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Abstract: Predicting carbon emissions is important in various sectors, including environmental manage-
ment, economic planning, and energy policy. Traditional forecasting models typically require extensive
training data to achieve high accuracy. However, carbon emission data are usually available on an
annual basis, which is insufficient for effectively training conventional forecasting models. To address
this challenge, this paper introduces an innovative carbon emissions prediction model that integrates
Fibonacci attenuation particle swarm optimization (FAPSO) with the gated recurrent unit (GRU). The
FAPSO algorithm is used to optimize the hyperparameters of the GRU, thereby alleviating the decline in
prediction accuracy that conventional recurrent neural networks often face when dealing with limited
training data. To evaluate the effectiveness of the FAPSO-GRU model, we tested it using carbon emis-
sion data from Hainan Province. Compared to the conventional GRU model, the FAPSO-GRU model
achieved a significant reduction in the mean absolute error (42.27%), root mean square error (42.38%),
and mean absolute percentage error (43.06%). Furthermore, we validated the FAPSO-GRU model with
real data from Beijing, Guangdong, Hubei, Hunan, and Shanghai. The experimental results convincingly
demonstrate that the proposed model provides a highly accurate solution for carbon emission prediction
tasks, effectively addressing the limitations posed by limited training data.

Keywords: carbon emission; gated recurrent unit; Fibonacci attenuation; particle swarm optimization

1. Introduction

The need to reduce carbon emissions has become of utmost importance due to the
growing global climate change crisis, primarily driven by the increase in carbon emissions
as mentioned in [1]. This presents significant challenges in attempting to limit emissions
and maintain a stable economic growth trajectory. Carbon emissions have far-reaching
impacts on both the environment and the economy. Ecologically, they play a central
role in driving global climate changes by releasing large amounts of carbon dioxide and
other greenhouse gases, ultimately leading to a rise in the Earth’s average temperature,
as discussed in [2]. Consequently, this sets off a chain of environmental issues, including
higher sea levels, increased occurrences of extreme weather events, and disruptions to
ecosystems, all of which have adverse effects on biodiversity, ecosystem functionality,
and human society.

On the flip side, efforts to reduce carbon emissions have significant economic impli-
cations. Firstly, climate change affects critical natural resources like agriculture, fisheries,
and forestry, which in turn has cascading effects on food production, supply chains, health-
care costs, and labor productivity. Secondly, the increase in natural disasters and extreme
weather events leads to losses and damages that harm infrastructure, homes, and property,
thereby negatively impacting the economy.
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Moreover, the shift toward a low-carbon economic model requires investments in
clean energy, sustainable technologies, and improvements in carbon emission efficiency,
as discussed in [3]. This transition not only drives technological advancements but also
stimulates green innovation and necessitates changes in energy consumption patterns.
These changes create new job opportunities and contribute to economic growth.

The pursuit of sustainable development increasingly relies on the adoption of green
technologies, as highlighted in [4]. Predicted global energy demands are set to rise sig-
nificantly, especially in developing economies. However, it is crucial to note that unless
we embrace eco-friendly technologies, meeting this energy demand through conventional
sources will come at the cost of worsening emissions, as discussed in [5].

In summary, carbon emissions have a profound impact on both the environment and
the economy. Therefore, reducing carbon emissions is a paramount initiative that not only
safeguards ecosystems but also promotes sustainable economic growth. Shifting toward a
low-carbon economy and adopting sustainable development models provide a promising
path to align the objectives of economic expansion and ecological preservation.

China, as one of the world’s largest energy consumers and carbon emitters, as men-
tioned in [6], has the formidable task of curbing carbon emissions. The Chinese govern-
ment’s pledge to achieve carbon neutrality by 2060 has sparked intense global discussions,
underscoring China’s role as a responsible key player in global climate governance, as
highlighted in [7]. Given this context, conducting scenario projections for carbon emis-
sions carries substantial significance. These projections provide valuable insights into
future trends and the potential consequences of carbon emissions, thereby aiding in the
development of effective policies and informed decision-making.

Current research on carbon emission projections encompasses a wide range of areas,
including policy development and planning, resource allocation, investment decisions, corpo-
rate strategy, risk management, international collaboration, and responses to climate change.

