
DRAFT

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, FINAL DRAFT 1

Flight of the FINCH through the Java Wilderness
Michael Orlov and Moshe Sipper

Abstract—We describe FINCH (Fertile Darwinian Bytecode
Harvester), a methodology for evolving Java bytecode, enabling
the evolution of extant, unrestricted Java programs, or programs
in other languages that compile to Java bytecode. Our approach
is based upon the notion of compatible crossover, which produces
correct programs by performing operand stack-, local variables-,
and control flow-based compatibility checks on source and desti-
nation bytecode sections. This is in contrast to existing work that
uses restricted subsets of the Java bytecode instruction set as a
representation language for individuals in genetic programming.
We demonstrate FINCH’s unqualified success at solving a host
of problems, including simple and complex regression, trail nav-
igation, image classification, array sum, and tic-tac-toe. FINCH
exploits the richness of the Java Virtual Machine architecture and
type system, ultimately evolving human-readable solutions in the
form of Java programs. The ability to evolve Java programs will
hopefully lead to a valuable new tool in the software engineer’s
toolkit.

Index Terms—Java bytecode, automatic programming, soft-
ware evolution, genetic programming.

I. INTRODUCTION

IN A recent comprehensive monograph surveying the field
of genetic programming (GP), Poli et al. noted that:

While it is common to describe GP as evolving pro-
grams, GP is not typically used to evolve programs
in the familiar Turing-complete languages humans
normally use for software development. It is instead
more common to evolve programs (or expressions or
formulae) in a more constrained and often domain-
specific language. [27, ch. 3.1; emphasis in original]

The above statement is (arguably) true not only where
“traditional” tree-based GP is concerned, but also for other
forms of GP, such as linear GP and grammatical evolution [27].

In this paper, we propose a method to evolutionarily im-
prove actual, extant software, which was not intentionally
written for the purpose of serving as a GP representation in
particular, nor for evolution in general. The only requirement
is that the software source code be either written in Java—a
highly popular programming language—or can be compiled
to Java bytecode.

The established approach in GP involves the definition of
functions and terminals appropriate to the problem at hand,
after which evolution of expressions using these definitions
takes place [11, 27]. This approach does not, however, suit
us, since we seek to evolve extant Java programs. Evolving
the source code directly is not a viable option, either. The
source code is intended for humans to write and modify, and

M. Orlov and M. Sipper are with the Department of Computer Sci-
ence, Ben-Gurion University, PO Box 653, Beer-Sheva 84105, Israel (email:
{orlovm,sipper}@cs.bgu.ac.il).

is thus abundant in syntactic constraints. This makes it very
hard to produce viable offspring with enough variation to
drive the evolutionary process (more on this in Section II-B).
We therefore turn to yet another well-explored alternative:
evolution of machine code [22].

Java compilers almost never produce machine code directly,
but instead compile source code to platform-independent byte-
code, to be interpreted in software or, rarely, to be executed in
hardware by a Java Virtual Machine (JVM) [15]. The JVM is
free to apply its own optimization techniques, such as Just-in-
Time (JIT), on-demand compilation to native machine code—a
process that is transparent to the user. The JVM implements a
stack-based architecture with high-level language features such
as object management and garbage collection, virtual function
calls, and strong typing. The bytecode language itself is a well-
designed assembly-like language with a limited yet powerful
instruction set [7, 15]. Fig. 1 shows a recursive Java program
for computing the factorial of a number, and its corresponding
bytecode.

The JVM architecture, illustrated in Fig. 2, is successful
enough that several programming languages compile directly
to Java bytecode (e.g., Scala, Groovy, Jython, Kawa, JavaFX
Script, and Clojure). Moreover, Java decompilers are available,
which facilitate restoration of the Java source code from
compiled bytecode. Since the design of the JVM is closely
tied to the design of the Java programming language, such
decompilation often produces code that is very similar to the
original source code [18].

We chose to automatically improve extant Java programs
by evolving the respective compiled bytecode versions. This
allows us to leverage the power of a well-defined, cross-
platform, intermediate machine language at just the right level
of abstraction: We do not need to define a special evolutionary
language, thus necessitating an elaborate two-way transfor-
mation between Java and our language; nor do we evolve
at the Java level, with its encumbering syntactic constraints,
which render the genetic operators of crossover and mutation
arduous to implement. This paper extends significantly upon
our preliminary results reported in [25].

Note that we do not wish to invent a language to improve
upon some aspect or other of GP (efficiency, terseness, read-
ability, etc.), as has been amply done (and partly summarized
in Section II-E and [25]). Nor do we wish to extend standard
GP to become Turing complete, an issue which has also been
addressed [34]. Rather, conversely, our point of departure is
an extant, highly popular, general-purpose language, with our
aim being to render it evolvable. The ability to evolve Java
programs will hopefully lead to a valuable new tool in the
software engineer’s toolkit.

The FINCH system, which affords the evolution of unre-

FINAL DRAFT

mailto:orlovm@cs.bgu.ac.il

2 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, FINAL DRAFT

class F {
int fact(int n) {

// offsets 0-1
int ans = 1;

// offsets 2-3
if (n > 0)

// offsets 6-15
ans = n *

fact(n-1);

// offsets 16-17
return ans;

}}

(a) The original Java source code.
Each line is annotated with the cor-
responding code array offsets range.

0 iconst 1
1 istore 2
2 iload 1
3 ifle 16
6 iload 1
7 aload 0
8 iload 1
9 iconst 1

10 isub
11 invokevirtual #2
14 imul
15 istore 2
16 iload 2
17 ireturn

(b) The compiled bytecode. Offsets
in the code array are shown on the
left.

Fig. 1. A recursive factorial function in Java (a), and its corresponding
bytecode (b). The argument to the virtual method invocation (#2) references
the int F.fact(int) method via the constant pool.

stricted bytecode, is described in Section II. Section III then
presents the application of FINCH to evolving solutions to
several hard problems: simple and complex regression, trail
navigation, intertwined spirals (image classification), array
sum, and tic-tac-toe. We end with concluding remarks and
future work in Section IV.

II. BYTECODE EVOLUTION

Bytecode is the intermediate, platform-independent repre-
sentation of Java programs, created by a Java compiler. Fig. 3
depicts the process by which Java source code is compiled
to bytecode and subsequently loaded by the JVM, which
verifies it and (if the bytecode passes verification) decides
whether to interpret the bytecode directly, or to compile and
optimize it—thereupon executing the resultant native code. The
decision regarding interpretation or further compilation (and
optimization) depends upon the frequency at which a particular
method is executed, its size, and other parameters.

A. Why Target Bytecode for Evolution?

Our decision to evolve bytecode instead of the more high-
level Java source code is guided in part by the desire to avoid
altogether the possibility of producing non-compilable source
code. The purpose of source code is to be easy for human
programmers to create and to modify, a purpose which con-
flicts with the ability to automatically modify such code. We
note in passing that we do not seek an evolvable programming
language—a problem tackled, e.g., by Spector and Robinson
[30]—but rather aim to handle the Java programming language
in particular.

Evolving bytecode instead of source code alleviates the
issue of producing non-compilable programs to some extent—
but not completely. Java bytecode must be correct with respect
to dealing with stack and local variables (cf. Fig. 2). Values
that are read and written should be type-compatible, and
stack underflow must not occur. The JVM performs bytecode

fact(7) method call frame

fact(6) method call frame

fact(5) method call frame (active)

int

5

“F”

(this)

int

4

(stack top)

“F”

(this)

int

5

int

1

0 1 2

11

“F”

object

Operand Stack
References objects on the heap. Used to

provide arguments to JVM instructions, such

as arithmetic operations and method calls.

Local Variables Array
References objects on the heap.

Contains method arguments and

locally defined variables.

Program Counter
Holds offset of currently executing

instruction in method code area.

Heap
Shared objects store.

Fig. 2. Call frames in the architecture of the Java Virtual Machine (JVM),
during execution of the recursive factorial function code shown in Fig. 1,
with parameter n = 7. The top call frame is in a state preceding execution of
invokevirtual. This instruction will pop a parameter and an object reference
from the operand stack, invoke the method fact of class F, and open a new
frame for the fact(4) call. When that frame closes, the returned value will
be pushed onto the operand stack.

class F
{
 int fact(int n)
 {
 int ans = 1;

 if (n > 0)
 ans = n *
 fact(n-1);

 return ans;
 }
}

iconst_1
istore_2
iload_1
ifle 16
iload_1
aload_0
iload_1
iconst_1
isub
invokevirtual #2
imul
istore_2
iload_2
ireturn

mov %edx,%eax
dec %eax
test %eax,%eax
jle 0x00007f6c95a274
mov %edx,%ebp
add $0xfffffffffffff
test %ebp,%ebp
jle 0x00007f6c95a274
mov %eax,0x4(%rsp)
mov %edx,(%rsp)
add $0xfffffffffffff
callq 0x00007f6c959fb7
imul %ebp,%eax
imul 0x4(%rsp),%eax
mov (%rsp),%edx

jmp 0xb55d6f08
mov %edx,%esi
dec %esi
cmp $0x0,%esi
jg 0xb55d6ee6
mov $0x1,%esi
jmp 0xb55d6f05
mov %edx,0x24(%esp)
mov %esi,%edi
dec %edi
mov %edi,%edx
mov %esi,0x20(%esp)
call 0xb558df50
mov 0x20(%esp),%esi
imul %esi,%eax
mov %eax,%esi
mov 0x24(%esp),%edx
imul %edx,%esi

restore
sub %i1, 1, %l0
cmp %l0, 0
bg,pn %icc, 0xfbc83
nop
b %icc, 0xfbc83
mov 1, %i0 ! 1
sub %l0, 1, %o1
call 0xfbc32ea0
mov %i0, %o0
mulx %l0, %o0, %i0
mulx %i1, %i0, %i0
sethi %hi(0xff05000
ld [%l0], %g0
ret

Source Bytecode IA32

AMD64

SPARC

Compile

Platform-independent

Java compiler

Compile

Platform-dependent

just-in-time compiler

Verify

Interpret

Load

Fig. 3. Java source code is first compiled to platform-independent bytecode
by a Java compiler. The JVM only loads the bytecode, which it verifies for
correctness, and raises an exception in case the verification fails. After that,
the JVM typically interprets the bytecode until it detects that it would be
advantageous to compile it, with optimizations, to native, platform-dependent
code. The native code is then executed by the CPU as any other program.
Note that no optimization is performed when Java source code is compiled
to bytecode. Optimization only takes place during compilation from bytecode
to native code (see Section II-D).

verification and raises an exception in case of any such
incompatibility.

We wish not merely to evolve bytecode, but indeed to
evolve correct bytecode. This task is hard, because our purpose
is to evolve given, unrestricted code, and not simply to
leverage the capabilities of the JVM to perform GP. Therefore,
basic evolutionary operations, such as bytecode crossover
and mutation, should produce correct individuals. Below we
provide a summary of our previous work on defining bytecode
crossover—full details are available in [25].

