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ABSTRACT
The development of generative artificial intelligence (AI) has demon-
strated notable advancements in the domain of music synthesis.
However, a perceived lack of creativity in the generated content
has drawn significant attention from the public. To address this,
this paper introduces a novel approach to personalized music syn-
thesis, incorporating a human-in-the-loop generation. This method
leverages the dual strengths of interactive evolutionary computation,
known for its capturing user preferences, and generative adversarial
network, renowned for its capacity to autonomously produce high-
quality music. The primary objective of this integration is to augment
the credibility and diversity of generative AI in music synthesis, fos-
tering computational artistic creativity in humans. Furthermore, a
user-friendly interactive music player has been designed to facilitate
users in the music synthesis process. The proposed method exem-
plifies a paradigm wherein users manipulate latent space through
human-machine interaction, underscoring the pivotal role of humans
in the synthesis of diverse and creative music.

CCS CONCEPTS
• Theory of computation → Interactive computation; • Human-
centered computing → Interaction design theory, concepts and
paradigms; • Applied computing → Sound and music computing; •
Computing methodologies → Neural networks.

KEYWORDS
Human-AI interaction, Co-creativity, Music synthesis, Interactive
evolutionary computation, Generative adversarial network, Human-
in-the-loop.

*Dr. Yan Pei is the corresponding author. https://www.u-aizu.ac.jp/~peiyan/.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’24 Companion, July 14–18, 2024, Melbourne, VIC, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0495-6/24/07. . . $15.00
https://doi.org/10.1145/3638530.3664109

ACM Reference Format:
Yanan Wang, Yan Pei*, Zerui Ma, and Jianqiang Li. 2024. A User-Guided
Generation Framework for Personalized Music Synthesis Using Interac-
tive Evolutionary Computation. In Genetic and Evolutionary Computation
Conference (GECCO ’24 Companion), July 14–18, 2024, Melbourne, VIC,
Australia. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
3638530.3664109

1 INTRODUCTION
Generative artificial intelligence (AI) stands as a transformative tech-
nology, which is capable of generating novel content by learning and
mining existing data through a series of machine learning algorithms
and deep learning models. Presently, it finds widespread application
across diverse domains, including education [3], art [11], medicine
[12], video [1], and image [32], etc. Notably, in the realm of music,
various models such as autoregressive [16, 29, 48], generative adver-
sarial network (GAN) [9, 19, 24], diffusion [2, 5, 13, 23], and other
models [8] have become prevalent for music synthesis.

One of the primary challenges currently faced by generative mu-
sic models is the perceived lack of creativity and personalization, as
highlighted by several studies [7, 30]. This challenge is principally
rooted in the opaque nature of end-to-end learning in generative AI
models, limiting user engagement in the generation process. The
black-box nature impedes the model’s ability to promptly compre-
hend user preferences and creative inspirations, ultimately hindering
its capacity to produce personalized and innovative music. Moreover,
there is currently a lack of methods for human-computer interaction
to manipulate the potential space within deep learning and guide
variables to the areas of interest for users. To address these issues,
there is a critical need to establish an interactive, human-centered,
and co-creative generative model that empowers users to contribute
to the generation process, resulting in diverse and personalized musi-
cal outputs. Fortunately, the expeditious realization of this objective
has been made possible through the application of interactive evo-
lutionary computation (IEC). This powerful methodology utilizes
interactive technologies to explore users’ subjective preferences,
guiding evolutionary computation algorithms to optimize the target
system.

In response to these challenges, we propose a user-guided gen-
eration framework for personalized music synthesis. This method
capitalizes on the dual strengths of IEC, known for its proficiency in
capturing user preferences, and GAN, celebrated for its autonomous
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Figure 1: Overview of UIGAN. The framework comprises two primary components: (A) the MelGAN-based pre-trained generation,
and (B) the interactive evolutionary manipulation.

generation of high-quality music. The primary objective of this in-
tegration is to augment the credibility and diversity of generative
AI in music synthesis, thereby igniting computational artistic cre-
ativity in humans. Our proposed model underwent comprehensive
comparative experiments utilizing a piano dataset, demonstrating
its capability to generate diverse and creative solutions from both
quantitative and qualitative perspectives. Moreover, a user-friendly
interactive music player has been designed to facilitate users in the
music synthesis process. This paradigm illustrates a transformative
framework wherein users actively manipulate latent space through
human-machine interaction, emphasizing the indispensable role of
humans in synthesizing diverse and creative music.