In the context of policy formulation and planning, carbon emission forecasts provide
essential data to governments and organizations, assisting in the evaluation of current
emission levels and the establishment of reduction targets and policy measures, as dis-
cussed in [8]. These insights enable policymakers to develop long-term emission reduction
strategies, which may involve initiatives such as transitioning to cleaner energy sources, im-
plementing carbon pricing strategies [9], and introducing emission reduction measures [10].

Furthermore, research like that presented in [11] delves into the impact of carbon taxes
on China’s efforts to reduce emissions. These studies suggest policy approaches such as
combining carbon tax collection with carbon trading, implementing dynamic adjustment
mechanisms, maintaining tax neutrality, and actively promoting carbon reduction initiatives.

In the realm of resource allocation and investment decisions, carbon emission projec-
tions play a crucial role in identifying industries and sectors that are likely to experience
fluctuations in carbon emissions. This information guides the allocation of resources
and investment choices. Investors can assess both risks and opportunities across various
industries, aligning their investments with the transition towards a low-carbon economy.

Moreover, carbon emission projections hold significant value for businesses, partic-
ularly in terms of corporate strategy and risk management. Companies can use these
forecasts to evaluate the carbon footprint of their business models and products, as dis-
cussed in [12]. This information helps in formulating strategies and setting sustainability
goals aimed at reducing emissions [13]. Additionally, understanding future trends in car-
bon emissions equips companies to navigate the carbon market more effectively, including
associated risks, as mentioned in [14], thereby mitigating any adverse impacts.

On the international stage, carbon emission projections play a pivotal role in the
context of global cooperation and responses to climate change. These projections enable
countries to evaluate the overall trajectory of global carbon emissions and develop policy
frameworks for international collaboration in climate action. Additionally, carbon emission
projections facilitate the monitoring and assessment of emissions and carbon sinks, thereby
advancing global emission reduction targets.
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For example, in [15], the SGM(1,1,m) model was utilized to forecast carbon emis-
sions for 30 Chinese provinces from 2020 to 2025, using provincial carbon emission data.
Meanwhile, ref. [16] examined the carbon emission and carbon sink performance of ma-
rine fisheries.

In conclusion, carbon emission projections are of paramount importance for gov-
ernments, organizations, businesses, and the international community. They serve as a
fundamental tool for decision-making and planning, allowing us to effectively address
the challenges of climate change, promote sustainable development, and move closer to
achieving a low-carbon economy.

Forecasting future carbon emissions is a complex macro-level undertaking that re-
volves around scenarios and models. Various tools and methodologies are commonly
employed for this purpose, including greenhouse gas inventories, modeling, scenario
analysis, energy system models, climate–economic models, and data-driven models.

Long short-term memory (LSTM) networks are highly effective for time series pre-
diction due to their ability to capture long-term dependencies and handle sequential data,
making them applicable across diverse domains such as finance and meteorology. Nev-
ertheless, their inherent complexity, computational demands, and tendency to overfit,
particularly when data are limited, present significant challenges. The gated recurrent
unit (GRU) [17] model was chosen to solve the carbon emission prediction problem due to
its capability to effectively handle sequential and time-series data. Carbon emission data
often exhibit temporal dependencies and patterns that need to be captured for accurate
forecasting. GRUs, types of recurrent neural networks (RNNs), are specifically designed to
retain and process information over long sequences, making them well-suited for this task.

Modeling and scenario analysis are widely used methods that use mathematical and
statistical techniques to predict future emissions under different assumptions and scenar-
ios. These models consider factors like economic growth, energy demand, technological
advancements, and policy measures. For instance, in [18], the SSA-LSTM algorithm was em-
ployed to create carbon emission regression prediction models for coal-fired power plants.
However, these models rely on assumptions and simplified frameworks that may not fully
account for uncertainties, and their accuracy depends on data quality and adaptability to
real-world conditions.

Energy system models analyze the relationship between energy supply, demand, tran-
sition, and carbon emissions. They simulate various energy sources and predict their impact
on emissions by varying parameters and assumptions. For example, in [19], the ROGM-
AFSA-GVM model was introduced to predict the carbon emissions transfer network result-
ing from the exchange of intermediate products between industries. However, these models
often rely on assumptions and may not fully capture complex markets and technological
dynamics. Additionally, they require substantial data and expertise.