We define a good crossover of two parents as one where
the offspring is a correct bytecode program, meaning one that
passes verification with no errors; conversely, a bad crossover
of two parents is one where the offspring is an incorrect
bytecode program, meaning one whose verification produces
errors. While it is easy to define a trivial slice-and-swap
crossover operator on two programs, it is far more arduous
to define a good crossover operator. This latter is necessary in
order to preserve variability during the evolutionary process,

ORLOV AND SIPPER: FLIGHT OF THE FINCH THROUGH THE JAVA WILDERNESS 3

Parent A Parent B

iconst_1
istore_2
iload_1
ifle
iload_1
aload_0
iload_1
iconst_1
isub
invokevirtual
imul
istore_2
iload_2
ireturn

(correct)

Offspring x

iconst_1
istore_2
iload_1
ifle
iload_1
iload_2
imul
istore_2
iload_2
ireturn

iconst_1
istore_2
iload_1
ifle
iload_1
iload_2
invokevirtual
istore_2
iload_2
ireturn

(incorrect)

Offspring y

iconst_1
istore_2
iload_1
ifle
iload_1
aload_0
iload_1
iconst_1
isub
invokevirtual
imul
istore_2
iload_2
ireturn

iload_1
ifle
iload_1
aload_0
iload_1
iconst_1
isub
invokevirtual
imul
istore_2
iload_2
ireturn

(incorrect)

Offspring z

x

y

z

Fig. 4. An example of good and bad crossovers. The two identical individuals
A and B represent a recursive factorial function (see Fig. 1; here we use
an arrow instead of branch offset). In parent A, the bytecode sequence that
corresponds to the fact(n-1) call that leaves an integer value on the stack,
is replaced with the single instruction in B that corresponds to pushing the
local variable ans on the stack. The resulting correct offspring x and the
original parent B are then considered as two new parents. We see that either
replacing the first two instructions in B with an empty section, or replacing
the imul instruction in x with the invokevirtual instruction from B, result
in incorrect bytecode, shown as offspring y and z—see main text for full
explanation.

because incorrect programs cannot be run, and therefore
cannot be ascribed a fitness value—or, alternatively, must be
assigned the worst possible value. Too many bad crossovers
will hence produce a population with little variability, on
whose vital role Darwin averred:

If then we have under nature variability and a power-
ful agent always ready to act and select, why should
we doubt that variations in any way useful to beings,
under their excessively complex relations of life,
would be preserved, accumulated, and inherited? [6]

Note that we use the term good crossover to refer to
an operator that produces a viable offspring (i.e., one that
passes the JVM verification) given two parents; compatible
crossover [25] is one mechanism by which good crossover
can be implemented.

As an example of compatible crossover, consider two iden-
tical programs with the same bytecode as in Fig. 1, which
are reproduced as parents A and B in Fig. 4. We replace
bytecode instructions at offsets 7–11 in parent A with the
single iload 2 instruction at offset 16 from parent B. Offsets
7–11 correspond to the fact(n-1) call that leaves an integer
value on the stack, whereas offset 16 corresponds to pushing
the local variable ans on the stack. This crossover, the result
of which is shown as offspring x in Fig. 4, is good, because the
operand stack is used in a compatible manner by the source
segment, and although this segment reads the variable ans
that is not read in the destination segment, that variable is
guaranteed to have been written previously, at offset 1.

Alternatively, consider replacing the imul instruction in
the newly formed offspring x with the single invokevirtual
instruction from parent B. This crossover is bad, as illustrated
by incorrect offspring y in Fig. 4. Although both invoke-
virtual and imul pop two values from the stack and then
push one value, invokevirtual expects the topmost value to
be of reference type F, whereas imul expects an integer.
Another negative example is an attempt to replace bytecode

float x; int y = 7;
if (y >= 0)

x = y;
else

x = -y;
System.out.println(x);

(a) A correct Java snippet.

int x = 7; float y;
if (y >= 0) {
y = x;
x = y;

}
System.out.println(z);

(b) An incorrect Java snippet.

Fig. 5. Two Java snippets that comply with the context-free grammar rules
of the programming language. However, only snippet (a) is legal once the
full Java Language Specification [9] is considered . Snippet (b), though Java-
compliant syntactically, is revealed to be ill-formed when semantics are thrown
into play.

offsets 0–1 in parent B (that correspond to the int ans=1
statement) with an empty segment. In this case, illustrated
by incorrect offspring z in Fig. 4, variable ans is no longer
guaranteed to be initialized when it is read immediately prior
to the function’s return, and the resulting bytecode is therefore
incorrect.

We chose bytecode segments randomly before checking
them for crossover compatibility as follows: For a given
method, a segment size is selected using a given probability
distribution among all bytecode segments that are branch-
consistent [25]; then a segment with the chosen size is uni-
formly selected. Whenever the chosen segments result in bad
crossover, bytecode segments are chosen again (up to some
limit of retries). Note that this selection process is very fast
(despite the retries), as it involves fast operations—and, most
importantly, we ensure that crossover always produces a viable
offspring. More intelligent choices of bytecode segments are
possible, as will be discussed in Section IV.

The full formal specification of compatible bytecode
crossover is provided in [25]. Note that we have not im-
plemented (nor found necessary for the problems tackled so
far) sophisticated mutation operators, a task we leave for
future work, as described in Section IV. Only a basic constant
mutator (Section III-C) was implemented.

B. The Grammar Alternative

One might ask whether it is really necessary to evolve
bytecode in order to support the evolution of unrestricted Java
software. After all, Java is a programming language with strict,
formal rules, which are precisely defined in Backus-Naur form
(BNF). One could make an argument for the possibility of
providing this BNF description to a grammar evolutionary
system [24] and evolving away.

We disagree with such an argument. The apparent ease with
which one might apply the BNF rules of a real-world program-
ming language in an evolutionary system (either grammatical
or tree-based) is an illusion stemming from the blurred bound-
ary between syntactic and semantic constraints [27, ch. 6.2.4].
Java’s formal (BNF) rules are purely syntactic, in no way
capturing the language’s type system, variable visibility and
accessibility, and other semantic constraints. Correct handling
of these constraints in order to ensure the production of viable
individuals would essentially necessitate the programming of
a full-scale Java compiler—a highly demanding task, not to be

4 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, FINAL DRAFT

taken lightly. This is not to claim that such a task is completely
insurmountable—e.g., an extension to context-free grammars
(CFGs), such as logic grammars, can be taken advantage of
in order to represent the necessary contextual constraints [33].
But we have yet to see such a GP implementation in practice,
addressing real-world programming problems.

We cannot emphasize the distinction between syntax and
semantics strongly enough. Consider, for example, the Java
program segment shown in Fig. 5(a). It is a seemingly simple
syntactic structure, which belies, however, a host of semantic
constraints, including: type compatibility in variable assign-
ment, variable initialization before read access, and variable
visibility. The similar (and CFG-conforming) segment shown
in Fig. 5(b) violates all these constraints: variable y in the
conditional test is uninitialized during a read access, its sub-
sequent assignment to x is type-incompatible, and variable z
is undefined.

It is quite telling that despite the popularity and generality of
grammatical evolution, we were able to uncover only a single
case of evolution using a real-world, unrestricted phenotypic
language—involving a semantically simple hardware descrip-
tion language (HDL). Mizoguchi et al. [19] implemented the
complete grammar of SFL (Structured Function description
Language) [21] as production rules of a rewriting system, us-
ing approximately 350(!) rules for a language far simpler than
Java. The semantic constraints of SFL—an object-oriented,
register-transfer-level language—are sufficiently weak for us-
ing its BNF directly:

By designing the genetic operators based on the
production rules and by performing them in the
chromosome, a grammatically correct SFL program
can be generated. This eliminates the burden of
eliminating grammatically incorrect HDL programs
through the evolution process and helps to concen-
trate selective pressure in the target direction. [19]

Arcuri [2] recently attempted to repair Java source code
using syntax-tree transformations. His JAFF system is not
able to handle the entire language—only an explicitly defined
subset (see [2, Table 6.1]), and furthermore, exhibits a host
of problems that evolution of correct Java bytecode avoids
inherently: individuals are compiled at each fitness evaluation,
compilation errors occur despite the syntax-tree modifications
being legal (cf. discussion above), lack of support for a
significant part of the Java syntax (inner and anonymous
classes, labeled break and continue statements, Java 5.0 syn-
tax extensions, etc.), incorrect support of method overloading,
and other problems:

The constraint system consists of 12 basic node
types and 5 polymorphic types. For the functions and
the leaves, there are 44 different types of constraints.
For each program, we added as well the constraints
regarding local variables and method calls. Although
the constraint system is quite accurate, it does not
completely represent yet all the possible constraints
in the employed subset of the Java language (i.e., a
program that satisfies these constraints would not be
necessarily compilable in Java). [2]

FINCH, through its clever use of Java bytecode, attains
a scalability leap in evolutionarily manageable programming
language complexity.

C. The Halting Issue

An important issue that must be considered when dealing
with the evolution of unrestricted programs is whether they
halt—or not [14]. Whenever Turing-complete programs with
arbitrary control flow are evolved, a possibility arises that
computation will turn out to be unending. A program that
has acquired the undesirable non-termination property during
evolution is executed directly by the JVM, and FINCH has
nearly no control over the process.

A straightforward approach for dealing with non-halting
programs is to limit the execution time of each individual
during evaluation, assigning a minimal fitness value to pro-
grams that exceed the time limit. This approach, however,
suffers from two shortcomings: First, limiting execution time
provides coarse-time granularity at best, is unreliable in the
presence of varying CPU load, and as a result is wasteful of
computer resources due to the relatively high time-limit value
that must be used. Second, applying a time limit to an arbitrary
program requires running it in a separate thread, and stopping
the execution of the thread once it exceeds the time limit.
However, externally stopping the execution is either unreliable
(when interrupting the thread that must then eventually enter
a blocked state), or unsafe for the whole application (when
attempting to kill the thread).1

Therefore, in FINCH we exercise a different approach, tak-
ing advantage of the lucid structure offered by Java bytecode.
Before evaluating a program, it is temporarily instrumented
with calls to a function that throws an exception if called more
than a given number of times (steps). That is, a call to this
function is inserted before each backward branch instruction
and before each method invocation. Thus, an infinite loop in
any evolved individual program will raise an exception after
exceeding the predefined steps limit. Note that this is not
a coarse-grained (run)time limit, but a precise limit on the
number of steps.

D. (No) Loss of Compiler Optimization

Another issue that surfaces when bytecode genetic operators
are considered is the apparent loss of compiler optimization.
Indeed, most native-code producing compilers provide the
option of optimizing the resulting machine code to varying
degrees of speed and size improvements. These optimizations
would presumably be lost during the process of bytecode
evolution.

Surprisingly, however, bytecode evolution does not induce
loss of compiler optimization, since there is no optimization
to begin with! The common assumption regarding Java com-
pilers’ similarity to native-code compilers is simply incorrect.
As far as we were able to uncover, with the exception of the
IBM Jikes Compiler (which has not been under development

1For the intricacies of stopping Java threads see http://java.sun.com/javase/
6/docs/technotes/guides/concurrency/threadPrimitiveDeprecation.html.

http://java.sun.com/javase/6/docs/technotes/guides/concurrency/threadPrimitiveDeprecation.html
http://java.sun.com/javase/6/docs/technotes/guides/concurrency/threadPrimitiveDeprecation.html

ORLOV AND SIPPER: FLIGHT OF THE FINCH THROUGH THE JAVA WILDERNESS 5

since 2004, and which does not support modern Java), no Java-
to-bytecode compiler is optimizing. Sun’s Java Compiler, for
instance, has not had an optimization switch since version 1.3.2

Moreover, even the GNU Compiler for Java, which is part of
the highly optimizing GNU Compiler Collection (GCC), does
not optimize at the bytecode-producing phase—for which it
uses the Eclipse Compiler for Java as a front-end—and instead
performs (optional) optimization at the native code-producing
phase. The reason for this is that optimizations are applied
at a later stage, whenever the JVM decides to proceed from
interpretation to just-in-time compilation [10].

