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Abstract— Efficient power inspection is crucial for maintain-
ing a stable power system. During an inspection, unmanned
aerial vehicles (UAVs) usually need to be recharged due to
the wide geographical range of inspection and the limited
battery capacity of UAVs. This limitation makes the problem
more challenging that requires not only optimizing the task
execution order, but also taking the chargings of UAVs into
consideration. In order to address this complex problem, this
work first formulates the UAV power inspection planning
problem with charging stations. After that, we propose a
new heuristic navigation model, in which UAVs can follow a
heuristic rule to decide where to go next based on both its
own information and task-related information. To obtain the
heuristic rule, we design a set of features to describe the status
of the UAVs and task completion. Then a genetic programming
(GP) algorithm is introduced to evolve and get the heuristic
rule. Finally, by applying heuristic navigation rule, the UAV
navigation model can automatically prioritize task and charging
order, and generate UAV flight routes that satisfy all constraints.
The experiment results show that our method significantly
outperforms the state-of-the-art algorithms.

Index Terms— unmanned aerial vehicles (UAVs), task assign-
ment problem, charging problem, heuristic navigation model,
genetic programming

I. INTRODUCTION

Power system is an essential infrastructure for modern
society. Electricity is transmitted through power lines. The
efficient monitoring of equipment such as power poles, as
well as the timely detection and localization of faults, have
emerged as critical issues that the power industry must
address urgently. Compared to traditional inspection methods
that are labor-intensive and inefficient, the use of unmanned
aerial vehicles (UAVs) [1], [2] in power line inspections has
the potential to reduce costs, increase efficiency, and enhance
safety by minimizing the need for human intervention, es-
pecially in hard-to-reach or accident-prone power inspection
regions. Therefore, UAV power inspection technology has
attracted more and more attention from the power industry
[3], [4].

Power grids are commonly established in mountainous
regions, where the area requiring inspection for power op-
erations is often extensive, the current flight distance of
UAVs is inadequate to encompass the inspection area without
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necessitating recharging. Therefore, in order to ensure that
all power poles in the huge inspection area are inspected
successfully, it is necessary to consider recharging the UAVs
[5]. If the UAV fails to complete all of its assigned tasks with
its initial energy reserves, it can go to the charging stations
halfway to recharge.

For power inspection problem, it can be modeled as a
task assignment problem, with each power pole representing
a task that should be inspected once. After inspecting all
tasks, all UAVs should go back to the depots or charging
stations. Many forms of task assignment problems have been
proven to be NP-hard [6] that they are very challenging to
find an optimal solution in polynomial time. The existence
of charging stations makes it more difficult to manage the
UAVs, as we must consider two aspects: (1) all tasks must
be completed effectively and (2) the UAV must obey the
constraints of battery power availability during flight route.
These two aspects are interrelated and further complicate the
whole problem.

So far, several optimization approaches have been pro-
posed to solve the task assignment problem with charging
stations (TAPCS) in the literature. They can be generally
classified into two categories: 1) centralized methods; 2)
bi-level optimization methods. Centralized methods are to
consider both task assignment and recharging scheduling
in the optimization process. They try to solve the whole
problem simultaneously by encoding the task order and
charging station together [7], [8]. They can generate very
good solutions on small-scale problems, but the huge search
space produced by the encoding scheme makes them in-
efficient on large-scale problems. The bi-level optimization
methods divide the TAPCS problem into two levels, with
the upper level utilizing meta-heuristic algorithms [9]–[11]
to optimize the order of task assignment and the lower level
optimizing the fixed routes UAV charging problem [12], [13].
In lower level problem, using the enumerated method that
enumerates all possible charging station plug-in locations can
work well if the flight route requires only a few charging
times, but it becomes disastrous when multiple charging
times are required and there is an abundance of optional
charging stations [14]. Applying meta-heuristic algorithms
[15]–[17] in both two levels also leads to extremely high
time complexity and computational expense. Therefore, some
efficient methods, such as heuristic algorithms, are usually
adapted to address the lower level problem in an accepted
execution time [12], [18]. They can effectively solve the fixed
route charging problem. However, human-designed heuristic
charging algorithms do not take the information of the UAV