Climate–economic models combine climate change and economic growth, forecasting
the effects of economic activities and emission reduction policies on both emissions and
the economy. Common models include DICE and PAGE. For instance, in [20], the relation-
ship between the digital economy and carbon emissions was analyzed, highlighting the
impact of the digital economy on emissions. These models are valuable for evaluating the
cost-effectiveness of emission reduction policies but have limitations due to their assump-
tions and simplified economic behavior models. Their accuracy depends on data quality
and reliability.

Data-driven models, which are becoming increasingly important in carbon emission
forecasting, leverage historical and real-time data with machine learning and data analytics
techniques. They consider factors such as economic indicators, energy consumption,
and population growth. For example, in [1], carbon emission trends were predicted
based on carbon emission data and neural network models. Data-driven models excel in
handling complex nonlinear relationships and trends but rely heavily on data quality and
proper data handling and selection. Handling long-term projections and uncertainties can
be challenging.
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Particle swam optimization (PSO) [21] is a powerful method for the parameter training
of artificial intelligence models. To enhance the optimization ability, Guo [22] combined the
twining bare bones strategy with standard PSO. In 2023, Guo [23] proposed a cross-memory
feature for PSO. Also, naturally inspired methods such as hermit crab optimization [24]
demonstrate outstanding performance in single-objective optimization problems.

The primary objective of this article is to address the challenge of predicting carbon
emissions using limited annual data and to overcome the difficulties faced by traditional algo-
rithms under these circumstances. Traditional forecasting models typically require extensive
training data to achieve high accuracy, but carbon emission datasets are usually sparse and
inadequate for this purpose. Moreover, conventional algorithms often exhibit poor prediction
accuracy when dealing with insufficient data. To tackle these issues, a novel prediction model
that integrates Fibonacci attenuation particle swarm optimization (FAPSO) with the gated
recurrent unit (GRU) is proposed. This model leverages the FAPSO algorithm to optimize the
hyperparameters of the GRU, thereby enhancing prediction accuracy despite the limited data.
Through this approach, a more accurate and efficient solution for carbon emission forecasting
is provided, contributing to better-informed decision-making in environmental management,
economic planning, and energy policy. The proposed model was rigorously tested using
real-world carbon emission data from multiple provinces, demonstrating its effectiveness and
significant potential to improve prediction performance compared to conventional methods.
The main contributions of this work are listed below.

(1) A The Fibonacci attenuation method is proposed to enhance the exploratory ca-
pacity of the original PSO. The combination of FA and PSO endows the method with a
stronger ability to escape from local optimality.

(2) The FAPSO is combined with the GRU model.
The rest of this paper is organized as follows: Section 2 introduces the proposed

Fibonacci attenuation particle swarm optimization gated recurrent unit; Section 3 introduces
the validation test; Section 4 presents the conclusion of this work.

2. Materials and Methods

The Fibonacci attenuation particle swarm optimization gated recurrent unit (FAPSO-
GRU) model is proposed in this section.

2.1. GRU Models

The gated recurrent unit (GRU) [17] is a recurrent neural network (RNN) architecture
for processing and modeling sequential data, such as text, audio, and time series. It is an
improved recurrent neural network architecture designed to solve the long-term depen-
dency problem that exists in traditional RNNs while mitigating the gradient vanishing
problem. A GRU consists of the following key components:

Hidden state (ht): Like a traditional RNN, a GRU maintains a hidden state vector at
each time step (t) that encodes information from previous time steps. This hidden state is
updated at each time step and serves as a memory of the network.

Update gate (zt): The update gate is responsible for determining how much of the
previous hidden state should be retained and how much should be replaced with new
information from the current input. It takes into account the current input and the previous
hidden state and produces an update gate activation value between 0 and 1.

Reset gate (rt): The reset gate determines how much of the previous hidden state
should be forgotten or reset based on the current input. It also considers the current input
and the previous hidden state, producing a reset gate activation value between 0 and 1.