The fact that Java compilers do not optimize bytecode
does not preclude the possibility of doing so, nor render it
particularly hard in various cases. Indeed, in FINCH we apply
an automatic post-crossover bytecode transformation that is
typically performed by a Java compiler: dead-code elimination.
After crossover is done, it is possible to get a method with
unreachable bytecode sections (e.g., a forward goto with no
instruction that jumps into the section between the goto and
its target code offset). Such dead code is problematic in Java
bytecode, and it is therefore automatically removed from the
resulting individuals by our system. This technique does not
impede the ability of individuals to evolve introns, since there
is still a multitude of other intron types that can be evolved [3]
(e.g., any arithmetic bytecode instruction not affecting the
method’s return value, which is not considered dead-code
bytecode, though it is an intron nonetheless).

E. Related Work

In [25] we discussed at length several related works. Herein
we complement that discussion by elaborating upon a number
of works which we did not previously cover (due to space
restrictions, or simply because they appeared after the publi-
cation of [25]).

Stack-based GP (Stack GP) was introduced by Perkis [26].
In Stack GP, instructions operate on a numerical stack, and
whenever a stack underflow occurs (i.e., an operand for the
operation is unavailable), the respective instruction is ignored.
Whenever multiple data types are desired, multiple stacks are
proposed as an alternative to strongly typed GP [20]. Stack
GP possesses a number of disadvantages with respect to our
aims: First, ignoring stack underflows will produce incorrect
bytecode segments with ambiguous decompilation results.
Second, allowing such code will unnecessarily enlarge the
search space, which is already huge—after all, we are evolving
extant, real-world programs, and not evolving programs from
scratch using a limited instruction set. Lastly, our approach
assumes absolutely no control over the JVM architecture: we
do not create stacks at will but content ourselves with JVM’s
single multi-type data stack and general-purpose multi-type
registers (see Fig. 2).

Spector and Robinson [30] provide an interesting treat-
ment of a stack-based architecture using the elaborately de-

2See the old manual page at http://java.sun.com/j2se/1.3/docs/tooldocs/
solaris/javac.html, which contains the following note in the definition of the -O
(Optimize) option: the -O option does nothing in the current implementation
of javac.

signed, expressive, Turing-complete Push programming lan-
guage, which also supports autoconstructive evolution (where
individual programs are responsible for the construction of
their own children). Push maintains multiple type-specific
stacks, while at the same time placing virtually no syntax re-
strictions on the evolving code. For example, instructions with
an insufficient number of operands on the stack are simply ig-
nored, following the “permissive execution” modus operandi.
Our above remarks regarding Stack GP [26] mostly apply
to [30] as well, given the similarity of the two approaches.
Moreover, the stack-per-type approach cannot handle evolution
of object-oriented programs with hierarchical types very well.

Another line of recent research related to ours is that of
software repair by evolutionary means. Forrest et al. [8] auto-
matically repair C programs by evolving abstract syntax tree
nodes on the faulty execution path, where at least one negative
test case is assumed to be known. The resulting programs are
then compiled before evaluation. Unlike FINCH, which works
with individuals in compiled form while seamlessly handling
semantic bytecode constraints, the approach by Forrest et al. is
bound to be problematic when handling large faulty execution
paths, or multiple-type, object-oriented programs. Addition-
ally, finding precise negative test cases highlighting a short
faulty execution path is typically the most difficult debugging
problem a human programmer faces—fixing the bug therefrom
is usually straightforward. This approach is not an alternative
to FINCH, therefore, which can take an existing program as a
whole, and evolutionarily improve it—free from various com-
pilability requirements, which are relevant to abstract syntax
trees, but not to Java bytecode. We shall demonstrate this
capability of FINCH in Section III-E, where the programmer
is in possession of only an approximate implementation of an
optimal algorithm—a “correct” execution path does not exist
prior to the evolutionary process.

There is also the recent work by Arcuri [2], mentioned
earlier in Section II-B.

III. RESULTS

We now turn to testing the feasibility of bytecode evolution,
i.e., we need to support our hypothesis that evolution of un-
restricted bytecode can be driven by the compatible crossover
operator proposed in [25]. For this purpose we integrated our
framework, which uses ASM [4], with the ECJ evolutionary
framework [16], with ECJ providing the evolutionary engine.
Now we are ready to apply FINCH to a selection of problems
of interest.

Throughout this section we describe typical results (namely,
Java programs) produced by our evolutionary runs. The consis-
tency of FINCH’s successful yield is shown in Table I, wherein
we provide a summary of all runs performed. Table I shows
that the run yield of FINCH, i.e., the fraction of successful
runs, is high, thereby demonstrating both consistency and re-
peatability. No significant difference in evolutionary execution
time was found between our bytecode evolution and reported
typical times for tree-based GP (most of the runs described
herein took a few minutes on a dual-core 2.6 GHz Opteron
machine, with the exception of tic-tac-toe, which took on the

http://java.sun.com/j2se/1.3/docs/tooldocs/solaris/javac.html
http://java.sun.com/j2se/1.3/docs/tooldocs/solaris/javac.html

6 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, FINAL DRAFT

TABLE I
SUMMARY OF EVOLUTIONARY RUNS. YIELD IS THE PERCENTAGE OF RUNS
WHEREIN A SUCCESSFUL INDIVIDUAL WAS FOUND (WHERE ‘SUCCESS’ IS

MEASURED BY THE success predicate, DEFINED FOR EACH PROBLEM IN
THE APPROPRIATE SECTION). THE NUMBER OF RUNS PER PROBLEM WAS

100, EXCEPT FOR 25 RUNS FOR EACH TIC-TAC-TOE IMPERFECTION.

Section Problem Yield

III-A Simple symbolic regression 99%
Complex symbolic regression 100%

III-B Artificial ant on Santa Fe trail 2%
population of 2 000 11%

population of 10 000, 101 generations 35%

III-C Intertwined spirals 10%

III-D Array sum 77%
List-based seed individual 97%

List-recursive seed individual 100%

III-E Tic-tac-toe: alpha/save imperfection 96%
unary “-” imperfection 88%

false/save imperfection 100%
alpha-beta imperfection 88%

X

X

X X X

EXP

-

% RLOG

-

SIN

RLOG

*

Fig. 6. Tree representation of the
worst generation-0 individual in the
original simple symbolic regression ex-
periment of Koza [11]. Functions are
represented by inner tree nodes, and
terminals by leaves. The corresponding
mathematical expression for x 6= 0, 1

is e
x

x−sin x
−ln|ln x2|, due to protected

division and logarithm operators %
and RLOG. These operators protect
against 0 in denominators and loga-
rithms (RLOG protects against negative
arguments as well).

order of one hour; note that this latter would also be quite
costly using tree-based GP due to the game playing-based
fitness function [29]). Of course, increasing population size
(see Table I) incurred a time increase.

A. Symbolic Regression: Simple and Complex

We begin with a classic test case in GP—simple symbolic
regression [11]—where individuals with a single numeric input
and output are tested on their ability to approximate the poly-
nomial x4 +x3 +x2 +x on 20 random samples. FINCH needs
an existing program to begin with, so we seeded the initial
population with copies of a single individual [13, 27, 28]. We
selected the worst generation-0 individual in Koza’s original
experiment, shown in Fig. 6, and translated it into Java (Fig. 7).

The worst generation-0 individual (Fig. 6) is the Lisp S-
expression

(EXP (- (% X (- X (SIN X))) (RLOG (RLOG (* X X))))) ,

where X is the numeric input (a terminal), and
{+,-,*,%,SIN,COS,EXP,RLOG} represents the function
set. Whereas the function set includes protected division and
logarithm operators % and RLOG, FINCH needs no protection
of functions, since evaluation of bytecode individuals uses
Java’s built-in exception-handling mechanism. Therefore,
individuals can be coded in the most straightforward manner.
However, to demonstrate the capability of handling different

TABLE II
SIMPLE SYMBOLIC REGRESSION: PARAMETERS. (NOTE: IN THE

PARAMETER TABLES SHOWN THROUGHOUT THIS PAPER WE DIVIDE THE
PARAMETERS INTO FOUR CATEGORIES, SEPARATED BY BOLDFACE LINES:

OBJECTIVE-RELATED, STRUCTURAL, GENERIC, AND SPECIFIC.)

Parameter Koza [11, ch. 7.3] FINCH

Objective symbolic regression: x4 + x3 + x2 + x

Fitness sum of errors on 20 random data points in [−1, 1]

Success
predicate

all errors are less than 0.01

Input X (a terminal) Number num

Functions +, -, *, % (protected di-
vision), SIN, COS, EXP,
RLOG (protected log)

built-in arithmetic and
Math functions present in
the seed individual (Fig. 7)

Population 500 individuals

Generations 51, or less if ideal individual was found

Probabilities pcross = 0.9, pmut = 0

Selection fitness-proportionate binary tournament

Elitism not used

Growth
limit

tree depth of 17 no limit

Initial popu-
lation

ramped half-and-half with
maximal depth 6

copies of seed program
given in Fig. 7

Crossover
location

internal nodes with pint =
0.9, otherwise a terminal

uniform distribution over
segment sizes

class SimpleSymbolicRegression {
Number simpleRegression(Number num) {
double x = num.doubleValue();
double llsq = Math.log(Math.log(x*x));
double dv = x / (x - Math.sin(x));
double worst = Math.exp(dv - llsq);
return Double.valueOf(worst + Math.cos(1));

/* Rest of class omitted */ }}

Fig. 7. Simple symbolic regression in Java. Worst-of-generation individual
in generation 0 of the x4 +x3 +x2 +x regression experiment of Koza [11],
as translated by us into a Java instance method with primitive and reference
types. Since the archetypal individual (EXP (- (% X (- X (SIN X)))
(RLOG (RLOG (* X X))))) does not contain the complete function set
{+,-,*,%,SIN,COS,EXP,RLOG}, we added a smattering of extra code in
the last line, providing analogs of + and COS, and, incidentally, the constant
1. Protecting function arguments (enforcement of closure) is unnecessary
in FINCH because evaluation of bytecode individuals uses Java’s built-in
exception-handling mechanism.

primitive and reference types, we added an additional
constraint whereby the simpleRegression method
accepts and returns a general Number object. Moreover, in
order to match the original experiment’s function set, we
added extra code that corresponds to the + and COS functions.
In classical (tree-based) GP, the function and terminal sets
must be sufficient in order to drive the evolutionary process;
analogously, in FINCH, the initial (cloned) individual must
contain a sufficient mixture of primitive components—the
bytecode equivalents of function calls, arithmetic operations,
conditional operators, casts, and so forth.

