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Abstract. Art Media Classification problem is a current research area
that has attracted attention due to the complex extraction and analy-
sis of features of high-value art pieces. The perception of the attributes
can not be subjective, as humans sometimes follow a biased interpreta-
tion of artworks while ensuring automated observation’s trustworthiness.
Machine Learning has outperformed many areas through its learning
process of artificial feature extraction from images instead of design-
ing handcrafted feature detectors. However, a major concern related to
its reliability has brought attention because, with small perturbations
made intentionally in the input image (adversarial attack), its predic-
tion can be completely changed. In this manner, we foresee two ways of
approaching the situation: (1) solve the problem of adversarial attacks
in current neural networks methodologies, or (2) propose a different app-
roach that can challenge deep learning without the effects of adversarial
attacks. The first one has not been solved yet, and adversarial attacks
have become even more complex to defend. Therefore, this work presents
a Deep Genetic Programming method, called Brain Programming, that
competes with deep learning and studies the transferability of adversarial
attacks using two artworks databases made by art experts. The results
show that the Brain Programming method preserves its performance in
comparison with AlexNet, making it robust to these perturbations and
competing to the performance of Deep Learning.

Keywords: Brain Programming · Deep learning · Symbolic learning ·
Art media classification · Adversarial attacks

1 Introduction

Art media refers to the materials and techniques used by an artist to create
an artwork. The categorization problem of visual art media is an open research
area with challenging tasks, such as the classification of fine art pieces, which is

c© Springer Nature Switzerland AG 2020
G. Bebis et al. (Eds.): ISVC 2020, LNCS 12509, pp. 68–79, 2020.
https://doi.org/10.1007/978-3-030-64556-4_6



A Deep GP Methodology Robust to Adversarial Perturbations 69

extremely difficult due to the selection of features that distinguish each medium.
For example, an art expert analyzes the style, genre, and media from artworks
to classify them.

The artwork style is associated with the author’s school and is usually
described by its distinctive visual elements, techniques, and methods. Recog-
nition of the form is related to the localization of features at different levels. The
classical hierarchy of genres ranks history-painting and portrait as high, while
landscapes and still-life are low because they did not contain persons. There-
fore, handling these many aspects of an automated classification system is a big
challenge.

The recent progress of Machine Learning (ML) in Computer Vision (CV)
tasks has made methodologies such as Deep Learning (DL) adaptable to many
research areas like the categorization problem of art media. Commonly, these
methodologies learn from the visual content and contextual information of the
image to assign the class or category to which it belongs. DL is known to achieve
exemplary performance in many areas. However, recent studies have demon-
strated that Adversarial Attacks (AA) pose a predicting threat to DL’s success
because with small perturbations intentionally created, they could lead to incor-
rect outputs to a model.

In this matter, AA is a popular research topic covering all aspects of the
attack architectures and defense mechanisms to diminish the attack damage.
Nevertheless, despite significant efforts to solve this problem, attacks have
become more complex and challenging to defend. Today, researchers study AA
from different viewpoints. On the one hand, white-box attacks refer to when
the targeted model is known, including its parameter values, architecture, and
training method. On the other hand, black-box attacks are when AA generates
adversarial examples or perturbed images with no information on the targeted
architecture model during learning [1]. Another feature of the attacks is that
it can be specifically designed to predict a desirable class (targeted attack) or
produce an incorrect output no matter the class (untargeted attack). Further-
more, it has been reported that AA can be transferable from an ML model
to others. Hence, we foresee two ways to approach the situation: (1) solve the
problem of adversarial attacks in current neural networks methodologies, or (2)
propose a different approach that can challenge deep learning by being immune
to adversarial attacks.