The structure of the paper is organized as follows. In this section
(Section 1), we provide an overview of the prevailing landscape
of generative AI, elucidating the motivation behind our research.
Section 2 delves into a comprehensive review of prior research in
the realms of music synthesis and IEC. The intricacies of our pro-
posed model and associated details are expounded upon in Section 3.
Subsequently, Section 4 outlines the methodology employed in the
comparative experiment conducted. Finally, the findings of the study
are encapsulated in Section 5, which serves to summarize outcomes
and proffer potential avenues for future research.

2 RELATED WORKS AND TECHNOLOGIES
2.1 Music Synthesis
Music synthesis constitutes a generative task wherein a model pro-
duces coherent music samples. This task is categorized into con-
ditional and unconditional synthesis based on its dependence on
conditional inputs. Four dominant categories in this field include
autoregressive models such as WaveNet [48], SampleRNN [29],
and WaveRNN [16]; GAN-based models like WaveGAN [9] and
MelGAN [19]; VQ-VAE models exemplified by Jukebox [8]; and
diffusion models, including Diffsinger [23].

In particular, GAN-based models [9, 19] leverage concealed la-
tent spaces to map audio feature sequences, enabling the exploration
of music’s latent features and enhancing its diversity. Additionally,
modeling mel-spectrograms not only streamlines the overarching
temporal and spectral structure but also constitutes conditional gen-
eration representing the user’s initial synthesis preferences [19, 24].
Therefore, MelGAN emerges as a suitable candidate for interactive
music synthesis.

The manipulation of latent space in audio generative models
presents a promising area of research. While unsupervised methods
like dimensionality reduction [43] and smoothing [51] have been
explored, their limitation lies in the inability to precisely focus la-
tent vectors on the user’s region of interest. To address this gap, an
urgently needed interactive supervised method is discussed in this
study, employing a human-machine interaction approach that suc-
cessfully concentrates latent vectors toward the desired user-centric
regions.

2.2 Interactive Evolutionary Computation
IEC has found wide-ranging applications across diverse domains,
including jewelry design [50], pattern design [53], dance design
[10, 36], fractal modeling [33], color palette design [28], fashion
design [41], image generation [4, 52], image retrieval systems [6],
texture modeling [26], hearing aid fitting [44], sound composition
[49], and more.

However, in contrast to the progress observed in computer vision
and art design, advancements in IEC for music waveform synthesis
have been comparatively limited. Many efforts in music synthesis
and composition rely on musical instrument digital interface (MIDI)
synthesizers, necessitating professional music knowledge for ma-
nipulating various parameters [25, 47, 49]. Recognizing this gap, it
is imperative to develop a music waveform synthesis method that
seamlessly integrates IEC’s capability to capture user preferences
with generative AI’s capacity for generating high-quality solutions.
This integration is vital for enhancing the diversity of synthesized
music, as emphasized in [34].

3 THE PROPOSED FRAMEWORK: UIGAN
FOR PERSONALIZED MUSIC SYNTHESIS
USING INTERACTIVE EVOLUTIONARY
COMPUTATION

This section introduces the user-interactive generative adversarial
network (UIGAN) for music synthesis, building upon the founda-
tion of the existing music waveform synthesis model MelGAN [19].
UIGAN aims to evolve and manipulate the latent vector of MelGAN,
capturing users’ auditory preferences through human-machine inter-
action.

The model comprises two primary components, as illustrated in
Figure. 1: (A) the MelGAN-based pre-trained generation, and (B)
the interactive evolutionary manipulation. In the initial phase, the
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Figure 2: Overall structure of MelGAN and UIGAN. MelGAN is structured with a discriminator (D) and a generator (G). Similar to
the discriminator’s role in MelGAN, humans assume a crucial role in UIGAN, actively filtering out low-quality music and selecting
musical pieces that resonate with their auditory preferences. The integration of human subjective evaluation within UIGAN represents
an innovative approach to collaborate between deep learning-based generation models and human input, thereby facilitating the
generation of personalized content with human-in-the-loop.

MelGAN vocoder undergoes pre-training to generate audio latent
representations. The pre-trained MelGAN model produces candidate
music individuals by mapping the mel-spectrograms of the music
selected by the user for adaptation.

Users engage with an interactive interface to express their auditory
preferences and choose their preferred music. The mel-spectrograms
corresponding to the selected music serve as user-guided latent vec-
tors for both subsequent evolutionary manipulations and MelGAN
regeneration.