To remain faithful to Koza’s original experiment, we used
the same parameters where possible, as shown in Table II:
a population of 500 individuals, crossover probability of 0.9,

ORLOV AND SIPPER: FLIGHT OF THE FINCH THROUGH THE JAVA WILDERNESS 7

class SimpleSymbolicRegression_0_7199 {
Number simpleRegression(Number num) {

double d = num.doubleValue();
d = num.doubleValue();
double d1 = d; d = Double.valueOf(d + d *
d * num.doubleValue()).doubleValue();

return Double.valueOf(d + (d =
num.doubleValue()) * num.doubleValue());

/* Rest of class unchanged */ }}

Fig. 8. Decompiled contents of method simpleRegression that evolved
after 17 generations from the Java program in Fig. 7. It is interesting to observe
that because the evolved bytecode does not adhere to the implicit rules by
which typical Java compilers generate code, the decompiled result is slightly
incorrect: the assignment to variable d in the return statement occurs after
it is pushed onto the stack. This is a quirk of the decompiler—the evolved
bytecode is perfectly correct and functional. The computation thus proceeds
as (x+ x · x · x) + (x+ x · x · x) · x, where x is the method’s input.

class SimpleSymbolicRegression_0_2720 {
Number simpleRegression(Number num) {

double d = num.doubleValue();
d = d; d = d;
double d1 = Math.exp(d - d);
return Double.valueOf(num.doubleValue() *
(num.doubleValue() *

(d * d + d) + d) + d);
/* Rest of class unchanged */ }}

Fig. 9. Decompiled contents of method simpleRegression that evolved
after 13 generations in another experiment. Here, the evolutionary result is
more straightforward, and the computation proceeds as x·(x·(x·x+x)+x)+
x, where x is the method’s input. (Note: Both here and in Fig. 8, the name of
the num parameter produced by the decompiler was different—and manually
corrected by us—since we do not preserve debugging information during
bytecode evolution; in principle, this adjustment could be done automatically.)

and no mutation. We used binary tournament selection instead
of fitness-proportionate selection.

We chose bytecode segments randomly using a uniform
probability distribution for segment sizes, with up to 1 000
retries (a limit reached in extremely rare cases, the average
number of retries typically ranging between 16–24), as dis-
cussed in Section II-A.

An ideal individual was found in nearly every run. Typical
evolutionary results are shown in Figs. 8 and 9.

Can FINCH be applied to a more complex case of symbolic
regression? To test this we considered the recent work by
Tuan-Hao et al. [31], where polynomials of the form

∑n
i=1 x

i,
up to n = 9, were evolved using incremental evaluation. Tuan-
Hao et al. introduced the DEVTAG evolutionary algorithm,
which employs a multi-stage comparison between individuals
to compute fitness. This fitness evaluation method is based
on rewarding individuals that compute partial solutions of the
target polynomial, i.e., polynomials

∑n
i=1 x

i, where n < 9
(n = 9 being the ultimate target polynomial).

To ascertain whether FINCH can tackle such an example of
complex symbolic regression, we adapted our above evolution-
ary regression setup by introducing a fitness function in the
spirit of Tuan-Hao et al. [31], based on the highest degree n
computed by an evolving individual.

We ran FINCH with clones of the same worst-case
simpleRegression method used previously (Fig. 7) serv-

TABLE III
COMPLEX SYMBOLIC REGRESSION: PARAMETERS.

Parameter Tuan-Hao et al. [31] FINCH

Objective symbolic regression: x9 + x8 + · · ·+ x2 + x

Fitness sum of errors on 20
random samples in [−1, 1],
multi-stage incremental
evaluation of polynomials∑n

i=1
xi in DEVTAG

degree n of polynomial∑n

i=1
xi for which errors

on all 20 random samples
in [−1, 1] are < 10−8 +
inverse of method size

Success
predicate

all errors are less than 0.01 n = 9

Terminals X, 1.0 Number num (an input)

Functions +, -, *, /, SIN, COS, LOG,
EXP (/ and LOG may re-
turn Inf and NaN)

built-in arithmetic and
Math functions present in
the seed individual (Fig. 7)

Population 250 individuals 500 individuals

Generations unspecified (MAXGEN) 51, or less if ideal individ-
ual was found

Probabilities pcross = 0.9, pmut = 0.1 pcross = 0.9, pmut = 0

Selection tournament of size 3 tournament of size 7

Elitism not used

Growth
limit

tree depth of 30 maximal growth factor 5.0

Initial popu-
lation

random individuals with
initial size 2 ∼ 1000

copies of seed program
given in Fig. 7

Crossover
location

sub-tree crossover and sub-
tree mutations

Gaussian distribution over
segment sizes with 3σ =
method size

Number simpleRegression(Number num) {
double d = num.doubleValue();
return Double.valueOf(d + (d * (d * (d +

((d = num.doubleValue()) +
(((num.doubleValue() * (d = d) + d) *
d + d) * d + d) * d)

* d) + d) + d) * d);
}

Fig. 10. Decompiled contents of method simpleRegression that evolved
after 19 generations in the complex symbolic regression experiment. The
evolutionary result proceeds as x + (x · (x · (x + (x + (((x · x + x) · x +
x) · x + x) · x) · x) + x) + x) · x, where x is the method’s input, which
is computationally equivalent to x9 + · · · + x2 + x. Observe the lack of
unnecessary code due to parsimony pressure during evolution. Note that the
regression problem tackled herein is not actually “simple”—we just used the
same initial method as in the simple symbolic regression experiment.

ing as the initial population. The evolutionary parameters are
shown in Table III: a population of 500 individuals, crossover
probability of 0.9, and no mutation. We used tournament
selection with tournament size 7. Fitness was defined as the
degree n computed by simpleRegression (or zero if no
such n exists) plus the inverse of the evolved method size
(the latter is a minor component we added herein to provide
lexicographic parsimony pressure [17] for preferring smaller
methods). The degree n is computed as follows: 20 random
input samples in [−1, 1] are generated, and the individual
(method) computes all 20 outputs; if all 20 are within a 10−8

distance of a degree-n polynomial’s outputs over these sample
points, then n is the highest degree, otherwise this fitness

8 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, FINAL DRAFT

(a) The Santa Fe trail. The ant starts
at the upper-left corner facing right,
its objective being to consume 89
food pellets.

(b) Path taken by the Avoider in-
dividual, shown in Fig. 12, around
the food pellets that are marked by
colored cells.

Fig. 11. The Santa Fe food trail for the artificial ant problem, and the
corresponding path taken by the randomly-generated Avoider individual in
the experiment by Koza [11]. Note that the grid is toroidal.

RIGHT

RIGHT

MOVE LEFT

IF-FOOD-AHEAD

IF-FOOD-AHEAD

PROGN2

(a) Tree representation of the Lisp
individual.

void step() {
if (foodAhead())

right();
else if (foodAhead())

right();
else {
move(); left();

}
}

(b) Implementation in Java. See the
Appendix for class context.

Fig. 12. The Avoider individual in the original experiment of Koza
[11, ch. 7.2] is given by the S-expression (IF-FOOD-AHEAD (RIGHT)
(IF-FOOD-AHEAD (RIGHT) (PROGN2 (MOVE) (LEFT)))).
(a) Original Lisp individual. (b) Translation into Java.

component is zero.
Bytecode segments were chosen randomly before checking

them for crossover compatibility, with preference for smaller
segments: we used |N(0, n/3)| as the distribution for seg-
ment sizes, where n is the number of instructions in the
simpleRegression method of a given individual, and
N(µ, σ) is the Gaussian distribution specified by given mean
and standard deviation. Finally, a maximal growth factor of
5.0 was specified, to limit the evolved method to a multiple of
the original worst-case simpleRegression method (i.e., a
limit of 5 times the number of bytecode instructions in the
initial method).

An ideal individual was found in every run. A typical
evolved method is shown (without the wrapper class) in
Fig. 10. As a side issue, we also tested whether straightfor-
ward, non-incremental fitness evaluation can be used—a test
which proved successful: We were able to evolve degree-9
polynomials directly, using a simple initial-population indi-
vidual consisting only of instructions computing (x+ x) · x.

B. Artificial Ant

The artificial ant problem is a popular learning problem,
where the objective is for an artificial ant to navigate along an
irregular trail that contains 89 food pellets (the trail is known

TABLE IV
ARTIFICIAL ANT: PARAMETERS.

Parameter Koza [11, ch. 7.2] FINCH

Objective single step function for artificial ant that moves
and eats food pellets on Santa Fe trail (Fig. 11(a))

Fitness food pellets consumed up
to limit of 400 moves
(probably any move is
counted)

food pellets consumed up
to limit of 100 non-eating
moves + inverse of step
method size

Success
predicate

the ant consumed all 89 food pellets

Terminals LEFT, RIGHT, MOVE N/A

Functions IF-FOOD-AHEAD,
PROGN2 (sequence of 2),
PROGN3 (sequence of 3)

built-in control flow and
the functions present in the
seed individual (Fig. 12(b))

Population 500 individuals

Generations 51, or less if ideal individual was found

Probabilities pcross = 0.9, pmut = 0

Selection fitness-proportionate tournament of size 7

Elitism not used 5 individuals

Growth
limit

tree depth of 17 maximal growth factor 4.0

Initial popu-
lation

ramped half-and-half with
maximal depth 6

copies of seed program
given in Fig. 12(b)

Crossover
location

internal nodes with pint =
0.9, otherwise a terminal

Gaussian distribution over
segment sizes with 3σ =
method size

as the Santa Fe trail). Here we consider Koza’s well-known
experiment [11], where Lisp trees with simple terminal and
function sets were evolved. The terminal set contained a MOVE
operation that moves the ant in the direction it currently faces
(possibly consuming the food pellet at the new location), and
LEFT and RIGHT operations that rotate the ant by 90°. The
function set consisted of PROGN2 and PROGN3, for 2- and 3-
sequence operations, respectively, and the IF-FOOD-AHEAD
test that checks the cell directly ahead of the ant and executes
its then and else branches according to whether the cell
contains a food pellet or not. The Santa Fe trail is shown
in Fig. 11(a), where the ant starts at the upper-left corner and
faces right.

Koza reported that in one experiment the initial population
contained a peculiar randomly generated Avoider individual
that actively eschewed food pellets, as shown in Fig. 11(b).
We chose this zero-fitness individual for our initial population,
implementing Avoider as a straightforward and unconstrained
Java function called step, as shown in Fig. 12 (along with
the original Lisp-tree representation). The complete artificial
ant implementation is listed in the Appendix.

During implementation of the artificial ant problem in
FINCH, we were faced with some design choices that were
not evident in the original experiment’s description. One of
them is a limit on the number of operations, in order to prevent
evolution of randomly moving ants that cover the grid without
using any logic. Koza reported using a limit of 400 operations,
where each RIGHT, LEFT, and MOVE counts as an operation.
However, an optimal ant would still take 545 operations to

ORLOV AND SIPPER: FLIGHT OF THE FINCH THROUGH THE JAVA WILDERNESS 9

void step() {
if (foodAhead()) {
move();
right();

}
else {

right();
right();
if (foodAhead())
left();

else {
right();
move();
left();

}
left();
left();

}
}

(a) An optimal individual that
appeared in generation 45. It
makes no unnecessary moves,
as can be seen in the corre-
sponding ant trail in Fig. 14(a).

void step() {
if (foodAhead()) {
move(); move();
left(); right();
right(); left();
right();

} else {
right(); right();
if (foodAhead()) {
move(); right();
right(); move();
move(); right();

} else {
right(); move();
left();

}
left(); left();

}
}

(b) A solution that appeared in genera-
tion 31. It successfully consumes all the
food pellets, but makes some unneces-
sary moves, as shown in Fig. 14(b).

Fig. 13. The step methods of two solutions to the artificial ant problem that
were evolved by FINCH. The corresponding ant trails are shown in Fig. 14.

(a) The trail of the optimal individ-
ual shown in Fig. 13(a).