This article presents a study of the transferability and the effects of adver-
sarial attacks made for deep learning to an approach that solves the problem of
image classification through a genetic programming based (GP-like) methodol-
ogy called “Brain Programming” (BP) (explained in Sect. 4). Extend the study
of the effects of adversarial attacks on a different approach for image classifi-
cation would highlight the differences between performance and robustness to
these perturbations.
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2 Related Research

The categorization problem of art media in CV has arisen from the need to have
automatic systems for identifying valuable artwork pieces to have a trustworthy
analysis that can not be subjective as humans are prone to be. Firstly, hand-
crafted feature extraction approaches were used to solve the problem. One of
the first approaches [8] proposed a Discrete Cosine Transform (DCT) coefficients
scheme for feature extraction for painter identification by classifying the artist’s
style. They were able to find five painters among 30 artworks with encouraging
but not perfect results.

Later, wavelets were used to analyze several features from artworks like tex-
ture, geometry, style, brush strokes, and contours. In [13], artist classification
was made using wavelets of brush strokes drawn on ancient paintings. In [7],
wavelets were used with several classification algorithms such as support vector
machines (SVM), hidden Markov models, among others for artist identification
of 101 high-resolution grayscale paintings. In [2], it is presented a comparative
study of different classification methodologies based handcrafted features such as
semantic-level features with an SVM, color SIFT (Scale-Invariant Feature Trans-
form) and opponent SIFT with bag-of-words and latent Dirichlet allocation with
a generative bag-of-words topic model for fine-art genre classification.

Recently, ML approaches benefit from the learning process to acquire fea-
tures from the images’ visual content. For example, in [9], they proposed a
GP method that uses transform-based evolvable features to evolve features that
are evaluated through a standard classifier. In [4,15], authors reported using a
GP-like methodology that aims to emulate the behavior of the brain based on
neuroscience knowledge for art media categorization having competitive results
with a DL model. Nevertheless, approaches based on convolutional neural net-
work (CNN) became famous because of their outstanding performances in many
areas. Bar et al. [3] proposed a compact binary representation combined with
the PiCoDes descriptors from a deep neural network to identify artistic styles
in paintings showing exceptional results on a large-scale collection of paintings.
In [17], they employ a deep CNN to recognize artistic media from artworks
and classify them into several categories such as oil-paint brush, pastel, pencil,
and watercolor. They compare their results with that of trained humans having
comparable results.

Thus, even CNN architectures have classified large-scale sets of images with
multiple classes with similar results that trained humans, the security concerns
about these architectures make them unreliable. The brittleness is because, with
small perturbations produced on the image, DL can be intentionally fooled. For
example, there are critical areas in museums and galleries such as artist identi-
fication and forgery detection, where the confidence of the prediction must not
depend on a system that can be manipulated by an imperceptible perturbation.
This catastrophic scenario could lead to forgeries to circulate on the market or
be misattributed to a specific artist.
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3 Problem Statement

In this section, we detail the serious problem in the DL structure to the adver-
sarial attacks. First, given an input image x and its corresponding label y, DL
establish a relationship within the data by the following equation:

y = f(x) = wᵀx , (1)

where function f() is the DL model, whose associated weights parameters are
w. However, an erroneous behavior is notable when the input image suffers a
small change in its pixels xρ = x + ρ such that:

f(x) �= f(xρ) (2)
||x − xρ||p < α (3)

where p ∈ N, p ≥ 1, α ∈ R,α ≥ 0. So, it can be defined an Adversarial Example
as an intentional modified input xρ that is classified differently than x by the
DCNN model, with a limited level of change in the pixels of ||x − xρ||p < α, so
that it may be imperceptible to a human eye.

The simplest explanation of how adversarial examples works to attack DL
models is that most digital images use 8-bit per channel per pixel. So, each
step of 1/255 limits the data representation; the information in between is not
used. Therefore, if every element of a perturbation ρ is smaller than the data
resolution, it is coherent for the linear model to predict distinct given an input x
than to an adversarial input xρ = x+ρ. We assume that forasmuch as ||ρ||∞ < α,
where α is too small to be discarded, the classifiers should predict the same class
to x and xρ.

Nonetheless, after applying the weight matrix w ∈ RM×N to the adversarial
example, we obtain the dot product defined by wᵀxρ = wᵀx+wᵀρ. Hence, the
adversarial example will grow the activation by wᵀρ. Note that the dimensional-
ity of the problem does not grow with ||ρ||∞; thus, the activation change caused
by perturbation ρ can grow linearly with n. As a result, the perturbation can
make many imperceptible changes to the input to obtain big output changes.

