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ABSTRACT
This contribution presents a novel approach for the auto-
matic generation of a low-level feature extractor that is use-
ful in higher-level computer vision tasks. Specifically, our
work centers on the well-known computer vision problem of
interest point detection. We pose interest point detection
as an optimization problem, and are able to apply Genetic
Programming to generate operators that exhibit human-
competitive performace when compared with state-of-the-
art designs. This work uses the repeatability rate that is
applied as a benchmark metric in computer vision literature
as part of the GP fitness function, together with a measure
of the entropy related with the point distribution across the
image. This two measures promote geometric stability and
global separability under several types of image transforma-
tions. This paper introduces a Genetic Programming im-
plementation that was able to discover a modified version of
the DET operator [3], that shows a surprisingly high-level of
performace. In this work emphasis was given to the balance
between genetic programming and domain knowledge exper-
tise to obtain results that are equal or better than human
created solutions.

Categories and Subject Descriptors
I.4.7 [Image Processing and Computer Vision]: Fea-
ture Measurement—feature representation, invariants; I.2.2
[Artificial Intelligence]: Automatic Programming—pro-

gram synthesis.

General Terms
Algorithms, Experimentation, Performance, Theory.

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’06, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007 ...$5.00.

Keywords
Evolutionary Computer Vision, Synthesis of Interest Points.

1. INTRODUCTION
Nowdays, interest point detectors are commonly used to

approach low-level tasks as part of the pre-attentive stage
that localize distintive parts of the image that will be used
in the attentive stage, in which relationships between these
features and grouping takes place. Interest points are image
pixels that exhibit a high level of variation with respect to
a particular local measure. Common low-level features such
as: edges, blobs, corners, and interest points simplify image
analysis by reducing the overwhelming amount of informa-
tion contained in images that higher level vision tasks need
to process. Interest points in particular are used by state-of-
the-art systems to perform high-level vision tasks, such as:
object detection and recognition, matching, 3D reconstruc-
tion, tracking, and image registration, to name but a few.
Different types of interest point operators 1 can be found
in computer vision literature. Interest point operators can
be grouped together according to the manner in which they
model image information. From this we can identify two ma-
jor groups. One group models images as three-dimensional
surfaces. The idea is to extract measures directly related to
the principal curvatures computed around each point [3, 4,
10]. A second more commonly used group of operators use
the gradient distribution around each point captured by the
local second moment matrix as their interest measure [8, 7,
20].

All current interest point detectors are hand coded de-
signs, product of the analysis and interpretations of how the
problem has been confronted by a human mind. Analysis
is understood as the science which treats of the exact re-
lations existing between quantities or magnitudes, and of
the methods by which, in accordance with these relations,
quatities sought are deducible from other quatities known or
supposed; the science of spatial and quantitative relations.
On the other hand, modern trends in computer science are
developing new approaches that are based on the idea of au-
tomation of empirical learning through a process of synthe-
sis. Synthesis is understood as the combination of separate

1The terms interest point operators and interest point detec-
tors are used interchangeably in computer vision literature.



Figure 1: A stereo pair taken at the EvoVisión Laboratory, notice how interest points can be used to compute
the correspondence between both images. The interest points depicted on both images were obtained with
the IPGP2 presented in this work that outperforms past human designs.

elements of thought into a whole, as of simple into complex
conceptions. Thus, synthesis refers to the art or process of
making a compound by putting the ingredients together, as
contrasted with analysis. In genetic programming it is com-
mon to find the idea of synthesizing a design from scratch
[1]. However, we prefer the idea of using both approaches
in our own research [18, 15, 17]. Analysis and synthesis,
though commonly treated as two different methods, are, if
properly understood, only the two necessary parts of the
same method. Each is the relative and correlative of the
other. This work presents how an appropiate analysis of
the problem of interest point detection guide genetic pro-
gramming in the search of a synthetic operator that exhibit
human competitive results. The properties that are aimed
to be fulfilled by an interest point detector are:

1. Global separability between extracted points.

2. High information content when compared to other
pixels.

3. Stability under certain types of image transforma-
tions, i.e. image rotations.

Global separability of extracted points suggests that on
an average-scene interest points should not be crowded to-
gether on isolated portions of the image, see Figure 1. This
criterion is obviously image dependent, and requires a pri-
ori knowledge of the expected number of points and their
position within the image. High information content refers
to the uniqueness of the local neighborhood of the extracted
points. This property would facilitate interest point match-
ing based on local descriptors. Stability of detected inter-
est points is probably the most important criterion and is
the only one for which a widely accepted metric exists, the
detectors repeatability rate [19]. This list is in no way ex-
haustive nor is it rigorous. However, it does express desired
properties of interest point operators that are beneficial for
high-level computer vision tasks that heavily rely on the ex-
tracted points.