2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
October 1-4, 2023, Oahu, Hawaii, USA

979-8-3503-3702-0/23/$31.00 ©2023 IEEE 363

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 S

ys
te

m
s,

 M
an

, a
nd

 C
yb

er
ne

tic
s (

SM
C)

 |
 9

79
-8

-3
50

3-
37

02
-0

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

SM
C5

39
92

.2
02

3.
10

39
41

69

Authorized licensed use limited to: Xiamen University. Downloaded on May 31,2024 at 12:59:52 UTC from IEEE Xplore.  Restrictions apply. 



itself into account, which may lead to unreasonable selection
of the location of charging station, incurring additional
charging costs [12].

Generally speaking, it is very challenging to design effec-
tive heuristic rules manually, as the selection rule has to con-
sider various factors like the remaining power of UAVs, the
distances to the next task, the spatial distribution of the re-
maining tasks, etc. Thus a flexible and intelligent scheduling
method is required to decide whether to charge and where to
charge. Genetic programming (GP) can automatically learn
scheduling heuristics without human intervention [19]–[21].
The design of heuristic rules is associated with the UAV’s
own status, tasks, and charging station location information.
Therefore, it may be more flexible and adaptable to deal with
the TAPCS problem.

Considering these difficulties of the problem and the
drawbacks of the existing studies, we propose a novel UAV
heuristic navigation model based on a heuristic rule evolved
by genetic programming (GP). The main contributions are:

1) We propose a novel UAV heuristic navigation model
to solve the TAPCS problem. Based on a heuristic
rule, the proposed model can simulate the process
of UAV flight to generate a feasible solution for a
given TAPCS problem instance. It can automatically
guide the activities of UAVs, so that the UAV can
automatically decide where to go next based on its own
information and surrounding environment information.

2) A unique set of both UAV-related and task-related
features is designed and serves as the variables of the
heuristic rule.

3) We adapt GP to find the optimal heuristic rule to
address the TAPCS problem and the experimental
results demonstrate our method can outperform the
other compared methods.

The rest of this paper is organized as follows. Section II
formulates the multi-UAV power inspection problem with
charging stations. The proposed algorithm is explained in
Section III. The experimental results are analyzed in Section
IV. Finally, the conclusions are drawn in Section V.

II. PROBLEM DEFINITION

In the multi-UAV power inspection problem with charging
stations, there are M power poles to be inspected, and
each pole can be viewed as a task ti to be done, i.e.,
T = {t1, t2, ..., tM }. Simultaneously, there are NC charging
stations C = {c1, c2, ..., cNC}. There is a set of UAVs
U = {u1,u2, ...,ul} to complete these tasks. Each UAV has a
maximum battery capacity Q and a fixed flight speed v. The
battery’s consumption rate is denoted as h. UAVs take off
from a charging station c1 and can eventually return to any
charging station [22]. TAPCS can be modeled as a undirected
graph G = (V,E). V = T ∪ C, E = {(i, j) | i, j ∈ V, i , j} is
the set of edges. Each edge ei j = (vi, vj) is associated with a
distance di j from vi to vj . UAVs will consume h · di j battery
power for edge ei j . Each task requires a fixed completion
time τ, and the recharging time is negligible. quk represents
the current battery power of the UAV uk .
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Fig. 1. Example of a solution of a TAPCS problem.