Candidate hidden state (h̃t): This is a candidate hidden state that is computed based on
the current input and the reset gate. It represents the new information that can potentially
replace part of the previous hidden state.
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The computations in a GRU can be summarized with Equation (1).

zt = σ(Wzg[ht−1, xt])
rt = σ(Wrg[ht−1, xt])

h
′
t = tanh(Whg[rt ∗ ht−1, xt])

ht = (1 − zt) ∗ ht−1 + zt ∗ h
′
t

(1)

where xt represents the input at time step t; Wz, Wr, and Wh are weight matrices specific to
each gate; and sigmoid and tanh are activation functions. The GRU’s ability to selectively
update and reset its hidden state allows it to capture long-range dependencies in sequential
data while mitigating some of the vanishing gradient problems associated with traditional
RNNs. This makes GRUs a popular choice for various sequential data tasks in deep
learning [17]. The general structure of the GRU is shown in Figure 1.
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Figure 1. The structure of GRU.

2.2. Fibonacci Attenuation Particle Swarm Optimization

PSO [21] operates by simulating the behavior of a swarm of particles in a multi-
dimensional search space. Each particle represents a potential solution to the optimization
problem. The primary idea behind PSO is that particles adjust their positions in the search
space based on their own experience and the collective experience of the swarm. Particle
swarm optimization (PSO) is a potent optimization algorithm, but like all techniques, it has
its limitations and challenges. Here are some of these issues:

(1) Premature convergence: PSO can prematurely converge to suboptimal solutions,
particularly in complex, multimodal optimization problems. This occurs when the swarm
is trapped in local optima, struggling to break free.

(2) Limited global exploration: Despite its proficiency in exploiting promising areas of
the search space, PSO may encounter difficulties in comprehensive global exploration. It
may not effectively explore diverse solution regions in certain scenarios.

(3) Parameter sensitivity: PSO’s performance hinges on parameter settings, such as
acceleration constants, inertia weight, and population size. Determining the appropriate
parameter values can be challenging and problem-specific.
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(4) Stagnation: Stagnation is a phenomenon where PSO particles converge towards
similar positions and velocities, diminishing swarm diversity. This constrains the algo-
rithm’s ability to explore new regions within the search space.

To solve these problems, a Fibonacci attenuation strategy is proposed for PSO. Different
from the standard PSO, the next position of a particle is calculated by Equation (2).

f ib(t) = 1, t < 3
f ib(t) = f ib(t − 1) + f ib(t − 2), t >= 3
vt+1(i) = w ∗ vt(i) + c1 ∗ rand ∗ (pbestt(i)− xt(i)) + c2 ∗ rand ∗ (gbestt − xt(i))
xt+1(i) = xt(i) + (−1)t+1 ∗ vt+1(i)/(e f ib(t));

(2)

where f ib(t) is the Fibonacci sequence, t is the number of iterations, xt(i) is the position
of the (i)th particle in the tth iteration, v(i) is the velocity of the (i)th particle in the tth
iteration, pbestt(i) is the optimal position of the (i)th particle after t iterations, gbestt is the
global best position after t iterations, exp(t) represents the oscillation coefficient of the tth
evolution, and c1 and c2 are factors of learning. w is the weight of the velocity, and rand is
a random number from 0 to 1.

2.3. The Process of FAPSO-GRU

In the FAPSO-GRU model, the input and output data are first normalized −1 to 1.
Then, the appropriate FAPSO parameters are selected. When entering the FAPSO iteration,
the position of each individual is trained as the GRU parameters. Once reaching the
maximum number of iterations, the best solution is output. Finally, the best solution
is trained as the GRU training parameter and outputs the result of the CO2 emission
prediction. The flowchart of the DAPSO-LSTM is shown in Figure 2.

Begin

Initialization

Reach the max 
iteration

Train GRU with 
solution of the PSO

 Output best solution 

End

Train GRU with the 
best solution 

Population size
Number of iteration

Number of dimension

Predict CO2 emission

NO

Yes

Data process

Figure 2. The flowchart of FAPSO-GRU.
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3. Experiments and Results
3.1. Data Preparation

After gaining a preliminary understanding, we identified that CO2 emissions are influ-
enced by numerous factors, each varying in its impact strength. However, it is important to
note that all these factors have some level of influence on CO2 emissions. Consequently, we
specifically selected 20 factors from China’s Statistical Yearbook to forecast the total CO2
emissions in Hainan Province for the period spanning 1997 to 2019. The total CO2 emis-
sion data for Hainan Province were sourced from the China carbon accounting databases
(CEADs). These 20 factors encompass Hainan’s gross domestic product (GDP), GDP per
capita, GDP growth index, GDP growth index per capita, gross agricultural output value,
gross forestry output value, gross fishery output value, gross animal husbandry output
value, number of diesel engines used in agriculture and irrigation, number of large and
medium-sized tractors, number of small-sized tractors, automobile production, power
generation, hydroelectricity generation, electric power consumption, passenger transporta-
tion, resident population count, operational railroad mileage, highway route mileage,
and national GDP.