3.1 MelGAN Generation
We introduce the generator, discriminator and training objective of
the MelGAN vocoder to enhance understanding of our proposed
framework.

3.1.1 Generator. The generator is constructed using a fully con-
volutional feed-forward network, taking a mel-spectrogram as its
input and producing an audio signal as its output. The overall gener-
ation network consists of two one-dimensional convolutional layers
with a kernel size of 7, four up-sampling layers, and four residual
blocks. This architecture employs transposed convolutional layers
for up-sampling, followed by residual blocks incorporating dilated
convolutions. Each residual layer is comprised of three residual
blocks with dilation factors of 1, 3, and 9, respectively. All layers
utilize a leaky ReLU activation function and weight normalization
[39] to ensure optimal performance. During the training of the gen-
erator, feature matching [21] is applied to minimize the 𝐿1 distance,
contributing to the overall enhancement of performance.

3.1.2 Discriminator. The discriminator in MelGAN adopts a
multi-scale architecture, which comprises three discriminators with
different frequency ranges and audio scales (denoted as 𝐷1, 𝐷2, and
𝐷3). 𝐷1 assesses the original music, while 𝐷2 and 𝐷3 operate on
downsampled audio at scales 2 and 4, respectively. Additionally, a
PatchGAN-like Markov window discriminator [15] is incorporated
to construct discriminators at different frequency scales. Each self-
discriminator consists of four downsampling layers with a scale of 4
and three one-dimensional convolutional layers using convolution

kernels of 15, 5, and 3. Similar to the generator, each layer of the
discriminator is equipped with weight normalization and a leaky
ReLU activation function. For specific parameter settings and train-
ing details, please refer to the original paper on MelGAN by Kumar
et al. [19].

3.1.3 Training Objective. Hinge loss function [22] was applied
to train the discriminator.

min
𝐷𝑘

E𝑥 [min (0, 1 − 𝐷𝑘 (𝑥))] + E𝑠,𝑧 [min (0, 1 + 𝐷𝑘 (𝐺 (𝑠, 𝑧)))] ,

∀𝑘 = 1, 2, 3 (1)

min
𝐺
E𝑠,𝑧


∑︁

𝑘=1,2,3
−𝐷𝑘 (𝐺 (𝑠, 𝑧))

 (2)

where 𝐷𝑘 is the 𝑘𝑡ℎ discriminator, and 𝑥 , 𝑠, 𝑧 represent the raw
waveform, input mel-spectrogram, and Gaussian noise respectively.

Feature match [21] was used to train the generator for minimiz-
ing 𝐿1 distance. This distance represents differences between the
discriminator feature maps of real and synthetic audio.

L (𝐺,𝐷𝑘 ) = E𝑥,𝑠

[
𝑇∑︁
𝑖=1

1
𝑁𝑖

𝐷 (𝑖 )
𝑘

(𝑥) − 𝐷
(𝑖 )
𝑘

(𝐺 (𝑠, 𝑧))

1

]
(3)

𝐷
(𝑖 )
𝑘

represents the feature map output of the 𝑖𝑡ℎ layer from the
𝑘𝑡ℎ discriminator block, and 𝑁𝑖 is the number of units in each layer.

The final objective of MelGAN with 𝜆 = 10 is:

min
𝐺

(
E𝑠,𝑧

[
𝐾∑︁
𝑘=1

(𝐷𝑘 (𝐺 (𝑠, 𝑧)) − 1)2
]
+ 𝜆

𝐾∑︁
𝑘=1

L (𝐺,𝐷𝑘 )
)

(4)

Algorithm 1 shows the training process of MelGAN.
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Figure 3: Interface of the designed interactive music player. The functionalities of the music player are organized into two main
categories: interactive evolutionary manipulation and musical playback. Interactive evolutionary manipulation comprises evolution
(continue), re-evolution, and exit. This function involves actively shaping and refining the music selection process. On the other hand,
the music playback function provides options for playing the previous track, playing, pausing, replaying, and advancing to the next
track. This component focuses on the seamless enjoyment and control of the music playback experience.

Algorithm 1 Training MelGAN model

Require: Training audio dataset 𝑋 , Number of iterations𝑇 , Conver-
gence criteria threshold 𝜖, Generator network 𝐺 , Discriminator
network 𝐷 (𝑘), 𝑘 = 1, 2, 3.