Given a problem instance, the problem is to design an
execution plan for UAVs that they need to complete all of
tasks while adhering to the constraints. It can be defined as
follows:

min f (x) = ω1 · dis(x) + ω2 · c(x) + ω3 · ct(x) (1)

s.t. ∑
i∈V ,i,j

xi j = 1, ∀ j ∈ T (2)

end(ui) ∈ C ∀ui ∈ U (3)

0 ≤ quk ≤ Q ∀ j ∈ xuki j (4)

xi j = {0,1}, i , j ∀i, j ∈ V (5)

The objective (1) is to minimize the weighted sum of the
UAVs’ total flight distance dis(·), total recharging times c(·)
and the completion time of the last task ct(·), where ω1, ω2,
ω3 are the coefficients which represent the relative of the
three costs. Constraint (2) restricts that every task should be
completed only once. Constraint (3) guarantees that every
UAV must return to the charging station. Constraint (4)
restricts the UAV must ensure that the battery power is
feasible during the journey. Constraint (5) defines the domain
of xi j . If there is a path for UAV to go from vi to vj , xi j
takes 1, otherwise it equals to 0.

The calculation formulas of dis(·), c(·) and ct(·) are as
follows:

dis(x) =
∑

i, j∈V ,i,j

di j xi j (6)

c(x) =
∑

i∈V , j∈C ,i,j

xi j (7)

ct(x) = max
uk ∈U

{dis(xuk )/v + τ
∑

i∈V , j∈T ,i,j

xuki j } (8)

To better understand the TAPCS problem, an example of
a solution on an instance with two UAVs is shown in Fig. 1.
The UAVs all start from c1 to complete tasks. u1 visited the
charging station c2 for recharging during its flight and return
to c2, and another UAV does not recharging and return to c3.

364

Authorized licensed use limited to: Xiamen University. Downloaded on May 31,2024 at 12:59:52 UTC from IEEE Xplore.  Restrictions apply. 



III. PROPOSED METHOD

In this section, we present the proposed heuristic naviga-
tion model for UAVs that employs a rule Γ(·) to generate
feasible solutions for TAPCS problem. Furthermore, we
provide an overview of the representation of the rule Γ(·).
Finally, we describe the evolutionary process of GP that is
utilized to evolve Γ(·) for TAPCS problem.

A. UAV heuristic navigation model

Given a TAPCS instance H and a rule Γ(·), the UAV
heuristic navigation model can generate a solution by ap-
plying Γ(·) to the instance. The solution can be represented
as a set of UAV flight routes:

S = {F1,F2, ...Fl} (9)

Every flight route is represented as a permutation of tasks
and charging stations, that is:

Fp = [c1, t1
p, c

1
p, t

2
p, ..., c

i
p, t

m
p , c] (10)

The proposed UAV heuristic navigation model is presented
in Algorithm 1. At the initialization stage (lines 1-7), the
solution S is set to empty. Since none of the tasks are
completed, we set available nodes A ← T ∪ C. All UAVs
are at charging station c1, we therefore initialize the flight
route of each UAV as Fk ← {c1}, and the current positions
are set as Puk ← c1. The active UAVs set AU is initialized
to U.

At the start of the simulation, the next steps for each active
UAV are determined during the decision-making stage (lines
10-38). The decision-making stage can be decomposed into
two phases: 1) selection phase: select the highest scoring
node for the UAV and 2) UAV movement phase: UAV moves
to the selected node if the node exists.

In the selection phase, for each active UAV, we first
remove the nodes from the available nodes A that the UAV
cannot visit. The removed nodes include:

1) Remaining battery power of UAVs is insufficient to
reach the node vi (lines 11-13).

2) The UAV is currently at the charging station, and the
node vi is also a charging station (lines 14-16). The
limitation can prevent unnecessary shuttle trips be-
tween charging stations because we assume that UAVs
are always fully charged, and traveling from charging
station to charging station means more additional time
and distance costs.

Then, we initialize the maximum priority value max p as
−∞ and the next node to visit next v as empty (lines 17-
18). UAV calculates the priorities of the remaining available
nodes according to the given rule Γ(·) and selects the node
with the highest priority to move next (lines 19-23).