DL’s behavior is hugely linear to be immune to adversarial examples, and
nonlinear models such as sigmoid networks are set up to be in the non-saturating
most of the time, becoming them more like a linear model. Hence, every per-
turbation as accessible or challenging to compute should also affect deep neural
networks. Therefore, when a model is affected by an adversarial example, this
image often affects another model, no matter if the two models have different
architectures or were trained with different databases. They just have to be set
up for the same task to change the result [5].

4 Methodology

The experiment consists of studying the transferability of an AA from CNN to
BP. This problem’s methodology considers unconventional training, validation,
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and test databases since we apply two different image databases compiled by
art experts. Training and validation databases are constructed from the Kaggle
database, while testing uses a standard database WikiArt (See Table 1). The
aim is to emulate a real-world scenario where the trained models are tested with
an unseen standard benchmark compiled by a different group of experts.

Validation and test databases are used to compute adversarial examples using
the fast gradient signed method (FGSM) and AlexNet architecture using stan-
dard values for scale ε = 2, 4, 8, 16, 32 to build the perturbations. The imple-
mentation of the FGSM was made on Pytorch v1.1. AlexNet was trained using
transfer learning with the pre-trained model from Pytorch, and BP utilizes the
models reported in [4,15].

We formulate the art media classification problem in terms of a binary clas-
sification, whose main goal is to find the class elements. Also, we employ classi-
fication accuracy as a measure of performance for the classifiers, which is simply
the rate of correct classifications given by the following formula:

Accuracy =
1
N

N∑

n=1

d(y′n, yn)

where N is the total of test images, y′n is the predicted label for the image n, yn

is the original label for the image n, and d(x, y) = 1 if x = y and 0 otherwise. In
the following sections, the methods used for the experiment are briefly explained.

4.1 Brain Programming

BP is an evolutionary paradigm for solving CV problems that is reported in
[6,14,16]. This methodology extracts characteristics from images through a hier-
archical structure inspired by the brain’s functioning. BP proposes a GP-like
method, using a multi-tree representation for individuals. The main goal is to
obtain a set of evolutionary visual operators (EV Os), also called visual operators
(V Os), which are embedded within a hierarchical structure called the artificial
visual cortex (AVC).

BP can be summarized in two steps: first, the evolutionary process whose pri-
mary purpose is to discover functions to optimize complex models by adjusting the
operations within them. Second, the AVC, a hierarchical structure inspired by the
human visual cortex, uses the concept of composition of functions to extract fea-
tures from images. The model can be adapted depending on the task, whether it
is trying to solve the focus of attention for saliency problems or the complete AVC
for categorization/classification problems. In this section, we briefly described the
BP workflow (see Fig. 1), but further details are explained in [4].

Initialization. First, we set the parameters of the evolutionary process of BP
and establish the image databases. Next, a random initial population is created
to evolve the population. In BP, an individual is a computer program represented
by syntactic trees embedded into a hierarchical structure.

Individuals within the population contain a variable number of syntactic
trees, ranging from 4 to 12, one for each evolutionary visual operator (V OO,
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Fig. 1. Brain Programming workflow

V OC , V OS , V OI) regarding orientation, color, shape, and intensity; and at
least one tree to merge the visual maps produced and generate the Mental Maps
(MM). Details about the usage of these visual operators are explained in detail
in [4,6,14].

Functions within each V O are defined with expert knowledge to attend char-
acteristics related to the dimension they represent and updated through genetic
operations. After creating the first generation, the AVC model is used to evaluate
the population’s fitness, as shown in Fig. 1.

Fitness function: Artificial Virtual Cortex (AVC). The evolutionary loop
starts evaluating each individual by using the V Os generated in the previous
step to extract features from input images through the AVC structure depicted
in Fig. 1. The result of this procedure is a descriptor vector that encodes the
object. Then, BP uses an SVM to calculate the classification rate for a given
training image database. We explain the detailed steps below. The entrance to
the system is an RGB image that belongs to a predefined class. This system
follows a function-based instead of data-based paradigm; hence, we define an
image I as the graph-of-a-function.