(b) The trail of the non-optimal
(though all-consuming) individual
shown in Fig. 13(b).

Fig. 14. Ant trails that result from executing the artificial ant programs that
contain the evolved step methods shown in Fig. 13.

consume all 89 food pellets. Therefore, we opted for a limit of
100 non-eating moves instead, the necessary minimum being
55.

We ran FINCH with clones of the Java implementation of
Avoider (Fig. 12(b)) serving as the initial population. Again,
we used the same parameters of Koza where possible, as
shown in Table IV: a population of 500 individuals, crossover
probability of 0.9, and no mutation. We used tournament se-
lection with tournament size 7 instead of fitness-proportionate
selection, and elitism of 5 individuals. Fitness was defined
as the number of food pellets consumed within the limit of
100 non-eating moves, plus the inverse of the evolved method
size (the former component is similar to the original exper-
iment, the latter is a minor parsimony pressure component
as in the complex symbolic regression problem). Bytecode
segments were chosen randomly before checking them for
crossover compatibility, with preference for smaller segments,

TABLE V
INTERTWINED SPIRALS: PARAMETERS.

Parameter Koza [11, ch. 17.3] FINCH

Objective two-class classification of intertwined spirals (Fig. 15(a))

Fitness the number of points that are correctly classified

Success
predicate

all 194 points are correctly classified

Terminals X, Y, R (ERC in [−1, 1]) double x, y (inputs)

Functions +, -, *, % (protected
division), IFLTE (four-
argument if), SIN, COS

built-in control flow and
the functions present in the
seed individual (Fig. 16)

Population 10 000 individuals 2 000 individuals

Generations 51, or less if ideal individ-
ual was found

251, or less if ideal individ-
ual was found

Probabilities pcross = 0.9, pmut = 0 pcross = 0.8, pmut = 0.1,
Gaussian constants muta-
tion with 3σ = 1

Selection fitness-proportionate tournament of size 7

Elitism not used

Growth
limit

tree depth of 17 maximal growth factor 4.0

Initial popu-
lation

ramped half-and-half with
maximal depth 6

copies of seed program
given in Fig. 16

Crossover
location

internal nodes with pint =
0.9, otherwise a terminal

Gaussian distribution over
segment sizes with 3σ =
method size

as described previously. Finally, a maximal growth factor of
4.0 was specified, to limit the evolved method to a multiple
of the original Avoider step method.

Fig. 13 shows two typical, maximal-fitness solutions to the
Santa Fe artificial ant problem, as evolved by FINCH. The
corresponding ant trails are shown in Fig. 14. Table I shows the
success rate (i.e., percentage of runs producing all-consuming
individual) for runs using the settings in Table IV, and also
the yield after increasing the population size and removing
parsimony pressure (the inverse step method size component
of the fitness function).

C. Intertwined Spirals

In the intertwined spirals problem the task is to correctly
classify 194 points on two spirals, as shown in Fig. 15(a). The
points on the first spiral are given in polar coordinates by

rn =
8 + n

104
, αn =

8 + n

16
· π ,

for 0 6 n 6 96, and the Cartesian coordinates are

x+
n = rn cosαn

y+
n = rn sinαn

,
x−n = −x+

n

y−n = −y+
n

,

where (x+
n , y

+
n) are points on the first spiral, and (x−n , y

−
n) lie

on the second spiral [5].
A classic machine-learning case study, the intertwined spi-

rals problem was treated by Koza [11] using the parameters
shown in Table V, with his best-of-run individual including
11 conditionals and 22 constants (shown in Fig. 18). Whereas
Koza used a slew of ERCs (ephemeral random constants) in

10 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, FINAL DRAFT

−1

1
y

−1 1
x

(a) Intertwined spirals, as described
by Koza [11]. The two spirals,
containing 97 points each, encircle
the axes’ origin three times. The
first spiral (filled circles) belongs
to class +1, and the second spiral
(empty circles) belongs to class−1.
The farthest point on each spiral is
at unit distance from the origin.

(b) Visualization of the solution
evolved by Koza [11] (shown in
Fig. 18), re-created by running this
individual (taking into account the
different scale used by Koza—the
farthest points are at distance 6.5
from the origin). Note the jagged-
ness of the solution, due to 11 con-
ditional nodes in the genotype.

(c) Visualization of the solution
in Fig. 17, found by FINCH.
Points for which the evolved pro-
gram returns true are indicated
by a dark background. After man-
ual simplification of the program,
we see that it uses the sign of
sin
(

9
4
π2
√
x2 + y2 − tan−1 y

x

)
as the class predictor of (x, y).

(d) Visualization of another snail-
like solution to the intertwined spi-
rals problem, evolved by FINCH.
Note the phenotypic smoothness of
the result, which is also far terser
than the bloated individual that gen-
erated (b), all of which points to our
method’s producing a more general
solution.

(e) Solution (c) scaled to span the
[−2, 2] interval on both axes.

(f) Koza’s solution (b), scaled sim-
ilarly to (e).

Fig. 15. The intertwined spirals dataset (a) and the visualizations of two
evolved (perfect) solutions (c), (d), contrasted with the result produced by
Koza (b). Note the smoothness of FINCH’s solutions as compared with the
jaggedness of Koza’s. This is even more striking when “zooming out,” as
shown in (e) and (f).

the initial population, FINCH’s initial population is seeded
with clones of a single program (shown in Fig. 16), containing
very few constants. We therefore implemented mutation of
constants, as follows: Before an individual is added to the

boolean isFirst(double x, double y) {
double a = Math.hypot(x, y);
double b = Math.atan2(y, x);
double c = -a + b * 2;
double d = -b * Math.sin(c) / a;
double e = c - Math.cos(d) - 1.2345;
boolean res = e >= 0;
return res;

}

Fig. 16. The method of the intertwined spirals individual of the initial
population. A return value of true indicates class +1. This method serves as
a repository of components to be used by evolution: floating-point arithmetic
operators, trigonometric functions, and functions usable in polar-rectangular
coordinates conversion—all arbitrarily organized. Note that the inequality
operator translates to a conditional construct in the bytecode.

boolean isFirst(double x, double y) {
double a, b, c, e;
a = Math.hypot(x, y); e = y;
c = Math.atan2(y, b = x) +

-(b = Math.atan2(a, -a))
* (c = a + a) * (b + (c = b));

e = -b * Math.sin(c);
if (e < -0.0056126487018762772) {

b = Math.atan2(a, -a);
b = Math.atan2(a * c + b, x); b = x;
return false;

}
else

return true;
}

Fig. 17. Decompiled contents of method isFirst that evolved after 86
generations from the Java program in Fig. 16. The variable names have been
restored—a bit of manual tinkering with an otherwise automatic technique.
This method returns true for all points of class +1, and false for all
points of class −1. This is an “elegant” generalizable solution, unlike the one
reported by Koza [11], where the evolved individual contains 11 conditionals
and 22 constants. Note that the only constant here is an approximation to 0,
and tan−1 a

−a
= 3

4
π, since a is a positive magnitude value.

new population, each floating-point constant in the bytecode
is modified with probability pmut by adding an N(0, 1/3)
Gaussian-distributed random value.

We seeded the population with an individual containing
the method shown in Fig. 16. In addition to the usual
arithmetic functions, we added some trigonometric functions
that seemed to be useful—since a “nice” solution to the
intertwined spirals problem is likely to include a manipulation
of polar coordinates of the points on the two spirals. This
assumption proved to be right: Fig. 17 shows a typical evolved
result, visualized in Fig. 15(c). Unlike the jagged pattern of
the extremely precision-sensitive solution evolved by Koza
(with slight changes in constants notably degrading perfor-
mance), we observe a smooth curvature founded on an elegant
mathematical equation. This is likely a result of incremental
evolution that starts with clones of a single individual, and
lacks an initial “wild” phase of crossovers of randomly-
generated individuals with different ERCs. In addition, Koza
used a much higher growth limit (see Table V), with his best-
of-run comprising 91 internal nodes. This individual, shown
in Fig. 18, can be observed to be far “quirkier” than solutions

ORLOV AND SIPPER: FLIGHT OF THE FINCH THROUGH THE JAVA WILDERNESS 11

(sin (iflte (iflte (+ Y Y) (+ X Y) (- X Y) (+ Y
Y)) (* X X) (sin (iflte (% Y Y) (% (sin (sin (% Y
0.30400002))) X) (% Y 0.30400002) (iflte (iflte
(% (sin (% (% Y (+ X Y)) 0.30400002)) (+ X Y))
(% X -0.10399997) (- X Y) (* (+ -0.12499994
-0.15999997) (- X Y))) 0.30400002 (sin (sin (iflte
(% (sin (% (% Y 0.30400002) 0.30400002)) (+
X Y)) (% (sin Y) Y) (sin (sin (sin (% (sin X) (+
-0.12499994 -0.15999997))))) (% (+ (+ X Y) (+
Y Y)) 0.30400002)))) (+ (+ X Y) (+ Y Y)))))
(sin (iflte (iflte Y (+ X Y) (- X Y) (+ Y Y)) (* X X)
(sin (iflte (% Y Y) (% (sin (sin (% Y 0.30400002)))
X) (% Y 0.30400002) (sin (sin (iflte (iflte (sin (%
(sin X) (+ -0.12499994 -0.15999997))) (% X
-0.10399997) (- X Y) (+ X Y)) (sin (% (sin X)
(+ -0.12499994 -0.15999997))) (sin (sin (% (sin X)
(+ -0.12499994 -0.15999997)))) (+ (+ X Y) (+ Y
Y))))))) (% Y 0.30400002)))))

Fig. 18. The best-of-run S-expression evolved by Koza [11] at generation 36,
visualized in Fig. 15(b), containing 88 terminals (where 22 are constants), and
91 functions (where 11 are conditional operators). This result is extremely
sensitive to the exact values of the constants, the intertwined spirals dataset,
and the floating-point precision of the S-expression evaluator.

evolved by FINCH (e.g., Fig. 17). Fig. 15(d) shows another
visualization of an evolved solution.

As done by Koza [12], we also retested our ten best-of run
individuals on sample points chosen twice as dense (i.e., 386
points), and ten times more dense (1922 points). For seven
individuals, 100% of the points in both denser versions of the
intertwined spirals problem were correctly classified; for the
remaining three individuals, 99% of the points were correctly
classified on average, for both denser versions. Koza reported
96% and 94% correct classification rates for doubly dense and
tenfold dense versions, respectively, for the single best-of-run
individual. Hence, our solutions exhibit generality as well.

D. Array Sum

So far all our programs have consisted of primitive Java
functions along with a forward jump in the form of a condi-
tional statement. Moving into Turing-complete territory, we
ask in this subsection whether FINCH can handle two of
the most important constructs in programming: loops and
recursion. Toward this end we look into the problem of
computing the sum of values of an integer array.

Withall et al. [32] recently considered a set of problems
described as “more traditional programming problems than
traditional GP problems,” for the purpose of evaluating an
improved representation for GP. This representation, which
resembles the one used in grammatical evolution [24], main-
tains a genome comprising blocks of integer values, which
are mapped to predefined statements and variable references
through a given genotype-to-phenotype translation. The state-
ments typically differentiate between read-only and read-write
(assignable) variables—in contrast to FINCH, where a variable
that is not assigned to in the seed individual is automatically
“write-protected” during evolution.