Our approach poses interest point detection as an op-
timization problem, and presents a Genetic Programming
based learning approach that constructs computer functions
with stable and high performance, using a widely accepted
measure. The evolved operators exhibit a high repeatability

rate and global separability. Furhermore, the Genetic Pro-
gramming learning approach discovered a modified version
of the DET interest point operator proposed by Beaudet in
1978. This last result exhibits the powerful capabilities of
Genetic Programming for automatic generation of efficient
and coherent problem solutions when an appropriate fitness
function is implemented.

This paper is organized as follows: Section 2 presents a
brief discussion on using machine intelligence to automati-
cally construct computer vision applications. Section 3 is an
overview of popular interest point operators. Section 4 out-
lines our proposed method and defines its implementation
details. Section 5 shows preliminary experimental results.
Section 6 is a discussion of the presented work and gives
final conclusions, and finally in Section 7 we contemplate
possible future work.

2. RELATED WORK
The development of machine learning algorithms that solve

computer vision problems, is a relatively new and highly
promising field of research [16]. These methods can be re-
garded as part of a broad class of algorithms that perform
visual learning. Visual learning is the process in which an ar-
tificial system autonomously acquires knowledge from train-
ing images to solve a given visual task [11]. Most of the
published work in this area is centered on solving mid-level
and high-level vision tasks; these tasks include: feature se-
lection, feature construction or synthesis, object detection,
and image segmentation, to name but a few. On the other
hand, learning low-level feature extraction has received less
attention from the research community. A plausible expla-
nation for this is the fact that common low-level operators
have been extensively studied and are well understood by
the computer vision research community. However, evolu-
tionary computation has the capability of endowing a learn-
ing system with the ability to try new and uncommon image
processing strategies that human designers might, or will not
consider. If we learn image operators in this way, it is possi-
ble to provide researchers with deeper insights on the nature
of the problem domain. For example, Bala et al. [2] use a
Genetic Algorithm to perform feature selection for recogniz-
ing visual concepts. Sun et al. [21] perform PCA on two
different object classes, and use a GA to select the best sub-



set of eigenimages for object recognition. Interestingly, the
subset chosen by the learning algorithm shows that a high
corresponding eigenvalue is not necessary nor sufficient for
a given eigenimage to be useful for classification. Working
at the feature synthesis level, machine learning algorithms
are used to generate operators that extract specialized im-
age features for a specific problem. Howard et al. [9] use
Genetic Programming to generate image features for target
detection in SAR images. Zhang et al. [22], use Genetic Pro-
gramming to perform multiclass detection of small objects
present in large images. This work uses domain indepen-
dent pixel statistics as the GP terminal set, and shows how
a single evolved program solves both the object detection
and localization problem in a coupled manner.

Directly related to our work, and specifically addressing
the problem of automatically learning an interest point de-
tector, two main contributions exist. Ebner [5] posed in-
terest point detection as an optimization problem, and at-
tempted to evolve the Moravec interest point operator [13]
using Genetic Programming. The author reports a 15%
localization error between interest point detection of his
evolved operator and that obtained using the Moravec de-
tector. Nevertheless, this result cannot be taken as an ac-
ceptable evaluation criterion for the quality of the evolved
operator due to the fact that the Moravec operator cannot
be assumed to be a suitable performance metric. A second
paper by Ebner et al. [6] presents an evolved operator that
is optimized for computing the optical flow in a particular
image sequence. Despite the fact that [6] showed promising
results when computing optical flow estimation, the opti-
mization criteria that was used does not guarantee the gen-
erality for other vision tasks where interest point detection
is required.

The Genetic Programming learning approach used on both
attempts by Ebner fails to capture the essence of the desired
properties that a general interest point detector should at-
tempt to fulfill. The shortcomings of these contributions are
overcome in our present work by realizing a thorough anal-
ysis in order to define a suitable problem statement. We
optimize interest point detectors with a measure of their sta-
bility given by the operators repeatability rate; as well as,
a quantification of the operators global separability. Rea-
peatability rate is a standard computer vision performance
metric for interest point detectors [19], and global separa-
bility was estimated by including an entropy measure of the
interest point localization histogram as part of the fitness
evaluation function. As a result, a complete fitness measure
was developed and applied in the genetic programming used
to solve this task.