To build the prediction model, we employed data from 1997 to 2015 as the training
set, and data from 2016 to 2019 served as the test set to evaluate the model’s predictive
performance.

3.2. FAPSO-GRU Results

To verify the performance of FAPSO-GRU in predicting the total CO2 emissions in
Hainan Province, we selected GRU, LSTM, and PSO-GRU as the control group of the
experiment. As PSO is an optimizer, some of the parameters of PSO-GRU and FAPSO-GRU
were different from GRU with LSTM. However, to ensure the fairness of the experiment,
we made sure that the parameters were equal except for the optimization object parameter.
The specific details of the parameters are shown in Table 1. Population size represents
the number of particles involved in the evolution process, and the number of iterations
indicates the number of times the algorithm iterates. To intuitively demonstrate the error
between the prediction results and the true values of FAPSO-GRU and the control group in
the training and test sets, we show the training and testing results for each algorithm as
shown in Figure 3.

Table 1. Specific details of GRU, LSTM, PSO-LSTM, FAPSO-LSTM parameters.

Parameters GRU LSTM PSO-GRU FAPSO-GRU

Populations None None 5 5
Iterations None None 20 20

Learning rate 0.001 0.001 [0.001, 0.15] [0.001, 0.15]
Number of neurons 25 25 [10, 50] [10, 50]

Epochs 1000 1000 1000 1000
Optimizer Amda Amda Amda Amda

From Figure 3, it is clear that the GRU training results in the period from 1997 to 2006
are significantly different from the true values. As time progresses, the GRU results in the
training set are significantly more accurate. The prediction results for 2016 and 2017 in the
test set are not much different from the true values and have the same trend. However, the
data for 2018 and 2019 exhibit a larger deviation from the truth.

The results of the FAPSO-GRU and the control group on the test set and the error from
the true value are shown in Table 2. Among these, the FAPSO-GRU exhibits the smallest
prediction errors in 2016 and 2017 (1.21% and 1.40%, respectively). It is not as good as some
of the control group algorithms in terms of prediction errors for 2018 and 2019.
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Figure 3. The forecasting results of Hainan.

Table 2. The results of the FAPSO-GRU and the control group on the test set and the error from reality.

Year Reality
GRU LSTM PSO-GRU FAPSO-GRU

Prediction Error Prediction Error Prediction Error Prediction Error

2016 62.26 64.153496 3.05% 68.30172 9.71% 65.77932 5.66% 63.01046 1.21%
2017 60.75 62.97126 3.65% 68.251022 12.34% 66.186607 8.94% 61.601376 1.40%
2018 63.83 60.2159 5.67% 67.634743 5.96% 63.729317 0.16% 60.186832 5.71%
2019 66.10 56.059467 15.19% 67.536888 2.18% 62.896084 4.84% 61.087147 7.58%

For the further performance of FAPSO-GRU in predicting CO2 emissions in Hainan
Province, three evaluations, including mean absolute error (MAE), root mean square error
(RMSE), and mean absolute percentage error (MAPE) were used to calculate the statistical
results of all the algorithms. The detailed calculations of these indicators are shown in
Table 3, and the equations of MAE, RMSE, and MAPE are shown in Equation (3):

MAE = 1
n

n
∑

i=1
|Pi − Ri|

RMSE =

√
1
n

n
∑

i=1
(Pi − Ri)

2

MAPE = 1
n

n
∑

i=1
| Pi−Ri

Ri
|

(3)

where n is the number of samples. Pi and Ri are the prediction value and reality value,
respectively.