Table VI shows the evolutionary setups used by Withall
et al. [32] and by us for the array sum problem (called sumlist

TABLE VI
ARRAY SUM: PARAMETERS.

Parameter Withall et al. [32] FINCH

Objective summation of numbers in an input array

Fitness negative total of differ-
ences from array sums on
10 predefined test inputs

as in [32], + inverse of
sumlist method size

Success
predicate

the sums calculated for 10 test inputs and 10 verification
inputs are correct

Variables sum (read-write), size,
tmp, list[tmp] (read-
only, list index is taken
modulo list size)

sum , size, tmp (read-
write), list (read-only ar-
ray accesses)

Statements variable assignment, four arithmetical operations, if com-
paring two variables, for loop over all list elements

Population 7 individuals 500 individuals

Generations 50 000, or less if ideal in-
dividual was found

51, or less if ideal individ-
ual was found

Probabilities pcross = 1, pmut = 0.1 pcross = 0.8, pmut = 0

Selection fitness-proportionate tournament of size 7

Elitism 1 individual

Growth
limit

fixed length maximal growth factor 2.0

Time limit 1 000 loop iterations 5 000 backward branches

Initial popu-
lation

randomly-generated
integer vector genomes

copies of seed program
given in Fig. 19

Crossover
location

uniform crossover between
fixed-length genomes

Gaussian distribution over
segment sizes with 3σ =
method size

int sumlist(int[] list) {
int sum = 0;
int size = list.length;
for (int tmp = 0; tmp < list.length; tmp++) {
sum = sum - tmp * (list[tmp] / size);
if (sum > size || tmp == list.length + sum)
sum = tmp - list[size/2];

}
return sum;

}

Fig. 19. The evolving method of the seed individual for the array sum
problem. Note that loop variable tmp is assignable, and thus the for loop can
“deteriorate” during evolution. The array indexes are not taken modulo list
size like in [32]—an exception is automatically thrown by the JVM in case
of an out-of-bounds index use.

by Withall et al.). During evaluation, individuals are given 10
predefined input lists of lengths 1–4, and if a program correctly
computing all the 10 sums is found, it is also validated on
10 predefined verification inputs of lengths 1–9. Our initial
population was seeded with copies of the blatantly unfit Java
program in Fig. 19. This program includes a for statement,
for use by evolution, and a loop body that is nowhere near
the desired functionality—but merely serves to provide some
basic evolutionary components. An important new criterion in
Table VI—time limit—regards the CPU resources allocated
to a program during its evaluation, a measure discussed in
Section II-C.

12 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, FINAL DRAFT

int sumlist(int list[]) {
int sum = 0;
int size = list.length;
for (int tmp = 0; tmp < list.length; tmp++) {
size = tmp;
sum = sum - (0 - list[tmp]);

}
return sum;

}

Fig. 20. Decompiled ideal individual that appeared in generation 11, correctly
summing up all the test and validation inputs. Variable names were manually
restored for clarity.

int sumlist(List<Integer> list) {
int sum = 0;
int size = list.size();
for (int tmp: list) {

sum = sum - tmp * (tmp / size);
if (sum > size || tmp == list.size() + sum)
sum = tmp;

}
return sum;

}

Fig. 21. The evolving method of the seed individual for the List version of
the array sum problem. Note that although the new Java 5.0 container iteration
syntax is simple to use, it is translated to sophisticated iterators machinery [9],
as is evident in the best-of-run result in Fig. 22.

FINCH encountered little difficulty in finding solutions to
the array sum problem (see Table I). One evolved solution
is shown in Fig. 20. FINCH’s ability to handle this problem
gracefully is all the more impressive when one considers the
vastly greater search space in comparison to other systems.
For instance, Withall et al. defined the for statement as an
elemental (unbreakable) “chunk” in the genome, specified only
by the read-only iteration variable. In addition, array indexes
were taken modulo array size. FINCH, however, has no such
abstract model of the bytecode (nor does it need one!): A for
loop is compiled to a set of conditional branches and variables
comparisons, and array access via an out-of-bound index raises
an exception.

Of course, FINCH is not limited to dealing with integer

int sumlist(List list) {
int sum = 0;
int size = list.size();
for (Iterator iterator = list.iterator();

iterator.hasNext();) {
int tmp = ((Integer) iterator.next())

.intValue();
tmp = tmp + sum;
if (tmp == list.size() + sum)
sum = tmp;

sum = tmp;
}
return sum;

}

Fig. 22. Decompiled ideal individual that appeared in generation 12. Variable
names were manually restored for the purpose of clarity, but Java 5.0 syntax
features (generic classes, unboxing, and enhanced for) were not restored.

int sumlistrec(List<Integer> list) {
int sum = 0;
if (list.isEmpty())
sum *= sumlistrec(list);

else
sum += list.get(0)/2 + sumlistrec(

list.subList(1, list.size()));
return sum;

}

Fig. 23. The evolving method of the seed individual for the recursive List
version of the array sum problem. The call to the get method returns the first
list element, and subList returns the remainder of the list (the two methods
are known as car and cdr in Lisp). Some of the obstacles evolution must
overcome herein are the invalid stop condition that causes infinite recursion,
and a superfluous operation on the first list element.

int sumlistrec(List list) {
int sum = 0;
if (list.isEmpty())
sum = sum;

else
sum += ((Integer)list.get(0)).intValue() +

sumlistrec(list.subList(1,
list.size()));

return sum;

}

Fig. 24. Decompiled ideal individual for the recursive List array sum problem
version, which appeared in generation 2. Java 5.0 syntax features were not
restored.

arrays—it can easily handle different list abstractions, such as
those that use the types defined in the powerful Java standard
library. Fig. 21 shows the seed method used in a slightly
modified array sum class, where the List abstraction is used
for a list of numbers. Solutions evolve just as readily as in the
integer array approach—see Fig. 22 for one such individual.

Having demonstrated FINCH’s ability to handle loops—
we now turn to recursion. Fig. 23 shows the seed individual
used to evolve recursive solutions to the array sum problem.
Note that this method enters a state of infinite recursion upon
reaching the end of the list, a situation which in no way
hinders FINCH, due to its use of the instruction limit-handling
mechanism described in Section II-C. Solutions evolve readily
for the recursive case as well—see Fig. 24 for an example.

E. Tic-Tac-Toe

Having shown that FINCH can evolve programmatic so-
lutions to hard problems, along the way demonstrating the
system’s ability to handle many complex features of the Java
language, we now take a different stance, that of program
improvement. Specifically, we wish to generate an optimal
program to play the game of tic-tac-toe, based on the negamax
algorithm.3

Fig. 25 shows the negamax algorithm, a variant of the clas-
sic minimax algorithm used to traverse game trees, thus serv-
ing as the heart of many programs for two-player games—such

3Tic-tac-toe is a simple noughts and crosses game, played on a 3×3 grid,
where the two players X (who plays first) and O strive to place three marks
in a a horizontal, vertical, or diagonal row.

ORLOV AND SIPPER: FLIGHT OF THE FINCH THROUGH THE JAVA WILDERNESS 13

Input : a minimax tree node node, search depth limit d,
α-β pruning parameters, player color c ∈ {1,−1}

if node is a terminal node ∨ d = 0 then
return c · UTILITY(node)

else
foreach succ ∈ successors of node do

α← max
(
α,−NEGAMAX(succ, d−1,−β,−α,−c)

)
if α > β then

return αreturn α
Fig. 25. NEGAMAX(node, d, α, β, c): an α-β-pruning variant of the classic
minimax algorithm for zero-sum, two-player games, as formulated at the
Wikipedia site, wherein programmers might find it. The initial call for the
root minimax tree node is NEGAMAX(root, d, −∞, ∞, 1). The function
UTILITY returns a heuristic node value for the player with color c = 1.

1 int negamaxAB(TicTacToeBoard board,
2 int alpha, int beta, boolean save) {
3 Position[] free = getFreeCells(board);
4 // utility is derived from the number of free cells left
5 if (board.getWinner() != null)
6 alpha = utility(board, free);
7 else if (free.length == 0)
8 alpha = 0;
9 else for (Position move: free) {

10 TicTacToeBoard copy = board.clone();
11 copy.play(move.row(), move.col(),
12 copy.getTurn());
13 int utility = -negamaxAB(copy,
14 -beta, -alpha, false);
15 if (utility > alpha) {
16 alpha = utility;
17 if (save)
18 // save the move into a class instance field
19 chosenMove = move;
20 if (alpha >= beta)
21 break;
22 }
23 }
24 return alpha;
25 }

Fig. 26. FINCH setup for improving imperfect tic-tac-toe strategies. Shown
above is the key Java method in a perfect implementation of the negamax
algorithm (Fig. 25) that a seasoned programmer might write—if she got
everything right. However, we consider four possible single-error lapses, or
imperfections, as it were, which the programmer could easily have introduced
into the Java code. Here, the utility method computes the deterministic
board value for the player whose turn it is (i.e., the color variable of Fig. 25
is unnecessary), assigning higher values to boards with more free cells. The
negamaxAB method represents an optimal player that wins (or draws) in as
few turns as possible.

as tic-tac-toe. Whereas in the previous examples we seeded
FINCH with rather “deplorable” seeds, programs whose main
purpose was to inject the basic evolutionary ingredients, herein
our seed is a highly functional—yet imperfect program.

We first implemented the negamax algorithm, creating an
optimal tic-tac-toe strategy, i.e., one that never loses. We
then seeded FINCH with four imperfect versions thereof,
demonstrating four distinct, plausible, single-error slips that
a good human programmer might make. We asked whether
FINCH could improve our imperfect programs, namely, evolve
the perfect, optimally performing negamax algorithm, given

TABLE VII
TIC-TAC-TOE: PARAMETERS.

Parameter Angeline and Pollack [1] FINCH

Objective learn to play tic-tac-toe

Fitness number of rounds won in single-elimination tournament

Success
predicate

not defined same performance against
RAND and BEST as an
optimal player

Terminals pos00, . . . ,pos22 (board
positions)

primitive and object pa-
rameters, and local vari-
ables in Fig. 26, including
the Position enum

Functions and, or, if (three-
argument if), open,
mine, yours (position
predicates), play-at
(position action)

all the control flow and
methods used in Fig. 26,
including the play tic-tac-
toe board instance method

Population 256 individuals 2 048 individuals

Generations 150 16

Probabilities pcross = 0.9, pcompr = 0.1 pcross = 0.8, pmut = 0

Selection fitness-proportionate, with
linear scaling to 0 ∼ 2

tournament of size 7

Elitism not used 7 individuals

Growth
limit

tree depth of 15 maximal growth factor 2.0

Time limit not used 500 000 back-branches

Initial popu-
lation

grow with maximal depth 4 copies of seed program
given in Fig. 26

Crossover
location

internal nodes with pint =
0.9, otherwise a terminal

Gaussian distribution over
segment sizes, σ = 3.0

each one of the four imperfect versions. Our setup is illustrated
in Fig. 26.

Given a good-but-not-perfect tic-tac-toe program, i.e., an
imperfect version of Fig. 26, we set FINCH loose. In their
work on evolving tic-tac-toe players, Angeline and Pollack
[1] computed fitness by performing a single-elimination tour-
nament among individuals in the evolving population, demon-
strating this method’s superiority over using “expert” players,
in terms of the evolved players’ ability to compete against the
optimal player. Table VII details the analogous evolutionary
setup we used. Note that we used a fixed standard deviation
for segment sizes in order to focus the search on small
modifications to the evolving programs.