3. INTEREST POINT OPERATORS
This section covers only relevant aspects of interest point

detection necessary to explain our work. For a more thor-
ough review of interest point and corner detectors we recom-
mend the work by Nobel [14], Schmid, et al. [19], and Olague
and Hernández [17]. Interest point detection is a byprod-
uct of research devoted to corner detection in images. Cor-
ner detectors are commonly classified in three main classes:
Countour based methods, Parametric model based methods

[17] and Image intensity based methods [13, 3, 10, 7, 8, 20].
The class of corner detectors that operate directly on the
intensity image are more appropriately referred to as inter-
est point detectors. These operators define a function that

operates on a local neighborhood and extracts a cornerness

or interest measure from every pixel in the image. This
operation produces a new image that can be referred to as
the interest image, that is thresholded to extract the points
with the highest interest measure. Conceptually, this type of
operators were designed as corner detectors; however, their
detection capabilities are not limited to points that con-
form to the geometric concept of ”corner” [17]. Hence, they
extract all points where image intensity variations are high
with respect to a particular measure. Furthermore, the kind
of image features they extract are better explained with the
more general concept of interesting or interest point. In this
context, interest points are image pixels that show a dis-
tinctive property that make them suitable for applications
where specific scene points need to be tracked across multi-
ple images.

Popular interest point detectors can be grouped according
to the manner in which they model and extract image infor-
mation. The first major group extracts an interest measure
using the gradient distribution around each point captured
by the local second moment matrix as their interest measure.
The first method that established interest point detectors
was proposed by Moravec in 1977. The work by Harris and
Stephens [8], Forstner [7], and Shi and Tomasi [20], among
others, extend the concept proposed by Moravec. From this
group the Harris operator has emerged as the most pop-
ular detector used in vision applications. A second group
of interest point operators extract measures directly related
to the principal curvatures computed around each point.
This includes detectors proposed by Beaudet [3], Kitchen
and Rosenfeld [10], and Dreschler and Nagel [4].

3.1 Interest Point Operator Performance
As previously mentioned, robust image features are nec-

essary to solve computer vision problems related to: 3D
reconstruction, image registration, matching, object detec-
tion, recognition, and optical flow estimation, to mention
but a few. These applications require local image features
that are simple to detect, provide useful information for
post-processing, and show geometric stability under differ-
ent types of image transformations. Such transformations
include: translation, rotation, illumination change, scale
change and affine transformations. Of the previous list of
transformations, interest points are only suitable for robust
detection in the presence of the first three. Region detectors
robust to scale change and affine transformations require a
more general operation beyond the scope of this study. Nev-
ertheless, an efficient and reasonable evaluation criteria is re-
quired to estimate the reliability of interest point detectors.
The very important work done by Schmid, et al. [19] estab-
lished an effective measure that captures the essence of the
desired characteristic of robustness and stability for low-level
feature extractors. The authors establish the repeatability
rate as this primary performace metric. Based on this per-
formance metric that is obtained experimentally, they con-
clude that the Harris operator shows the greatest stability,
outperforming every other detector included in the survey.
The results reported in [19] have heavily contributed into
making the Harris interest point detector the most widely
used detector within the computer vision community. How-
ever, their list of compared detectors is not exhaustive, being
that they leave out the detectors proposed by Baudet, and
Shi and Tomasi, to name a couple. Moreover, according



to our results Beaudet’s detector shows competitive results
compared with Harris. Also, we would like to mention that
the comparison is made through experimentation due to the
difficulty to make such a comparison with analythical ap-
proaches [17]. This is also a favorable point to justify the
use of Genetic Programming.

3.2 Repeatability
The performance metric for evaluating the operator’s sta-

bility and robustness is the repeatability rate that measures
how interest point detection is independent of imaging con-
ditions [19]. A point x1 detected in image I1 is repeated in
image Ii if the corresponding point xi is detected in image
Ii. In the case of planar scenes a relation between points x1

and xi can be established with the homography H1,i where:

xi = H1,ix1 (1)

The repeatability rate measures the number of repeated
points between both images, with respect to the total num-
ber of detected points. However, parts of image I1 may not
appear on the transformed image Ii. In order to account for
this, repeated and detected points are only counted if they
lie in the common parts of image I1 and image Ii. Further-
more, a small amount of detection error needs to be taken
into account because exact localization is not required in
most computer vision applications. This is in direct contrast
with high precision applications common in the photogram-
metric community that would require the more precise ca-
pabilities of parametric model based corner detectors [17].
Consequently, to compute the repeatability rate, a repeated
point is said to be detected at pixel xi if it lies within a given
neighborhood of xi of size ε, see figure 2.