Ensure: Trained generator 𝐺 and discriminator 𝐷 .
1: Initialize the parameters of MelGAN
2: for 𝑡 = 1 to 𝑇 do
3: Sample a mini-batch of real audio samples {𝑥1, 𝑥2, ..., 𝑥𝑁 }

from 𝑋 .
4: Calculate the discriminator loss 𝐷𝑘 using the Hinge loss

function in Eq. (1).
5: Update the discriminator parameters 𝐷𝑘 .
6: Calculate the generator loss using feature matching in Eq.

(4).
7: Update the generator parameters 𝐺 .
8: if MelGAN loss change < 𝜖 or 𝑡 == 𝑇 then
9: break

10: end if
11: end for

3.2 Interactive Evolutionary Manipulation
Interactive evolutionary manipulation within UIGAN involves a se-
quence of operations executed through IEC. This process guides
user-driven latent vectors within the search space toward the user’s
specific region of interest. These operations include various IEC
components and a regeneration component. The former consists of
interactive selection, crossover, and mutation. Interactive selection
plays a pivotal role in capturing user preferences, while crossover
and mutation serve as methods to further integrate and enhance the
user-guided latent vectors. After these optimization operations, re-
generation is employed to further synthesize music. This process
utilizes personalized, user-guided vectors or mel-spectrograms as
inputs to a pre-trained MelGAN model. The candidate music un-
dergoes continuous regeneration through interactive evolutionary
manipulation operations until it generates a piece of music that
resonates with the user’s preferences.

3.2.1 Interactive Selection Operation. The interactive selection
operation determines evolved parents and generates user-guided la-
tent vectors based on user auditory preferences. Users only need
to select their favorite musical pieces through an interactive music
player (Figure. 3) to perform this operation. The latent vectors cor-
responding to the selected pieces through interactive selection can
accurately encapsulate the user’s auditory preferences. Interactive
selection and fitness approximation are currently common methods
used in IEC to capture user preferences [49]. Fitness approximation
involves predicting or estimating individual fitness values to guide
the progress of the evolutionary algorithm [37, 41]. In comparison
to fitness approximation, interactive selection exhibits pronounced
personalization and targeting [4, 27, 45, 49]. This operation is simi-
lar to the mechanism of paired comparison in interactive differential
evolution and can effectively reduce user fatigue and obtain user
auditory preferences [35, 45].

Moreover, users play a pivotal role in this selection process, un-
dertaking responsibilities such as retaining high-quality music and
filtering out music they dislike. They not only successfully guide
latent vectors toward their areas of interest but also ensure the quality
of vocoder music synthesis. The role of humans in UIGAN resem-
bles that of discriminators in GAN, with tangible effects being more
intelligent content generation and the production of personalized
content (Figure. 2).

3.2.2 Crossover Operation. Crossover is a recombination pro-
cess designed to amalgamate selected parent individuals or musical
pieces, thereby generating new individual vectors. This process holds
a pivotal role in preserving population diversity and fostering evolu-
tion through the amalgamation of bi-parental vectors. The uniform
crossover method [42] is utilized in this study, acknowledged for
adeptly merging attributes from both parents with a fixed probability.

3.2.3 Mutation Operation. Mutation is an operation that intro-
duces slight random perturbations into latent vectors to enrich their
diversity and prevent the population from converging to local optima
too early. In the present study, we augment the diverse features in
the user-guided vector by introducing random noise aligned with the
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Algorithm 2 UIGAN for Personalized Music Synthesis.

Require: Rate of crossover, cro_rate; Rate of mutation, mut_rate;
Number of music selected by the user, user_sel_count; Number
of candidate music, cand_count; Trained MelGAN model,
𝑀𝑒𝑙𝐺𝐴𝑁 ; Max number of generation, max_gen.