During UAV movement phase, if there is no next v in the
upper selection phase, it means that all tasks are completed
and the UAV simulation ends. Therefore, we remove this
UAV from the active UAVs AU (line 25-27). Otherwise, if
next v is a task node, we remove it from the available nodes
A because the task can only be visited once and update the

Algorithm 1: UAV heuristic navigation model
Input : A TAPCS instance H , a rule Γ(·)
Output: solution S

1 S ← ∅

2 set available nodes A ← T ∪ C
3 for each uk ∈ U do
4 Fk ← [c1]
5 Puk ← c1
6 end
7 set active UAVs AU ← U
8 while AU is not empty do
9 for uk ∈ AU do

10 max p← −∞
11 next v ← ∅

12 for vi ∈ A do
13 if quk ≤ h · di,Puk

then
14 continue
15 end
16 if vi ∈ C and Puk ∈ C then
17 continue
18 end
19 Calculate the priority value pi of nodes

according to Γ(·)
20 if max p < pi then
21 max p← pi
22 next v ← vi
23 end
24 end
25 if next v is ∅ then
26 AU ← AU \ {uk}
27 else
28 if next v ∈ T then
29 A ← A \ {next v}

30 quk ← quk − h · dPuk
,next v

31 else
32 quk ← Q
33 end
34 Fk ← Fk ∪ [next v]

35 Puk ← next v

36 end
37 end
38 end
39 S = {Fk | ∀ uk ∈ U}
40 return S

UAV’s battery power (lines 28-31). If next v is a charging
station node, we only update the UAV’s battery power to the
maximum battery capacity Q (line 32). Since the charging
stations can be visited multiple times, C always belongs to
A. Finally, we add next v to the flight route Fk and update
the UAV uk’s current position (lines 34-35).

The decision-making stage will run repeatedly until there
are no active UAVs. After the simulation is finished, the
solution S can be obtained by merging each UAV’s flight
routes Fk (line 39).
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TABLE I
TERMINAL SET FOR THE GP ALGORITHM

Symbol Description

TN Type of the candidate Node

DFH Distance From Here ( UAV position) to the candidate node

DFNT Distance From the candidate Node to its closest remaining Task

DFNC Distance From the candidate Node to its closest Charging station

RE Remaining battery power of the UAV

FRT Fraction of Remaining Tasks

Constant ephemeral terminal [23] from -10 to 10

B. Γ(·) Representation

In the proposed GP method, each Γ(·) is represented as a
tree-based priority function that can output the most suitable
node vi ∈ V for UAV to move forward. When the UAV
need to decide the next activity, Γ(·) is used to calculate the
priority of each candidate node. A Γ(·) consists of functions
and terminals. In this work, there are 6 functions in function
set:

F = {+,−,×,÷,min,max} (11)

where ”÷” is the protected division that returns 1 if divided
by zero.

To build the heuristic rule Γ(·), we analyze and extract
the UAV-related and task-related features such as the UAV’s
remaining battery power, location of UAV, tasks and charging
stations. Then we combine these features into 6 variables to
design the terminal set. The detail is given in Table I, where
symbol is the name of the variable and on the right is the
description. TN represents the type of the candidate node, it
equals to 1 if the node belongs to T , otherwise it equals to 0.
Additionally, a special terminal named ”ephemeral random
constant” [23] is also utilized in the terminal set.

Fig. 2 shows the tree representation of an example Γ(·).
This tree can be converted into a mathematical formula:

Γ(·) = T N − min(DFH,DFNT) + RE − DFH (12)

According to (12), the priority value of each candidate node
vi can be calculated. Therefore, UAVs are able to decide
which node to go to (i.e., task or charging station) based on
the priority values.

C. Evolutionary Process

Gene expression programming (GEP) [24] is a famous
variant of GP, which encodes in linear chromosomes of fixed
length. The structural organization of linear chromosomes
allows for unrestricted manipulation and ensures that the
resulting chromosomes are valid. In this work, we employ
GEP to evolve the optimal Γ(·).

1) Fitness function representation:
Because the TAPCS problem is a combinatorial optimiza-

tion problem with constraints, a penalty function is added
to the objective function to penalize the infeasible solutions
[25].