Definition 1. Image as the graph of a function. Let f be a function f : U ⊂
R

2 → R. The graph or image I of f is the subset of R3 that consist of the points
(x, y, f(x, y)), in which the ordered pair (x, y) is a point in U and f(x, y) is the
value at that point. Symbolically, the image I = {(x, y, f(x, y)) ∈ R

3|(x, y) ∈ U}.
This definition is based on the fact that the images result from the impression

of variations in light intensity along the two-dimensional plane.
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Visual Maps. Each input image is transformed to build the set Icolor = {Ir,
Ig, Ib, Ic, Im, Iy, Ik, Ih, Is, Iv}, where each element corresponds to the color
components of the RGB (red, green, blue), CMYK (Cyan, Magenta, Yellow,
and black) and HSV (Hue, Saturation, and Value) color spaces. Elements on
Icolor are the inputs to four V Os defined by each individual. It is important to
note that each solution in the population should be understood as a complete
system and not only as a list of three-based programs. Individuals represent
a possible configuration for feature extraction that describes input images and
are optimized through the evolutionary process. Each V O is a function applied
to the input image to extract specific features from it, along with information
streams of color, orientation, shape, and intensity; each of these properties is
called a dimension. The output to V O is an image called Visual Map (V M) for
each dimension.

Conspicuity Maps. The next step is the center-surround process; it efficiently
combines the information from the V Ms and is useful for detecting scale invari-
ance in each of the dimensions. This process is performed by applying a Gaussian
smoothing over the V M at nine scales; this processing reduces the visual map’s
size by half on each level forming a pyramid. Subsequently, the six levels of
the pyramid are extracted and combined. Since the levels have different sizes,
each level is normalized and scaled to the visual map’s dimension using polyno-
mial interpolation. This technique simulates the center-surround process of the
biological system. After extracting features, the brain receives stimuli from the
vision center and compares it with the receptive field’s surrounding information.
The goal is to process the images so that the results are independent of scale
changes. The entire process ensures that the image regions are responding to the
indicated area. This process is carried out for each characteristic dimension; the
results are called Conspicuity Maps (CM), focusing only on the searched object
by highlighting the most salient features.

Mental Maps. Following the AVC flowchart, all information obtained is synthe-
sized to build maps that discriminate against the unwanted information previ-
ously computed by the CMs. These new maps are called Mental Maps (MMs).

The AVC model uses a set-of-functions to extract the images’ discriminant
characteristics; it uses a functional approach. Thus, a set of k V Os is applied
to the CMs for the construction of the MMs. These V Os correspond to the
remaining part of the individual that has not been used. Unlike the operators
used for the V Ms, the operators’ whole set is the same for all the dimensions.
These operators filter the visual information and extract the information that
characterizes the object of interest. Then, using Eq. (4), where d is the dimension,
and k represents the cardinality of the set of V OMMk

, we apply the MMs for
each dimension.

MMd =
k∑

i=1

V OMMi
(CMd) (4)
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Descriptor Vector and Classification. The following stage in the model is
the construction of the image descriptor vector (DV ). The system concatenates
the four MMs and uses a max operation to extract the n highest values; these
values are used to construct the DV . Once we get the descriptor vectors of all
the images in the database, the system trains an SVM. The classification score
obtained by the SVM indicates the fitness of the individual.

Selection and Reproduction. A set of individuals is selected from the pop-
ulation with a probability based on fitness to participate in the genetic recom-
bination, and the best individual is retained for further processing. The new
individual of the population is created from the selected individual by applying
genetic operators. Like genetic algorithms, BP executes the crossover between
two selected parents at the chromosome level using a “cut-and-splice” crossover.
Thus, all data beyond the selected crossover point is swapped between both
parents A and B. The result of applying a crossover at the gene level is per-
formed by randomly selecting two subtree crossover points between both par-
ents. The selected genes are swapped with the corresponding subtree in the other
parent. The chromosome level mutation leads to selecting a random gene of a
given parent to replace such substructure with a new randomly mutated gene.
The mutation at the gene level is calculated by applying a subtree mutation
to a probabilistically selected gene; the subtree after that point is removed and
replaced with a new subtree.