The set of point pairs (xc
1, x

c
i ) that lie in the common part

of both images and correspond within an error of size ε is
defined by:

Ri (ε) = {(xc
1, x

c
i ) |dist (H1,ix

c
1, x

c
i ) < ε} (2)

Thus the reapeatability rate ri (ε) of points extracted from
image Ii with respect to points from image I1, is defined by
the following equation:

ri (ε) =
|Ri (ε) |

min (γ1, γi)
(3)

where γ1 = | {xc
1} | and γi = | {xc

i} | are the total number
of points extracted from image I1 and image Ii respectively
[19].

4. OUTLINE OF OUR APPROACH
We present a visual learning approach to automatically

construct an interest point detector using Genetic Program-
ming. Each individual in the GP population represents a
candidate interest point operator. To define an application
of Genetic Programming it is necessary to define three con-
cepts: The Fitness Function, Function Set and the Terminal

Set.

4.1 Fitness Function
Our approach uses a fitness assignment that is propor-

tional to its mean repeatability rate rJ (ε) computed for a
set J = {Ii} of n training images, where i = 1...n. A base
image Ii is used to compute the repeatability on all other
images in J . However, the GP search could easily get lost

Figure 2: A 3D point X is projected onto points x1

and xi on images I1 and Ii respectively. Point x1

is said to be repeated by xi, if a point is detected
within a neighborhood of xi of size ε. For planar
scenes x1 and xi are related by the homography H1,i.

in unwanted maxima if appropriate considerations are not
taken into account when designing the fitness function. For
example, one can imagine a degenerate case where the GP
search could concentrate on individuals that extract use-
less points clustered together on textureless regions and still
manage to have a high repeatability rate. Moreover, the
training images present highly textured regions distributed
across the image plane. Hence, a good detector should ex-
tract uniformally distributed points across the image plane.
Consequently, three other terms were incorporated in the
fitness function and combined in a multiplicative way:

f (x) = rJ (ε) · φα
x · φβ

y · Nδ
% (4)

where the functions,

φx =
1

1 + e−a(Hx−c)
(5)

φy =
1

1 + e−a(Hy−c)
(6)

are sigmoidal functions used to promote point dispersion
along the x and y directions. The terms H

·
given by:

H
·
= −

X

·

P (·)log2 [P (·)] (7)

represent the entropy value of the spatial distribution of
detected interest points along each direction. P (·) is ap-
proximated by the histogram of interest point localizations.
Moreover, because of the logarithmic nature of the entropy
function, φx and φy are set to promote entropy values lying
within a very small range. The final term,

N% =
requestedpoints

extractedpoints
(8)

is a penalizing factor that reduces the fitness value for de-
tectors that return less than the total number of requested
points. Finally, α, β and δ control the amount of influ-
ence that each term has on f (x). Parameter setting was
tunned experimentally. The apropriate value for parame-
ters of (φx, φx) were obtained by estimating average point
localization entropy produced by the Harris and DET oper-
ators.

4.2 Function Set
The function set F contains 6 unary functions and 5 bi-

nary functions. All functions, input and output, are data



Image Image

*

*

Lx Ly

()2

()2 ()2

LyLx

Gσ=2 Gσ=2 Gσ=2

HARRIS

*k

()2()2

LyLx

Gσ=2 Gσ=2

*

IPGP2

Gσ=1
Gσ=1

*

Lx,x Ly,y Lx,y Ly,x

IPGP1

Gσ=1

Gσ=2

Figure 3: Tree representation for three different in-
terest point detectors. From top to bottom: IPGP1,
IPGP2 and Harris. It can be easily observed the
simple structure found by the GP search when com-
pared with the most popular interest point detector
of computer vision.

matrices with the same size as images in J . The subset of
binary and unary functions are:

F2ary = {+,−, | − |, ∗, /} (9)

F1ary =
n

A2,
√

A, log2, EQ, G(σ = 1), G(σ = 2)
o

(10)

Where EQ is the histogram equalization, and G(σ = x) are
Gaussian filters with blur σ. The complete function set is:

F = F2ary ∪ F1ary (11)

4.3 Terminal Set
Great care was taken to design an appropriate terminal

set. Thanks to previous understanding of the analytical
properties of corner detectors described in [19, 17], we can
conclude that an effective IP operator requires information
pertaining to the rate of change in image intensity values.
Consequently, the terminal set includes first and second or-
der image derivatives. However, we do not claim that this
set is necessary nor sufficient and further work will try to
determine an optimal set of useful information for interest
point detection. Furthermore, the terminal set is image de-
pendent, which means that each image Ii ∈ J has a corre-

sponding Ti defined by:

Ti = {Ii, Li,x, Li,x,x, Li,x,y, Li,y,y, Li,y, Ii,σ=1} (12)

Where Li,w = Ii∗Gw(σ = 1) are image derivatives computed
in the w direction using a convolution with Gaussian kernel
derivatives, and Ii,σ=1 is the smoothed image computed by
a convolution with a Gaussian smoothing function.

5. EXPERIMENTS
This section explains the implementation of our approach

and summarizes our experimental results.

5.1 Implementation Details
The implementation of the previously described approach

was programmed on Matlab, with the Genetic Programming
toolbox GPLAB 2. The image sequence used for training was
the VanGogh set of a planar scene with rotation transforma-
tions. For testing, two image sequences were used: Monet
and Graph. The former is a sequence of a rotated planar
scene and the latter is an image under different illumination
conditions. All image sets were downloaded from the Vi-
sual Geometry Group website 3, along with matlab source
code for computing the repeatability rate and binary files
for extracting Harris interest points. All experiments were
made on a PC with AMD64 processor and 526MB of RAM
running Linux OS. The following list specifies the GP run-
time parameters for both experimental runs reported in the
following section:

• Population size and initialization: We used a pop-
ulation size of 75 individuals initiated with the Ramped
Half-and-Half method. The maximum size was set
with a tree depth of 7 levels.

• Crossover and Mutation: The crossover probabil-
ity was set to pc = 0.85, and mutation proability was
set to pµ = 0.1.

• Selection Operator: Selection for genetic operators
was performed using a tournament selection method
that uses lexicographic parsimony pressure [12]. In this
kind of tournament selection if equally fit individuals
are selected for competition, the smallest one is chosen.
The tournament size was set to 4.

• Survival method: We use a keep-best survival strat-
egy. In this method the best individual from both par-
ents and children is retain for the new population. The
remaining places in the new population are occupied
by children only.

• Fitness function parameter settings: The param-
eters for our fitness function were set experimentally,
and are the following: ax = 7, cx = 5.05, ay = 6,
cy = 4.3, α = 10, β = 10, δ = 2.

5.2 Results
We present two different interest point operators gener-

ated with our approach: IPGP1 and IPGP2 4 out of 30

2http://gplab.sourceforge.net/index.html, GPLAB A Ge-
netic Programming Toolbox for MATLAB by Sara Silva
3http://www.robots.ox.ac.uk/∼vgg/research/
4IPGP stands for ”Interest Point detector with Genetic Pro-
gramming”



HARRIS

IPGP1

IPGP2

HARRIS
IPGP1

IPGP2

Figure 4: Performance measures: left) repeatability rate plotted against image rotation for the VanGogh
images; right)repeatability rate plotted against illumination change for the Graph images.

IPGP1 G(σ = 2) ∗ [G(σ = 1) ∗ I − I]
IPGP2 G(σ = 1) ∗ [Lxx · Lyy] − G(σ = 1) ∗ [Lxy · Lyx]

Table 1: Mathematical expressions for IPGP1 and
IPGP2.

attempts. Each detector was generated on a separate run
of our algorithm. Even do more experiments have been car-
ried out we believe that these operators suffice to exemplify
the usefulness of our approach. The first operator IPGP1
has an extremely simple structure. The basic approach of
IPGP1 for interest point extraction is a simple two step pro-
cess: the first step is to extract high frequencies from the
image by subtracting a smoothed version of the image from
the original; the second step uses a Gaussian to smooth the
extracted high frequencies. This is basically an operation
that is known as difference-of-Gaussian. IGP1 does not use
image derivatives to extract image regions with high sig-
nal variations. Despite its seemingly simple operation it
achieves a 95% of average repeatability rate on the training
image set that is the principal benchmark used by Schmid
et al. in 2000. The second evolved detector IPGP2, rep-
resents a modified version of the DET operator proposed
by Beaudet [3] in 1978. The DET operator is the determi-
nant of the Hessian Matrix computed at each image pixel.
Baudet defined the DET measure as follows:

DET = Ix,x · Iy,y − Ix,y · Iy,x (13)

The function constructed by our learning approach for IPGP2
is expressed in the second row of Table 1. IPGP2 has the
same basic structure as DET, with the added difference that
the function is averaged around a local neighborhood with a
smoothing Gaussian function. In this instance the GP was
able to discover a similar human-made design. The average
repeatability rate for IPGP2 on the training set was 92%.