In single-elimination tournament, as applied to our setup,
2k players are arbitrarily partitioned into 2k−1 pairs. Each pair
competes for one round and the winner moves on to the next
tournament level—which has 2k−1 players. A single round
consists of two games, each player thus given the chance to be
X, i.e., to make the first move. The round winner is determined
according to sgn(1

m1
− 1

m2
), where mi is the number of moves

player i made to win the game it played as X (mi is negative
if player O won, or ∞ in case of a draw).4 The fitness value
of an individual is simply the number of rounds won, and is in

4The absolute value of mi is actually the number of moves plus 1, to
accommodate the possibility of a win in 0 moves, as is the case when X fails
to make the first move, thus forfeiting (and losing) the game.

14 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, FINAL DRAFT

TABLE VIII
TIC-TAC-TOE: FOUR DIFFERENT SINGLE-ERROR IMPERFECTIONS AND
THEIR EFFECT ON THE RESULTING PLAYER’S PERFORMANCE OVER A

2000-GAME MATCH. LINE NUMBERS REFER TO THE PERFECT CODE OF
FIG. 26. PERFORMANCE IS SHOWN AS PERCENTAGE OF WINS, DRAWS,

AND LOSSES VS. TWO PLAYERS: RAND AND BEST. (NOTE THAT BEST
NEVER LOSES.)

RAND BEST
Line Single-error imperfection W D L D L

RAND 44 12 44 13 87
BEST 87 13 0 100 0

8 put save = false instead of
alpha = 0

87 2 11 50 50

13 remove unary “-” preceding the
recursive call to negamaxAB
method

25 35 40 16 84

14 pass save instead of false to
the recursive call

72 10 18 32 68

20 swap alpha and beta in the
conditional test

45 11 44 13 87

the range {0, . . . , k}. Ties are broken randomly. This approach
gives preference to players that take less moves to win.

Table VIII lists four distinct imperfections an experienced
programmer might have realistically created while imple-
menting the non-trivial negamaxAB method, and the impact
of these imperfections on the resulting tic-tac-toe player’s
performance against two of the standard players defined by
Angeline and Pollack [1]: RAND and BEST. The former plays
randomly and the latter is an optimal player, based on the
correct negamax implementation shown in Fig. 26 (so in our
case it also minimizes the number of moves to win or draw).
We see that although each of the four single-error flaws is
minute and subtle at the source-code level (and therefore likely
to be made), the imperfections have a varying (detrimental)
impact on the player’s performance.

Our experiments, summarized in Table I, show that FINCH
easily unravels these unfortunate imperfections in the com-
pletely unrestricted, real-world Java code. The evolved byte-
code plays at the level of the BEST optimal player, never
losing to it. Fig. 27 shows one interesting, subtle example
of a solution evolved from the alpha-beta swap imperfect
seed (last case of Table VIII). FINCH discovered this solution
by cleverly reusing unrelated code through the compatible
crossover operator: stack pushes of the beta and alpha
parameters for the if icmplt comparison instruction were
replaced by stack pushes of -beta and -alpha from the pa-
rameters passing section of the recursive negamaxAB method
call.

IV. CONCLUDING REMARKS

We presented a powerful tool by which extant software,
written in the Java programming language, or in a language
that compiles to Java bytecode, can be evolved directly,
without an intermediate genomic representation, and with
no restrictions on the constructs used. We employed com-
patible crossover, a fundamental evolutionary operator that
produces correct programs by performing operand stack-, local
variables-, and control flow-based compatibility checks on
source and destination bytecode sections.

1 int negamaxAB(TicTacToeBoard board,
2 int alpha, int beta, boolean save) {
3 Position free[] = getFreeCells(board);
4 if (board.getWinner() != null)
5 alpha = utility(board, free);
6 else if (free.length == 0)
7 alpha = 0;
8 else {
9 Position free1[];

10 int l = (free1 = free).length;
11 for (int k = 0; k < l; k++) {
12 Position pos = free[k];
13 TicTacToeBoard copy = board.clone();
14 copy.play(pos.row(), pos.col(),
15 copy.getTurn());
16 int utility = -negamaxAB(copy,
17 -beta, -alpha, false);
18 if (utility > alpha) {
19 alpha = utility;
20 if (save)
21 chosenMove = pos;
22 if (-beta >= -alpha)
23 break;
24 }
25 pos = free1[k];
26 }
27 }
28 return alpha;
29 }

Fig. 27. Decompiled Java method in a solution evolved from the alpha-
beta swap imperfect seed in Table VIII. Compare line 22 above with line
20 of Fig. 26. Variable names were manually restored according to Fig. 26
(Java 5.0 for-each loop was not restored).

It is important to keep in mind the scope and limitations
of FINCH. No software development method is a “silver
bullet,” and FINCH is no exception to this rule. Evolving as-is
software still requires a suitably defined fitness function, and
it is quite plausible that manual improvement might achieve
better results in some cases. That being said, we believe
that automatic software evolution will eventually become an
integral part of the software engineer’s toolbox.

A recent study commissioned by the US Department of
Defense on the subject of futuristic ultra-large-scale (ULS)
systems that have billions of lines of code noted, among others,
that, “Judiciously used, digital evolution can substantially
augment the cognitive limits of human designers and can find
novel (possibly counterintuitive) solutions to complex ULS
system design problems” [23, p. 33]. This study does not detail
any actual research performed but attempts to build a road
map for future research. Moreover, it concentrates on huge,
futuristic systems, whereas our aim is at current systems of any
size (with the proof-of-concept described herein focusing on
relatively small software systems). Differences aside, both our
work and this study share the vision of true software evolution.

Is good crossover necessary for evolving correct byte-
code? After all, the JVM includes a verifier that signals
upon instantiation of a problematic class, a condition easily
detected. There are several reasons that good evolutionary
operators are crucial to unrestricted bytecode evolution. One
reason is that precluding bad crossovers avoids synthesizing,

ORLOV AND SIPPER: FLIGHT OF THE FINCH THROUGH THE JAVA WILDERNESS 15

loading, and verifying a bad individual. In measurements we
performed, the naive approach (allowing bad crossover) is at
least ten times slower than our unoptimized implementation
of compatible crossover. However, this reason is perhaps
the least important. Once we rely on the JVM verifier to
select compatible bytecode segments, we lose all control
over which segments are considered consistent. The built-in
verifier is more permissive than strictly necessary, and will
thus overlook evolutionarily significant components in given
bytecode. Moreover, the evolutionary computation practitioner
might want to implement stricter requirements on crossover, or
select alternative segments during compatibility checking—all
this is impossible using the naive verifier-based approach.

Several avenues of future research present themselves, in-
cluding: (a) defining a process by which consistent bytecode
segments can be found during compatibility checks, thus
improving preservation of evolutionary components during
evolution; (b) supporting class-level evolution, such as cross-
method crossover and introduction of new methods; (c) devel-
opment of mutation operators, currently lacking (except for
the constant mutator of Section III-C); (d) applying FINCH
to additional hard problems, along the way garnering further
support for our approach’s efficacy; (e) directly handling
high-level bytecode constructs such as try/catch clauses and
monitor enter/exit pairs; (f) designing an IDE (integrated
development environment) plugin to enable the use of FINCH
in software projects by non-specialists; (g) applying FINCH
to meta-evolution, in order to discover better evolutionary
algorithms; (h) applying unrestricted bytecode evolution to the
automatic improvement of existing applications, establishing
the relevance of FINCH to the realm of extant software.

Ultimately, one might be able to relax and forget about
the Java programming language, concentrating instead on the
beverage to be enjoyed, as evolution blithely works to produce
working programs.

APPENDIX
ARTIFICIAL ANT: AVOIDER

Below, we detail the implementation of the Santa Fe artifi-
cial ant problem in Java, after slight simplifications, such as
removing assertions intended for debugging. Avoider, a zero-
fitness, generation-0 individual from the experiment by Koza
[11], was implemented as the step method. Note that this is a
standard, unrestricted Java class, with static and instance fields,
an inner class, and a virtual function override. The compiled
bytecode was then provided as-is to FINCH for the purpose
of evolution.

public class ArtificialAnt {
// Exception for exceeding operations limit
public static class OperationsLimit

extends RuntimeException {
public final int ops;
public OperationsLimit(int ops) {

super("Operations limit of " + ops
+ " reached");

this.ops = ops;
}

}

// Map loader, also provides ASCII representation
private static final ArtificialAntMap antMap =

new ArtificialAntMap(ArtificialAntMap.class
.getResource("santafe.trl"));

private final int maxOps;
private int opsCount;

private final boolean[][] visitMap;
private int eaten; // pellets counter
private int x, y; // col, row
private int dx, dy; // { -1, 0, +1 }

public ArtificialAnt(int maxOps) {
this.maxOps = maxOps;
opsCount = 0;

boolean[][] model = antMap.foodMap;
visitMap = new boolean[model.length][];

// Initialized to “false”
for (int row = 0; row < visitMap.length;

++row) visitMap[row] =
new boolean[model[row].length];

eaten = 0;
x = 0; y = 0;
dx = 1; dy = 0;
visit();

}

// Perform as many steps as possible
public void go()
{ while (!ateAll()) step(); }

// Avoider (Koza I, p.151)
public void step() {

if (foodAhead()) right();
else if (foodAhead()) right();
else { move(); left(); }

}

// Visits current cell
private void visit() {

if (! visitMap[y][x]) {
visitMap[y][x] = true;
// Don’t count eating as a move
if (antMap.foodMap[y][x])

{ ++eaten; --opsCount; }
}

}

// Moves to next cell in current direction
private void move() {
x = (x + dx + antMap.width)

% antMap.width;
y = (y + dy + antMap.height)

% antMap.height;
visit(); operation();

}

// Turns counter-clockwise
private void left() {

if (dy == 0) { dy = -dx; dx = 0; }
else { dx = dy; dy = 0; }

}

// Turns clockwise
private void right() {

16 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, FINAL DRAFT

if (dy == 0) { dy = dx; dx = 0; }
else { dx = -dy; dy = 0; }

}

private void operation() {
if (++opsCount >= maxOps)

throw new OperationsLimit(opsCount);
}

// Checks whether a food pellet is at next cell
private boolean foodAhead() {

int xx = (x + dx + antMap.width)
% antMap.width;

int yy = (y + dy + antMap.height)
% antMap.height;

return antMap.foodMap[yy][xx]
&& !visitMap[yy][xx];

}

// Returns number of eaten food pellets
public int getEatenCount()
{ return eaten; }

// Returns true if all food pellets were eaten
public boolean ateAll()
{ return eaten == antMap.totalFood; }

@Override
public String toString()
{ return antMap.toString(visitMap); }

}

ACKNOWLEDGMENT

Michael Orlov is supported by the Adams Fellowship Program
of the Israel Academy of Sciences and Humanities, and is partially
supported by the Lynn and William Frankel Center for Computer
Sciences.

REFERENCES

[1] P. J. Angeline and J. B. Pollack, “Competitive environments
evolve better solutions for complex tasks,” in Proceedings of
the 5th International Conference on Genetic Algorithms, July
17–21, 1993, Urbana-Champaign, Illinois, USA, S. Forrest, Ed.
San Francisco, CA, USA: Morgan Kaufmann, Jul. 1993, pp.
264–270.