Stop Criteria. The evolutionary loop is terminated until one of these two
conditions is reached: (1) an acceptable classification rate, or (2) the total number
of generations.

4.2 Convolutional Neural Networks

The ML community introduced the idea of designing DL models that build
features from images. LeCun et al. [12] presented the modern framework of CNN,
but the first time that CNN starts attracting attention was with the development
of the AlexNet model [10]. The authors participated in the ImageNet Large-Scale
Visual Recognition Challenge 2012, where they reduced by half the error rate
on the image classification task.

AlexNet layer-architecture consists of 5 convolutional, three max-pooling,
two normalization, and three fully connected layers (the last with 1000 softmax
outputs), 60 Million parameters in 500,000 neurons. Additionally, Alex et al. [10]
introduced the use of ReLU (Rectified Linear Unit) as an activation function
with the benefits of much faster training than using tanh or sigmoid functions.
To prevent overfitting, they also introduced the dropout and data augmentation
methods.

4.3 Adversarial Attack

The FGSM [5] is the most popular, easy, and widely used method for computing
adversarial examples from an input image, see Fig. 2. It increases the loss of
the classifier by solving the following equation: ρ = ε sign(∇J(θ,x, yl)), where
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∇J() computes the gradient of the cost function around the current value of
the model parameters θ with the respect to the image x and the target label yl.
sign() denotes the sign function which ensures that the magnitude of the loss
is maximized and ε is a small scalar value that restricts the norm L∞ of the
perturbation.

The perturbations generated by FGSM take advantage of the linearity of
the deep learning models in the higher dimensional space to make the model
misclassify the image. The implication of the linearity of deep learning models
discovered by FSGM is that it exists transferability between models. Kurakin
et al. in [11] reported that after using the ImageNet database, the top-1 error rate
using the perturbations generated by FGSM is around 63–69% for ε ∈ [2, 32].

Fig. 2. Illustrations of adversarial examples from each class generated using FGSM.
The first row shows an image from each class. In the second row, the perturbations
computed by the FGSM are presented. The third row shows the resulting adversarial
example at ε = 32, the strongest perturbation.

4.4 Database Collection

We follow the protocol and databases from the experiment of the art media cat-
egorization problem reported in [4]. The training and validation set of images
are obtained from the digitized artwork database downloaded from the Kaggle
website. This database comprises five categories of art media: drawing, paint-
ing, iconography, engraving, and sculpture. For class engraving, there were two
different kinds of engravings. Most of them were engravings with only one color
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defining the art piece. The other style was Japanese engravings, which intro-
duce color to the images. Therefore, the engraving class was split into engraving
grayscale and color. For testing, a standard database WikiArt is used from which
it was selected images of the same categories. Since the Wikiart engraving class
is grayscale, the ukiyo-e class (Japanese engravings) from Wikiart was used as
the engraving color class. Also, the set of images of the category landscapes,
which are paintings from renowned artists, is added to test the painting class.
Table 1 provides the number of images for each database.

Table 1. Total number of images per class obtained from Kaggle and Wikiart
Databases

Drawings Engraving

gray scale

Engraving color Painting Iconography Sculpture Caltech

Background

Train 553 426 30 1021 1038 868 233

Validation 553 284 19 1021 1038 868 233

Wikiart 204 695 1167 2089 251 116 233

Wikiart

Landscapes

136

5 Results

In this section, we present and discuss the experimental results summarized
in Tables 2 and 3. Table 2 provides results for the five classes of the Kaggle
database. Each method presents its performance for training, validation, and
the adversarial examples from the FGSM computed with the validation database
using ε = 2, 4, 8, 16, 32. Table 3 shows the result for the Wikiart images where
both methods were tested. It is shown the outcome of the model for the clean
images as well as the adversarial examples.