Table 1 summarizes the mathematical expressions for each
evolved operator, IPGP1 and IPGP2. Figure 3 shows the
tree structure for IPGP1, IPGP2 and the Harris operator
for comparison. Figure 4 shows two graphs characterizing
the performance of both evolved operators, compared with
the Harris detector. Finally, figure 5 shows extracted inter-
est points from samples taken from each of the three image
sequences.

6. DISCUSSION AND CONCLUSIONS
This paper presented a novel approach that performs learn-

ing to construct a low-level feature extraction function for
computer vision applications. The type of low-level fea-
tures that are extracted are image interest points. Our
approach poses interest point detection as an optimization
problem, and developed a learning methodology that allows
a computer to automatically generate interest point detec-
tors. Learning was conducted with Genetic Programming.
The fitness evaluation function promoted performance that
was optimized according to the repeatability rate and global
separability of extracted points. Experimental results showed
that the proposed approach generates reliable and compact
operators. Our Genetic Programing implementation uses
image derivatives as a terminal set, and simple arithmetic
functions as a function set.

We present two learned operators IPGP1 and IPGP2 that
exhibit competitive results when compared with the most
popular interest point detector in computer vision proposed
by Harris and Stephens. Furthermore, the construction of
IPGP2 demonstrated the ability of Genetic Programming
to rediscovered a modified version of a previous man made
design, Beaudet’s DET operator, which is one of the earliest
proposed interest point detectors. Nevertheless, the results
presented in this paper, are not intended as a claim that the
evolved operators are superior to any other. However, the
results clearly demonstrate that learning techniques based
on simulated evolution are capable of producing competi-
tive and useful low-level feature extractors. Moreover, it
is our belief that if using a similar methodology, it could
be possible to design learning algorithms that generate ap-
propriate feature extractors for different kinds of computer
vision tasks.

This work provides an example in the area of computer vi-
sion of how evolutionary computation could achieve human-
competitive results. This work fulfills six out of the eight
criteria that are used in the evolutionary computation com-
munity to demonstrate if an automatically created result is
considered human-competitive:

(B) The result is equal to or better than a result that was
accepted as a new scientific result at the time when it was
published in a peer-reviewed scientific journal.

(C) The result is equal to or better than a result that was
placed into a database or archive of results maintained by
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Figure 5: Sample images of extracted interest points. Columns correspond to Harris, IPGP1 and IPGP2
from left to right. Rows correspond VanGogh, Graph and Monet from top to bottom.



an internationally recognized panel of scientific experts.
(D) The result is publishable in its own right as a new

scientific result independent of the fact that the result was
mechanically created.

(E) The result is equal to or better than the most re-
cent human-created solution to a long-standing problem for
which there has been a succession of increasingly better
human-created solutions.

(F) The result is equal to or better than a result that was
considered an achievement in its field at the time it was first
discovered.

(G) The result solves a problem of indisputable difficulty
in its field.

7. FUTURE WORK
The current state of our study leaves some open issues,

such as:
• Could a fitness function be designed that avoids pa-

rameter tuning? Could the incorporation of fitness function
parameters in the evolutionary process be advantageous?
• Is the terminal set proposed in this paper sufficient or

necessary? It is possible to augment the terminal set that
we used. For example, we could add image responses to
different types of filter banks or texture extraction methods.
• What is the effect of including more than one image

sequence as a training set? Will this produce a more general
operator?

Our work also opens the path to several promising re-
search opportunities, that include:
• Explicitly adding a term to the fitness function that

accounts for high information content around a local neigh-
borhood, using the response to a local descriptor to estimate
the usefulness of the extracted point.
• Construct specific interest point detectors that are op-

timized for a certain type of images, i.e. outdoor scenes, or
indoor office environments.
• Extend this work to extract interest regions, a more

general and far more interesting result for certain vision ap-
plications.
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