[2] A. Arcuri, “Automatic software generation and improvement
through search based techniques,” Ph.D. dissertation, University
of Birmingham, Birmingham, UK, Dec. 2009. [Online].
Available: http://etheses.bham.ac.uk/400/

[3] M. F. Brameier and W. Banzhaf, Linear Genetic Programming,
ser. Genetic and Evolutionary Computation. New York, NY,
USA: Springer, Dec. 2006.

[4] E. Bruneton, R. Lenglet, and T. Coupaye, “ASM: A code
manipulation tool to implement adaptable systems (Un outil
de manipulation de code pour la réalisation de systèmes
adaptables),” in Adaptable and Extensible Component Systems
(Systèmes à Composants Adaptables et Extensibles), October
17–18, 2002, Grenoble, France, Oct. 2002, pp. 184–195.
[Online]. Available: http://asm.objectweb.org/current/asm-eng.
pdf

[5] “CMU neural network benchmark database,” Carnegie Mellon
University, Feb. 1993. [Online]. Available: http://www.cs.cmu.
edu/afs/cs/project/ai-repository/ai/areas/neural/bench/cmu

[6] C. Darwin, On the Origin of Species by Means of Natural
Selection, or the Preservation of Favoured Races in the Struggle
for Life. London: John Murray, 1859.

[7] J. Engel, Programming for the Java™ Virtual Machine. Read-
ing, MA, USA: Addison-Wesley, Jul. 1999.

[8] S. Forrest, W. Weimer, T. Nguyen, and C. Le Goues, “A
genetic programming approach to automated software repair,”
in Proceedings of the 11th Annual Conference on Genetic and
Evolutionary Computation, July 8–12, 2009, Montréal Québec,
Canada, G. Raidl et al., Eds. New York, NY, USA: ACM
Press, Jul. 2009, pp. 947–954.

[9] J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java™
Language Specification, 3rd ed., ser. The Java™ Series.
Boston, MA, USA: Addison-Wesley, May 2005. [Online].
Available: http://java.sun.com/docs/books/jls

[10] T. Kotzmann, C. Wimmer, H. Mössenböck, T. Rodriguez,
K. Russell, and D. Cox, “Design of the Java HotSpot™ client
compiler for Java 6,” ACM Transactions on Architecture and
Code Optimization, vol. 5, no. 1, pp. 7:1–32, May 2008.

[11] J. R. Koza, Genetic Programming: On the Programming of
Computers by Means of Natural Selection. Cambridge, MA,
USA: The MIT Press, Dec. 1992.

[12] ——, “A genetic approach to the truck backer upper problem
and the inter-twined spiral problem,” in IJCNN, International
Joint Conference on Neural Networks, Baltimore, Maryland,
USA, 7–11 June 1992, vol. 4. IEEE Press, Jul. 1992, pp.
310–318.

[13] W. B. Langdon and P. Nordin, “Seeding genetic programming
populations,” in Genetic Programming: European Conference,
EuroGP 2000, Edinburgh, Scotland, UK, April 15–16, 2000, ser.
Lecture Notes in Computer Science, R. Poli, W. Banzhaf, W. B.
Langdon, J. Miller, P. Nordin, and T. C. Fogarty, Eds., vol. 1802.
Berlin / Heidelberg: Springer-Verlag, 2000, pp. 304–315.

[14] W. B. Langdon and R. Poli, “The halting probability in
von Neumann architectures,” in Genetic Programming: 9th
European Conference, EuroGP 2006, Budapest, Hungary, April
10–12, 2006, ser. Lecture Notes in Computer Science, P. Collet,
M. Tomassini, M. Ebner, S. Gustafson, and A. Ekárt, Eds., vol.
3905. Berlin / Heidelberg: Springer, Apr. 2006, pp. 225–237.

[15] T. Lindholm and F. Yellin, The Java™ Virtual Machine
Specification, 2nd ed., ser. The Java™ Series. Boston,
MA, USA: Addison-Wesley, Apr. 1999. [Online]. Available:
http://java.sun.com/docs/books/jvms

[16] S. Luke and L. Panait, “A Java-based evolutionary computation
research system,” Mar. 2004. [Online]. Available: http:
//cs.gmu.edu/∼eclab/projects/ecj

[17] ——, “Lexicographic parsimony pressure,” in Proceedings of
the Genetic and Evolutionary Computation Conference, New
York, USA, July 9–13, 2002, W. B. Langdon, E. Cantú-Paz,
K. E. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan,
V. G. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A. Potter,
A. C. Schultz, J. F. Miller, E. Burke, and N. Jonoska, Eds. San
Francisco, CA, USA: Morgan Kaufmann, Jul. 2002, pp. 829–
836.

[18] J. Miecznikowski and L. Hendren, “Decompiling Java bytecode:
Problems, traps and pitfalls,” in Compiler Construction: 11th
International Conference, CC 2002, Held as Part of the Joint
European Conferences on Theory and Practice of Software,
ETAPS 2002, Grenoble, France, April 8–12, 2002, ser. Lecture
Notes in Computer Science, R. N. Horspool, Ed., vol. 2304.
Berlin / Heidelberg: Springer-Verlag, Apr. 2002, pp. 111–127.

[19] J. Mizoguchi, H. Hemmi, and K. Shimohara, “Production
genetic algorithms for automated hardware design through an
evolutionary process,” in Proceedings of the First IEEE Con-
ference on Evolutionary Computation, ICEC ’94, IEEE World
Congress on Computational Intelligence, June 27–29, 1994,
Orlando, Florida, USA, Z. Michalewicz, J. D. Schaffer, H.-P.
Schwefel, D. B. Fogel, and H. Kitano, Eds., vol. 2. IEEE
Neural Networks, Jun. 1994, pp. 661–664.

[20] D. J. Montana, “Strongly typed genetic programming,” Evolu-
tionary Computation, vol. 3, no. 2, pp. 199–230, Summer 1995.

[21] Y. Nakamura, K. Oguri, and A. Nagoya, “Synthesis from

http://etheses.bham.ac.uk/400/
http://asm.objectweb.org/current/asm-eng.pdf
http://asm.objectweb.org/current/asm-eng.pdf
http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/neural/bench/cmu
http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/neural/bench/cmu
http://java.sun.com/docs/books/jls
http://java.sun.com/docs/books/jvms
http://cs.gmu.edu/~eclab/projects/ecj
http://cs.gmu.edu/~eclab/projects/ecj

ORLOV AND SIPPER: FLIGHT OF THE FINCH THROUGH THE JAVA WILDERNESS 17

pure behavioral descriptions,” in High-Level VLSI Synthesis,
R. Camposano and W. H. Wolf, Eds. Norwell, MA,
USA: Kluwer, May 1991, pp. 205–229. [Online]. Available:
http://www-lab09.kuee.kyoto-u.ac.jp/parthenon/NTT

[22] P. Nordin, Evolutionary Program Induction of Binary Machine
Code and its Applications. Münster, Germany: Krehl Verlag,
1997.

[23] L. Northrop, P. Feiler, R. P. Gabriel, J. Goodenough,
R. Linger, T. Longstaff, R. Kazman, M. Klein, D. Schmidt,
K. Sullivan, and K. Wallnau, Ultra-Large-Scale Systems:
The Software Challenge of the Future. Pittsburgh, PA, USA:
Carnegie Mellon University, Jul. 2006. [Online]. Available:
http://www.sei.cmu.edu/uls

[24] M. O’Neill and C. Ryan, Grammatical Evolution: Evolutionary
Automatic Programming in an Arbitrary Language, ser. Genetic
Programming. Norwell, MA, USA: Kluwer, May 2003, vol. 4.

[25] M. Orlov and M. Sipper, “Genetic programming in the wild:
Evolving unrestricted bytecode,” in Proceedings of the 11th
Annual Conference on Genetic and Evolutionary Computation,
July 8–12, 2009, Montréal Québec, Canada, G. Raidl et al.,
Eds. New York, NY, USA: ACM Press, Jul. 2009, pp. 1043–
1050.

[26] T. Perkis, “Stack-based genetic programming,” in Proceedings
of the First IEEE Conference on Evolutionary Computation,
ICEC ’94, IEEE World Congress on Computational Intelligence,
June 27–29, 1994, Orlando, Florida, USA, Z. Michalewicz,
J. D. Schaffer, H.-P. Schwefel, D. B. Fogel, and H. Kitano,
Eds., vol. 1. IEEE Neural Networks, Jun. 1994, pp. 148–153.

[27] R. Poli, W. B. Langdon, and N. F. McPhee, A Field Guide
to Genetic Programming. UK: Lulu Enterprises, Mar. 2008,
(With contributions by J. R. Koza). [Online]. Available:
http://www.gp-field-guide.org.uk

[28] M. D. Schmidt and H. Lipson, “Incorporating expert knowl-
edge in evolutionary search: A study of seeding methods,” in
Proceedings of the 11th Annual Conference on Genetic and
Evolutionary Computation, July 8–12, 2009, Montréal Québec,
Canada, G. Raidl et al., Eds. New York, NY, USA: ACM
Press, Jul. 2009, pp. 1091–1098.

[29] M. Sipper, Y. Azaria, A. Hauptman, and Y. Shichel, “Designing
an evolutionary strategizing machine for game playing and be-
yond,” IEEE Transactions on Systems, Man, and Cybernetics—
Part C: Applications and Reviews, vol. 37, no. 4, pp. 583–593,
Jul. 2007.

[30] L. Spector and A. Robinson, “Genetic programming and auto-
constructive evolution with the Push programming language,”
Genetic Programming and Evolvable Machines, vol. 3, no. 1,
pp. 7–40, Mar. 2002.

[31] H. Tuan-Hao, R. I. B. McKay, D. Essam, and N. X. Hoai, “Solv-
ing symbolic regression problems using incremental evaluation
in genetic programming,” in IEEE Congress on Evolutionary
Computation, CEC 2006, Vancouver, British Columbia, Canada,
July 16–21, 2006. IEEE Press, Jul. 2006, pp. 2134–2141.

[32] M. S. Withall, C. J. Hinde, and R. G. Stone, “An improved
representation for evolving programs,” Genetic Programming
and Evolvable Machines, vol. 10, no. 1, pp. 37–70, Mar. 2009.

[33] M. L. Wong and K. S. Leung, Data Mining Using Grammar
Based Genetic Programming and Applications, ser. Genetic
Programming. Norwell, MA, USA: Kluwer, Feb. 2000, vol. 3.

[34] J. R. Woodward, “Evolving Turing complete representations,”
in The 2003 Congress on Evolutionary Computation, CEC
2003, Canberra, Australia, 8–12 December, 2003, R. Sarker,
R. Reynolds, H. Abbass, K. C. Tan, B. McKay, D. Essam, and
T. Gedeon, Eds., vol. 2. IEEE Press, Dec. 2003, pp. 830–837.

http://www-lab09.kuee.kyoto-u.ac.jp/parthenon/NTT
http://www.sei.cmu.edu/uls
http://www.gp-field-guide.org.uk

	I Introduction
	II Bytecode Evolution
	II-A Why Target Bytecode for Evolution?
	II-B The Grammar Alternative
	II-C The Halting Issue
	II-D (No) Loss of Compiler Optimization
	II-E Related Work

	III Results
	III-A Symbolic Regression: Simple and Complex
	III-B Artificial Ant
	III-C Intertwined Spirals
	III-D Array Sum
	III-E Tic-Tac-Toe

	IV Concluding Remarks
	Appendix: Artificial Ant: Avoider