From Table 3, FAPSO-GRU has better results than the control group, both on the
training set and on the test set. In the test set, the RMSE values of FAPSO-GRU are 43.05%,
39.76%, and 12.82% better than GRU, LSTM, and PSO-LSTM, respectively.

Table 3. Statistical results for GRU, LSTM, PSO-GRU, and FAPSO-GRU in training and test sets.

Indicator Type GRU LSTM PSO-GRU FAPSO-GRU

MAE
Train 3.7650 3.3301 2.4651 2.0798
Test 4.4426 4.6969 3.0654 2.5647

MAPE Train 0.2651 0.2276 0.2169 0.1882
Test 0.0689 0.0755 0.0490 0.0397

RMSE
Train 5.8398 6.1205 3.8574 3.6503
Test 5.5306 5.2278 3.6125 3.1494
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3.3. FAPSO-GRU Results with Complex Data

To further evaluate the prediction performance of FAPSO-GRU, real data from Shang-
hai, Beijing, Guangdong, Hubei, and Hunan are used for validation tests. For Shanghai,
Beijing, Guangdong, Hubei, and Hunan, data from 1997 to 2016 are used for training, and
data from 2017 to 2021 are used for testing.

• In Shanghai, the test MAE for FAPSO-GRU is 3.5079, while the MAE for GRU is 17.3467.
• In Beijing, the test MAE for FAPSO-GRU is 2.6671, while the MAE for GRU is 9.9971.
• In Guangdong, the test MAE for FAPSO-GRU is 26.987, while the MAE for GRU is 108.838.
• In Hubei, the test MAE for FAPSO-GRU is 17.8247, while the MAE for GRU is 39.4897.
• In Hunan, the test MAE for FAPSO-GRU is 22.6347, while the MAE for GRU is 33.4465.

This comprehensive evaluation demonstrates the model’s adaptability and robustness
across diverse geographical and climatic conditions, as well as its effectiveness in capturing
long-term dependencies within time series data. Additionally, the inclusion of the particle
swarm optimization enhances parameter optimization, ultimately improving the model’s
predictive capabilities. In summary, a robust and adaptable solution for carbon emis-
sion prediction is provided, validated, and fine-tuned through multi-region assessments,
contributing significantly to the field of environmental modeling.

The test results are presented in Tables 4 and 5.

Table 4. Prediction results of Shanghai, Beijing, Guangdong, Hubei, and Hunan.

Shanghai GRU LSTM PSO-GRU FAPSO-GRU

Year Reality Prediction Error Prediction Error Prediction Error Prediction Error

2017 1.57 × 102 1.48 × 102 5.28% 1.51 × 102 3.75% 1.69 × 102 8.21% 1.56 × 102 0.31%
2018 1.51 × 102 1.42 × 102 6.48% 1.47 × 102 3.26% 1.71 × 102 12.94% 1.55 × 102 2.31%
2019 1.59 × 102 1.36 × 102 14.85% 1.42 × 102 11.03% 1.67 × 102 4.48% 1.54 × 102 3.52%
2020 1.55 × 102 1.34 × 102 13.15% 1.41 × 102 8.95% 1.66 × 102 7.44% 1.51 × 102 2.42%
2021 1.61 × 102 1.37 × 102 15.27% 1.43 × 102 11.42% 1.83 × 102 13.72% 1.57 × 102 2.61%

Beijing GRU LSTM PSO-GRU FAPSO-GRU

2017 7.01 × 101 7.73 × 101 10.36% 7.54 × 101 7.65% 7.65 × 101 9.22% 7.48 × 101 6.72%
2018 7.19 × 101 7.78 × 101 8.21% 7.50 × 101 4.41% 7.97 × 101 10.87% 7.17 × 101 0.19%
2019 7.16 × 101 7.98 × 101 11.40% 7.52 × 101 4.94% 8.05 × 101 12.37% 6.92 × 101 3.38%
2020 6.61 × 101 8.04 × 101 21.76% 7.53 × 101 14.04% 7.90 × 101 19.50% 6.43 × 101 2.69%
2021 6.70 × 101 8.12 × 101 21.17% 7.55 × 101 12.70% 7.86 × 101 17.30% 6.26 × 101 6.49%