We observe in Table 2 that AlexNet surpassed BP in almost every class when
considering the validation database except for the painting class. However, as
we add perturbations to the validation images, the effect of AA becomes more
notable. It is shown how the performance of AlexNet deteriorates in proportion
to the AA. In the worst-case–Engraving color images–there is a drop in per-
formance from 94.72% to 17.22% of classification accuracy. On the other hand,
BP preserves its performance on all experiments even when we added the most
substantial perturbation of ε = 32. Hence, if we look at each of the comparisons
(bold numbers), BP outperforms AlexNet.

For the testing part (see Table 3), we have that BP obtained notable better
results for painting, painting landscapes, and drawings. In contrast, AlexNet
obtained superior performance on engraving grayscale, engraving color, and
iconography. We should mention that in any case, the results of both methods
are very good. For the sculpture class, BP matches the performance of AlexNet
with a difference of around 0.6%. Then again, the susceptibility of AlexNet to the
AA is a significant problem. Its accounts fall abruptly on all classes; meanwhile,
the BP output remains steady.
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Table 2. Results obtained after applying BP and AlexNet on the Kaggle database.
Each method presents its classification accuracy for training, validation, and the adver-
sarial examples using FGSM computed from the validation database at ε = 2, 4, 8, 16, 32

Brain Programming (BP) AlexNet

train val ε2 ε4 ε8 ε16 ε32 train val ε2 ε4 ε8 ε16 ε32

Sculpture 93.26 92.79 92.79 92.79 92.79 92.79 92.79 99.36 95.78 90.93 90.93 63.24 27.5 14.57

Painting 99.68 99.04 98.25 98.25 98.48 98.41 98.48 98.96 97.69 93.46 93.46 83.01 66.99 69.30

Engraving gray scale 89.76 92.05 92.23 92.23 92.23 91.70 91.87 99.76 99.29 96.11 96.11 78.62 56.71 47.88

Engraving color 98.33 97.37 97.37 97.37 97.37 97.37 97.37 100 100 73.68 73.68 23.68 13.16 15.79

Iconography 92.84 91.42 91.42 91.42 91.42 91.42 91.42 99.61 98.66 96.30 96.30 83.24 52.26 38.39

Drawings 96.56 90.59 90.59 90.59 90.59 90.59 90.59 96.44 91.35 85.75 85.75 66.79 44.91 35.62

Table 3. Results obtained after applying BP and AlexNet on the Wikiart database.
Each method presents its classification accuracy for testing, and the adversarial exam-
ples using FGSM computed from the test database at ε = 2, 4, 8, 16, 32

Brain Programming (BP) AlexNet

test ε2 ε4 ε8 ε16 ε32 test ε2 ε4 ε8 ε16 ε32

Sculpture 90.54 90.83 90.83 90.83 90.83 90.83 91.15 87.61 87.61 65.49 44.25 36.87

Painting 100 95.65 95.65 95.65 95.65 95.65 94.06 90.57 90.57 64.64 41.04 41.00

Painting Landscapes 100 100 100 100 100 100 93.77 86.99 86.99 61.25 41.46 35.77

Engraving gray scale 91.55 92.64 92.64 91.97 91.72 91.63 98.58 94.06 94.06 75.06 57.32 54.64

Engraving color 89.92 89.68 89.68 89.74 89.86 89.80 94.72 73.55 73.55 25.49 12.30 17.22

Iconography 91.74 91.66 91.66 91.82 91.74 91.74 96.07 93.39 93.39 70.04 37.40 28.72

Drawings 94.05 94.28 94.28 93.59 93.81 94.50 86.73 77.8 77.8 57.21 41.19 32.72

6 Conclusions and Future Work

In conclusion, AA are a severe threat to the security of DL models. Their per-
formance can be extremely weakened with such small perturbations. With tra-
ditional CV approaches, it is not easy to obtain results comparable to DL mod-
els. However, we propose a GP-like methodology inspired by the brain’s behav-
ior to solve art media classification. This work innovates compared with a DL
model by considering performance and robustness against adversarial attacks.
Also, we want to extend the robustness to adversarial attacks using CV main-
stream approaches from image classification for future work. Furthermore, we
will increase the number of adversarial attacks to assess the classifiers’ perfor-
mance under various conditions.
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