Ensure: Synthesized music of a user, result;
1: for 𝑖 = 1 to cand_count do
2: cand_music = 𝐿𝑜𝑎𝑑_𝑚𝑢𝑠𝑖𝑐 (i);
3: end for
4: exit_flag = false;
5: init_cand_music = cand_music;
6: init_cand_mels = 𝐴𝑢𝑑𝑖𝑜_𝑀𝑒𝑙(cand_music);
7: for 𝑔=1 to max_gen do
8: selected_label, exit_flag, reset_flag =

𝐼𝑛𝑡𝑒𝑟_𝑃𝑙𝑎𝑦𝑒𝑟 (cand_music, user_sel_count);
9: if 𝑔 = max_gen+1 or exit_flag then;

10: result = selected_music;
11: break;
12: end if
13: if reset_flag then
14: cand_music = init_cand_music;
15: continue;
16: end if
17: mel_music = 𝐴𝑢𝑑𝑖𝑜_𝑀𝑒𝑙(cand_music);
18: selected_mels = mel_music(selected_label);
19: crossed_mels = 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 (selected_mels, cro_rate);
20: mutated_mels = 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛(crossed_mels, mut_rate);
21: rand_num = cand_num - 𝐶𝑜𝑢𝑛𝑡(selected_mels,

crossed_mels, mutated_mels);
22: rand_mels = 𝑅𝑎𝑛𝑑_𝑆𝑒𝑙𝑒𝑐𝑡(init_cand_mels, rand_num);
23: cand_mels = 𝐿𝑖𝑠𝑡(mutated_mels, crossed_mels,

selected_mels, random_mels);
24: generated_music = 𝑀𝑒𝑙𝐺𝐴𝑁 (cand_mels);
25: denoising_music = 𝐷𝑒𝑁𝑜𝑖𝑠𝑒(generated_music);
26: cand_music = denoising_music;
27: end for

distribution of the dataset. This approach establishes the foundation
for the subsequent regeneration of the MelGAN model in the next
step.

3.2.4 Regeneration. After a series of diverse optimization opera-
tions, the user-guided vectors are reused as input for the pre-trained
MelGAN model, thereby facilitating the further regeneration of new
candidate music. The user-guided vectors represent the user’s prefer-
ences, and the music generated from these vectors will achieve the
subjective aesthetic goal.

3.2.5 Noise Reduction. Noise reduction constitutes the final
phase of UIGAN. Given that random noise is introduced during the
mutation stage in the user-guided latent vector, this study employs
the spectral gating noise reduction method [38] to mitigate noise
interference, thereby enhancing both sound quality and the overall
user experience.

3.3 Pseudo Code
Algorithm 2 provides a detailed explanation of the pseudo-code and
the key steps involved in UIGAN for the personalized music synthe-
sis process. Initially, the 𝐿𝑜𝑎𝑑_𝑚𝑢𝑠𝑖𝑐 function is responsible for im-
porting the music that the user wants to adapt. The 𝐴𝑢𝑑𝑖𝑜_𝑀𝑒𝑙 func-
tion is utilized to convert music waveforms into mel-spectrograms.
Next, the 𝐼𝑛𝑡𝑒𝑟_𝑃𝑙𝑎𝑦𝑒𝑟 function plays a crucial role in obtaining
user preferences for the candidate music through an interactive mu-
sic player. This step involves variables like selected_label, exit_flag,
and reset_flag to represent the selected music, exit flag, and reset
flag, respectively.

Subsequently, the 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 and 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 functions are dedi-
cated to performing the necessary crossover and mutation operations
on the mel-spectrograms of the selected music, ensuring diversity
in the user-guided latent vectors. Furthermore, the 𝐶𝑜𝑢𝑛𝑡 function
tallies the number of user-guided latent vectors, and the remaining
candidate vector is randomly selected using the 𝑅𝑎𝑛𝑑_𝑆𝑒𝑙𝑒𝑐𝑡 func-
tion. The 𝐿𝑖𝑠𝑡 function is employed to generate a list of latent vectors
after music synthesis. The 𝑀𝑒𝑙𝐺𝐴𝑁 function is responsible for gen-
erating candidate music from the latent vectors. Finally, the 𝐷𝑒𝑁𝑜𝑖𝑠𝑒

function refines and denoises the synthesized music, ensuring the
sound quality of the music for this generation.

4 EXPERIMENTAL ANALYSIS AND
DISCUSSION

This section aims to validate the performance of our proposed model
in music synthesis from quantitative and qualitative perspectives,
including diversity and creativity analysis, along with subjective
analysis. Additionally, the primary objective of this section is to
illustrate the pivotal role of humans in synthesizing diverse and
creative music. Subsequently, we will provide details on the dataset
employed in this experiment, outline implementation specifics, and
present the results of the analysis and discussion.

Table 1: Experimental parameters.