Guangdong GRU LSTM PSO-GRU FAPSO-GRU

2017 5.33 × 102 4.93 × 102 7.45% 4.83 × 102 9.46% 4.83 × 102 9.49% 5.13 × 102 3.71%
2018 5.57 × 102 4.75 × 102 14.85% 4.81 × 102 13.74% 4.75 × 102 14.75% 5.22 × 102 6.27%
2019 5.52 × 102 4.62 × 102 16.43% 4.80 × 102 13.03% 4.78 × 102 13.43% 5.56 × 102 0.63%
2020 5.75 × 102 4.56 × 102 20.67% 4.77 × 102 17.06% 4.97 × 102 13.60% 5.86 × 102 1.97%
2021 6.70 × 102 4.58 × 102 31.68% 4.73 × 102 29.36% 4.95 × 102 26.04% 6.04 × 102 9.78%

Hubei GRU LSTM PSO-GRU FAPSO-GRU

2017 2.67 × 102 2.43 × 102 9.03% 2.37 × 102 11.17% 2.39 × 102 10.44% 2.56 × 102 4.19%
2018 2.58 × 102 2.32 × 102 10.13% 2.31 × 102 10.62% 2.29 × 102 11.37% 2.56 × 102 0.78%
2019 2.82 × 102 2.29 × 102 18.91% 2.28 × 102 19.36% 2.28 × 102 19.16% 2.56 × 102 9.27%
2020 2.42 × 102 2.14 × 102 11.54% 2.23 × 102 8.07% 2.32 × 102 4.22% 2.43 × 102 0.32%
2021 2.87 × 102 2.21 × 102 22.94% 2.20 × 102 23.24% 2.34 × 102 18.55% 2.38 × 102 17.07%

Hunan GRU LSTM PSO-GRU FAPSO-GRU

2017 2.76 × 102 2.75 × 102 0.30% 2.65 × 102 3.96% 2.64 × 102 4.47% 2.52 × 102 8.54%
2018 2.43 × 102 2.83 × 102 16.53% 2.62 × 102 7.76% 2.83 × 102 16.32% 2.41 × 102 1.08%
2019 2.42 × 102 2.82 × 102 16.37% 2.58 × 102 6.76% 3.09 × 102 27.86% 2.12 × 102 12.27%
2020 2.28 × 102 2.67 × 102 17.21% 2.55 × 102 11.94% 3.25 × 102 42.59% 1.97 × 102 13.52%
2021 2.18 × 102 2.65 × 102 21.73% 2.54 × 102 16.55% 3.39 × 102 55.47% 1.92 × 102 12.16%
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Table 5. MAE, MAE, and RMSE results of Shanghai, Beijing, Guangdong, Hubei, and Hunan.

Indicator Type GRU LSTM PSO-GRU FAPSO-GRU

Shanghai MAE Train 3.9906 6.2799 1.8563 6.4119
Figure 4 Test 17.3467 12.1303 14.6456 3.5079

MAPE Train 0.03143 0.056309 0.018076 0.049994
Test 0.11006 0.076807 0.093571 0.022325

RMSE Train 5.3332 11.536 3.5607 7.918
Test 18.6869 13.4085 15.6362 3.8907

Beijing MAE Train 3.2317 3.4758 1.9523 3.6039
Figure 5 Test 9.9771 5.9717 9.5209 2.6771

MAPE Train 0.043489 0.046034 0.023622 0.046167
Test 0.14581 0.0875 0.13851 0.038925

RMSE Train 4.5037 4.9129 3.7689 5.0115
Test 10.6025 6.4778 9.8139 3.1643

Guangdong MAE Train 10.2797 22.6605 51.8649 17.8525
Figure 6 Test 108.838 98.7454 91.9193 26.987

MAPE Train 0.048321 0.12716 0.24141 0.09715
Test 0.18214 0.16531 0.15463 0.044691

RMSE Train 20.1912 49.8581 62.2152 32.5912
Test 123.1097 111.2409 101.3371 34.744

Hubei MAE Train 12.1843 21.7037 13.4301 18.4447
Figure 7 Test 39.4897 39.6322 34.9526 17.8247

MAPE Train 0.063819 0.14075 0.091632 0.12562
Test 0.14511 0.14494 0.12748 0.063255

