorithm of equation 
discovery proposed in [15]. The alterations of an individual 
equation can be done with operators of mutations and 
crossover. The operators are applied to individuals of the 
population following the guidelines presented in the paper 
and describing the base algorithm [16].

The process of the evolution is held iteratively, for a 
specified number of iterations and over sectors, defined 
by the weight vectors introduced into the space of 
optimization criteria to decompose the problem into smaller 
sub-problems. As in the original version, the algorithm 
constructs a set of weight vectors W = w1, ..., wN from a 
unit simplex, one for each candidate solution in P.

After the weights are defined, each individual of the 
population P is assigned to a random sector of the criteria 
space. That enables a more even coverage of the search 
space due to the property that the individuals converge in 
the directions of weights.

The selection of the individuals for the crossover 
operators is held in a manner that respects problem 
decomposition. In the base scenario, the parents are 
selected from the neighboring sectors to the one associated 
with the processed weight vector. However, to increase 
the algorithm exploratory properties, which are vital in 
the problem of equation construction, with a relatively 
small probability, the parents are selected from other, non-
adjacent sectors. The selected candidates are added to the 
parent pool, and the crossover is held among them.

The crossover operator affects both systems of 
equations and corresponding vectors of meta-parameters.

The interactions between equations of the systems 
comply with variable description requirements. For each 
modeled variable, the corresponding equations of the parent 

systems are affected by crossover. Two main types of 
operators are used here: term-wise exchange and complete 
equation swapping.

The first type of equation-level crossover operator 
involves an exchange of terms between parent equations. 
All initial terms of the equation are divided into three 
groups. First group includes terms present in the same form 
in both parents. Second group includes terms present in 
both parents, but in this case the parameters of their tokens 
are different. Third group contains unique ones between 
parents terms. The first group is not affected by crossover 
at all. The crossover between parents in the second group is 
parametric-only: the same tokens exchange the parameter 
values from a specified proportion.

After the creation of offspring individuals, they are 
affected by mutation operators. Their purpose is two-
fold. They are increasing the exploratory properties of 
the algorithm and preventing the generation of repeating 
individuals which is mandatory for the implemented multi-
objective optimization approach. The main idea of the 
mutation operator is the random change of a term into 
a new, unique one. The first type of operator changes a 
factor representing a token into a new, randomly generated 
one; or changes token parameters (e.g. frequency of a sine 
token) with an increment taken from normal distribution 
N(0, σ) with pre-defined variance σ2. The second type 
involves a replacement of a term with a newly generated one. 
When the offspring creation procedures are conducted, the 
Pareto levels are updated with respect to the newly created 
solution. The population update algorithm considers the 
decomposition of the problems with a set of weight vectors 
and their domination. The approach in which the evolutionary 
operators are applied during the search is presented in Fig. 2.

Validation

Several validation experiments have been conducted to 
assess the proposed approach performance in discovering 
systems of equations that govern the dynamical system. 
The most demonstrative approach to check the behavior 
of our algorithm employs synthetic data obtained from the 
solution of known equations.

Fig. 1. Scheme of the encoding for a system of ODEs for arbitrary variables xj with sparsity constants λi as meta-parameters. 
Tnm denotes the m-th term of the n-th equation of the system, while fn is an arbitrary right-hand side function of the n-th equation 

of the system
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A hunter-prey model described by Lotka-Volterra 
equations:

  S(u) = 
u = αu – βuv
v = δuv – γu

was selected as the dynamical system to be described. 
The model represents simplified dynamics of two 
species: u = u(t) depicts “prey”, while v = v(t) represents 
the “hunter” species. Usual time-derivative convention  

u =  is implemented. Constants α, β, δ, and γ determine 

the dynamics of the system. 
The solutions of the equations were numerically 

obtained using Runge-Kutta methods. The solutions for 
u(t) and v(t) are demonstrated in Fig. 3.

The Pareto-optimal set of equations obtained from the 
algorithm typically has forms similar to the one presented 
in Fig. 4. Here, the algorithm output is reformulated with 

the combination of optimized metrics: instead of evaluating 
complexity or approximation errors of individual equations 

Fig. 2. Generalized scheme of the main search sequence of the algorithm

Fig. 3. Visualization of the solution of Lotka-Volterra equations

Fig. 4. Pareto frontier of systems of equations obtained by the algorithm
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they are viewed for the system integrally. The allowable 
interval for complexity controlling parameters λ used 
in sparsity operators is between 10–8 and 10–2. Next, an 
additional family of trigonometric tokens was introduced 
into the pool to create a diversity of created terms.

Ten independent runs with ten multi-objective 
optimization evolutionary algorithm iterations and ten more 
with 25 iterations were performed, and the obtained Pareto-
optimal sets were compared. Due to the relatively simple 
structure of the initial system of equations, a successful 
convergence to the similar (in terms of obtaining sets with 
similar equations) was achieved in every case. While this 
test cannot be considered a comprehensive study of the 
algorithm properties, it can be viewed as proof that the 
algorithm can operate and discover the equations.

Conclusion

In this article, we proposed a robust extension of the 
single differential equation discovery approach to the 
problems of creating models for systems of differential 
equations. The multi-objective approach enables the 

creation of a diverse set of models. With the analysis of 
complexity-quality tradeoff, an expert should be able to 
select the parsimonious model for the process description. 
The approach has high levels of versatility that are 
untypical and novel among equation discovery algorithms. 
It can obtain both ordinary and partial differential equations 
with arbitrary structures. 

The main drawback of the developed approach has high 
computational cost which can be especially noticeable in 
multidimensional data (i.e., systems of partial differential 
equations) or data with high noise levels where high 
numbers of iterations are required for the algorithm 
convergence. Therefore, improving the algorithm 
computational performance can be the priority for further 
development. Also, developing sufficient tools for using the 
derived equations for the process state prediction is another 
goal of the next research. 

The numerical solution data and the Python code that 
partially reproduce the experiments are available at the 
GitHub repository of the ITMO University1.

1 Available at: https://github.com/ITMO-NSS-team/EPDE 
(accessed: 07.12.2022).
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