Parameter size Value

Crossover method [4] ’Uniform crossover’
Crossover rate [4, 42] 50%

Number of music selected by the user 2
Number of candidate music [4, 52] 10

Max number of generation 20
Duration of time for synthesizing music

[16][19]
4 seconds

4.1 Experimental Setting
4.1.1 Dataset. This experiment utilized the MAESTRO piano
dataset [14]1, employing the WAV data format.

4.1.2 Implementations Details. The baseline methods employed
in this experiment include WaveNet [48] 2, WaveGAN [16] 3, and

1https://magenta.tensorflow.org/datasets/maestro
2https://github.com/ibab/tensorflow-wavenet
3https://github.com/mostafaelaraby/wavegan-pytorch/tree/master
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Table 2: Diversity and creativity analysis: We utilize the FAD, precision, recall, density, and coverage metrics to quantify the diversity
and creativity of generated music, showcasing the role of human creativity in enhancing music diversity and creativity. P&R&D&C
represents the averages of precision, recall, density, and coverage. Where ↑ and ↓ represent positive and negative trends, respectively.
Bold values represent the best performance for each metric.

Dataset Method FAD ↓ Precision ↑ Recall ↑ Density ↑ Coverage ↑ P&R&D&C ↑

Mastro

WaveNet [48] 33.51 0.53 0.49 0.41 0.11 0.39
WaveGAN [16] 24.58 0.72 0.78 0.48 0.17 0.54
MelGAN [19] 24.92 0.79 0.62 0.54 0.15 0.53

UIGAN 22.14 0.77 0.71 0.53 0.21 0.56

MelGAN [19] 4. These techniques are well-acknowledged for their
proficiency in synthesizing audio waveforms. For detailed parameter
information and code references related to the baseline methods,
please refer to the respective published papers. It is noteworthy that
the MelGAN implementation used in UIGAN is consistent with the
original paper.

Ten participants were invited to participate in the music synthesis
and subjective evaluation analysis of related synthesized music. The
experimental setting and user-friendly interactive interface (Figure.
3) facilitated participation without the need for professional music
knowledge. Additionally, participants were given the flexibility to
take short breaks during the experiment.

The parameters utilized in the present experiment are outlined in
Table 1. The adoption of uniform crossover with a crossover rate of
50% is attributed to its excellent performance in image synthesis [4,
42]. Considering both user fatigue and the equal probability of each
music’s mel-spectrogram being synthesized into the user-guided
latent vector, we set the number of user choices to 2. The mutation
rate is set to 0.01, resembling the process of setting the learning rate
in deep learning. A high mutation rate introduces excessive noise
content, posing challenges for UIGAN convergence. The number of
synthesized musical pieces selected by the user in the audio list is ten,
including two pieces synthesized by crossed vectors, two by mutated
vectors and selected mel-spectrograms, and the remaining four are
randomly selected from the initial candidate set. The maximum
generation parameter is set to 20. Additionally, we have introduced
an optimization-stopping mechanism to ensure the experiment’s
completion while avoiding unnecessary iterations and user fatigue
[49]. Finally, the duration of the synthesized music is set to four
seconds [16, 19].

4.2 Diversity and Creativity Analysis and
Discussion

4.2.1 Evaluation Metrics. Fréchet audio distance (FAD) [17],
precision [20], recall [20], density [31], and coverage [31] are ap-
plied to evaluate the diversity and creativity of synthetic music on
the MAESTRO dataset. These metrics are widely used to assess the
creativity and diversity of image and audio generation models in
recent years [16, 18–20, 31].

4.2.2 Experimental Results. Table 2 presents the diversity and
creativity results of the generated music. We observe that UIGAN
surpasses the baseline methods in terms of FAD, coverage, and
P&R&D&C. Specifically, the proposed method achieves optimal

4https://github.com/descriptinc/melgan-neurips

values of 22.14, 0.21, and 0.56 in these three aspects, respectively.
Moreover, UIGAN demonstrates comparable performance in various
other metrics, including precision, recall, and density, with only
a slight deviation from the highest values of these metrics. For
example, MelGAN exhibits only a slight improvement of 0.02 in
precision and 0.01 in density compared to UIGAN.

In contrast to the previous MelGAN model, the introduction of
human interaction contributes to exploring various musical elements
and combinations, thereby enhancing musical diversity. The excel-
lent performance of UIGAN can be attributed to two factors. Firstly,
the model combines the proficiency of MelGAN in scene restoration
with the advantages of WaveGAN in enhancing diversity. Secondly,
the model introduces the potential for greater diversity through in-
teractive evolutionary manipulation while preserving the underlying
musical scene depicted by the mel-spectrogram of music.