RMSE Train 15.8157 32.4832 17.6059 24.2832
Test 42.9677 43.4993 38.7343 25.3507

Hunan MAE Train 7.5641 34.3669 36.1966 8.8814
Figure 8 Test 33.4465 21.8872 67.4729 22.6347

MAPE Train 0.063502 0.34756 0.32783 0.092538
Test 0.14429 0.093944 0.29342 0.095131

RMSE Train 12.1432 47.1701 43.5294 14.7654
Test 37.3306 23.5976 77.8497 24.876
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Figure 4. The forecasting results of Shanghai.
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Figure 5. The forecasting results of Beijing.
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Figure 6. The forecasting results of Guangdong.
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Figure 7. The forecasting results of Hubei.
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Figure 8. The forecasting results of Hunan.

3.4. Validation and Discussion

The comparison between the predicted results and the actual values is illustrated in the
figures. Specifically, the prediction results for Shanghai are shown in Figure 4; for Beijing,
they are shown in Figure 5; for Guangdong, they are shown in Figure 6; for Hubei, they
are shown in Figure 7; and for Hunan, they are shown in Figure 8. The prediction results
obtained using the FAPSO-GRU method demonstrate a closer alignment with the actual
values compared to those produced by other methods.

The FAPSO-GRU holds significant practical implications for carbon emission reduc-
tion. This model enhances the accuracy of emission predictions and optimizes resource
allocation, thereby facilitating the development of more effective carbon reduction strate-
gies and supporting the formulation of scientifically sound environmental policies and
regulations by governmental and related organizations. Furthermore, it assists indus-
trial enterprises in monitoring carbon emissions and optimizing production processes,
promoting sustainable development. However, there are several potential limitations.
Firstly, the model’s performance is highly dependent on the availability of high-quality
and extensive historical carbon emission data; any deficiencies or poor quality in the data
could adversely affect prediction accuracy. Secondly, the integration of GRU and FAPSO
increases the model’s complexity, necessitating greater computational resources and time
for training and prediction, which may hinder real-time applications. Additionally, the
model’s adaptability across different regions and industries may be limited, requiring
substantial localization and optimization efforts to achieve optimal results.

4. Conclusions

This work introduces an innovative GRU model enhanced by the Fibonacci attenu-
ation particle swarm optimization algorithm. The primary application of this model is
in predicting carbon emissions. It achieves this by leveraging the Fibonacci attenuation
particle swarm optimization algorithm to fine-tune the hyperparameters of the GRU model,
thereby effectively addressing the issue of reduced model accuracy due to limited training
data.

To evaluate the performance of our proposed model, we conducted experiments using
real carbon emission data from Hainan Province, covering the period from 1991 to 2019.
Specifically, data from 1991 to 2016 were used for training, while data from 2016 to 2019
were reserved for testing. Control groups included standard GRU models, standard LSTM
models, and PSO-GRU models. When comparing FAPSO-GRU to the traditional GRU
model, we observed substantial improvements: a 42.27% reduction in MAE, a 42.38%
reduction in RMSE, and a 43.06% reduction in MAPE. To further validate the performance
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of FAPSO-GRU, additional experiments were conducted using data from Shanghai, Beijing,
Guangdong, Hubei, and Hunan. The experimental results conclusively demonstrate that
our proposed model provides a highly accurate solution for carbon emission prediction
tasks.

Despite these promising results, several limitations should be acknowledged. Firstly,
the model’s reliance on historical carbon emission data means that its performance is
contingent on the availability and quality of such data. Regions with sparse or unreliable
data may not benefit equally from the model. Secondly, the complexity of the GRU-
FAPSO model requires substantial computational resources, which could limit its practical
application in resource-constrained environments. Furthermore, the model’s performance
has primarily been validated on data from Chinese provinces, and its generalizability to
other regions with different carbon emission patterns remains to be explored.

Future research should focus on addressing these limitations. One potential direction
is to explore data augmentation techniques or transfer learning to improve the model’s
robustness in data-scarce environments. Additionally, efforts could be made to optimize
the computational efficiency of the model, potentially through the development of more
lightweight versions or the use of advanced hardware accelerators. Expanding the vali-
dation of the model to include a diverse set of geographical regions with varying carbon
emission characteristics will also be crucial to establishing its generalizability.
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