4.3 Subjective Analysis and Discussion
4.3.1 Evaluation Metrics. Subjective evaluation analysis is an
essential component in assessing human-machine works, playing
a crucial role for researchers in comprehending users’ authentic
experiences with the works and systems. The 5-point mean opinion
score (MOS) was employed to gauge users’ genuine perceptions of
their synthesized music [16, 18, 19, 48]. Ten participants rated the
four pieces of music based on their auditory preferences, with a score
of 1 indicating the worst and 5 denoting the best. It is noteworthy
that three of the musical pieces were pre-generated through various
baseline methods, whereas one piece of music was generated through
the UIGAN user interface.

The Wilcoxon signed-rank test is a non-parametric hypothesis test
designed for data that does not adhere to a normal distribution, uti-
lized to assess significant differences between matched samples. This
testing approach has been effectively employed in text-to-speech
synthesis [46] and speech synthesis [40]. In this study, the Wilcoxon
signed-rank test with a p-value of 0.05 [46] is utilized to evaluate the
significant differences between UIGAN and other music synthesis
methods in 5-point MOS.

4.3.2 Experiemntal Results. Table 3 presents the 5-point MOS
results from participants evaluating the synthesized music. We can
observe that UIGAN achieved the highest MOS of 3.9 with a stan-
dard deviation (SD) of 0.7, while WaveNet had a minimum value
of 1.7 with an SD of 0.64. It indicates that the proposed method
can effectively meet users’ requirements for music synthesis. At the
same time, the p-values from Wilcoxon signed-rank test for both
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Table 3: Subjective evaluation analysis: The 5-point mean opin-
ion score with standard deviation (±SD), provides insight into
participants’ genuine experiences. Additionally, the p-value of
Wilcoxon signed-rank serves as an indicator of significant differ-
ences between synthetic music methods. We can observer that
there is a significant difference comparing our proposed UIGAN
with other three competitive generation models.

Dataset Method MOS p-value

Mastro

UIGAN 3.9 ± 0.70 —
WaveNet [48] 1.7 ± 0.64 0.006

WaveGAN [16] 2.3 ± 1.10 0.017
MelGAN [19] 3.3 ± 0.64 0.014

UIGAN and the other methods are all below 0.05, suggesting a
notable distinction in MOS between UIGAN and these methods.

During the initial stages of interactive evolutionary manipulation,
users’ initial uncertainty or vague understanding of music may lead
to cognitive disparities and uncertainties, posing a challenge in craft-
ing works that authentically connect with users. Nevertheless, as user
preferences progressively crystallize during continuous interaction,
the vocoder can adeptly produce audio compositions that harmonize
with user inclinations by acquiring latent vectors tailored to those
preferences.

5 CONCLUSION
This paper introduces UIGAN, a user-guided generation framework
for personalized music synthesis, which presents one of the origi-
nalites in this work. UIGAN leverages IEC’s proficiency in capturing
user preferences and GAN’s capacity for autonomously generating
high-quality music to enhance the credibility and diversity of genera-
tive AI in music synthesis, fostering computational artistic creativity.
Validation of the proposed method’s advantages in music synthe-
sis includes diversity and creativity analysis, along with subjective
evaluation. Furthermore, it confirms the pivotal role of humans in
synthesizing diverse and creative music, establishing a co-creative
paradigm for generative AI and human-machine interaction. The
model empowers humans to guide and manipulate the potential
space within deep learning models.

This study reveals insights into stimulating computational artistic
creativity among humans and addresses potential issues in current
generative AI practices. Future research directions include investi-
gating UIGAN’s performance in synthesizing diverse music with
more datasets, encouraging comprehensive comparative experiments,
analysing human auditory perception, enhancing search performance
of IEC optimization algorithm and addressing the challenges posed
by the complexities of music. Despite rapid advancements in other
AI domains, such as computer vision and natural language process-
ing, progress in music synthesis has been comparatively slower.
Researchers need to tackle challenges related to musical knowledge
and intricate temporal relationships among musical elements, such
as notes, chords, and melodies, etc. Persistent concerns about user
fatigue in IEC and human-machine interaction necessitate explo-
ration of ways to minimize fatigue during interactions in the future.
These considerations provide valuable insights and ideas for future
endeavors in music synthesis and human-machine interaction.
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