G(S) = f (S) + (UT + H) × 104 (13)

+

−

TN min

DFH DFNT

−

RE DFH

Fig. 2. Example of a rule of a TAPCS problem.

where UT is the number of unfinished tasks, H is the number
of UAVs that have not returned to charging station. If an
infeasible solution is obtained by using Γ(·), that is, UT or
H is not 0, that a higher value (UT+H)×104 will be penalized
into the fitness value. As a result, the infeasible solutions can
be compared to one another, and their fitness values will be
larger than those of all feasible solutions.

2) Genetic operators:
Selection: The selection operator select the individual

form the population by tournament selection with elitism.
Mutation: There are four mutation operators including 1)

point mutation, 2) inversion mutation 3) insertion sequence
(IS) mutation and 4) root insertion sequence (RIS) mutation.
All of these operations are standard operations present in
[24].

Crossover: The one-point crossover operator and two-
point crossover operator [24] are also employed in the
proposed GP.

3) GP algorithm:
The overall framework of GP is presented in the Algorithm

2. The algorithm begins with the random generation of
the initial population’s chromosomes (line 1). Then the
evolutionary process starts. Firstly, individuals are expressed
and the fitness of each individual is calculated by (13) (lines
3-7). Then, the best individual is preserved for the next
generation, while the remaining individuals are selected by
the tournament selection operator based on fitness values.
After that, individuals of this new generation go through
the same developmental process: chromosomal expression,
selection, mutation and crossover (lines 3-14). The process
is repeated until the maximum number of generations is
reached, and the best individual is returned as Γ(·).

D. Time Complexity

In UAV heuristic navigation model, the UAVs need to
make decisions to calculate the priority of candidate nodes.
Based on Table I, the time of calculating priorities is related
to the number of the accessible node set A. To complete
all N tasks, at least N decisions are required. Each decision
requires calculating the priorities of |A| nodes. Therefore,
the time complexity is O(N · |A|2).
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Algorithm 2: GP-based Γ(·) generation
Input : A TAPCS instance H
Output: A near-optimal rule Γ(·)

1 Create chromosomes and initial population P
2 while iter ≤ max Iter do
3 for each r ∈ P do
4 Express r
5 S ← UAV heuristic navigation model (H,r)
6 Calculate fitness value of S obtained from r

by (13)
7 end
8 Keep the best r to the next generation
9 P← Tournament selection (P)

10 P← Point Mutation (P)
11 P← IS Mutation (P)
12 P← RIS Mutation (P)
13 P← 1-point Crossover (P)
14 P← 2-point Crossover (P)
15 iter ← iter + 1
16 end
17 for each r ∈ P do
18 Express r
19 S ← UAV heuristic navigation model (H,r)
20 Calculate fitness value of S obtained from r by

(13)
21 end
22 Γ(·) ← best r from P
23 return Γ(·)

IV. EXPERIMENTS

In this section, we construct a series of instances to
simulate TAPCS problems. Based on these instances, the
proposed method is compared with some algorithms and the
experimental results are analyzed in detail.

A. Experiment Settings

1) Instances:
To investigate the performance of GP, total 11 instances

are constructed. The instances are different in the number
of UAVs, tasks, and charging stations. The location of the
charging stations are uniformly distributed in the inspection
area. The UAVs all start from one of the charging stations
and can eventually return to any charging station. The task
locations are generated randomly in a 2-D plane. The specific
design of each instance is shown in Table II.

2) Cost parameters:
In actually, the cost criteria ω1, ω2, ω3, h and Q are indeed

task-related and UAV-related and they should be decided by
the decision maker, i.e., energy companies [26]. In this work,
we take the setting of (5.0, 5.0, 20.0, 1, 20) for an example.

3) GEP setting:
We set the population size NP = 50 and the maximum

number of iterations as 200 based on recommendations of
previous work [24], [27]. The probabilities of GEP operators

TABLE II
DETAILS OF THE INSTANCE SETTINGS

region size tasks charging stations UAVs

S1 15 × 15 15 3 1

S2 20 × 20 25 9 4

S3 15 × 15 36 6 3

S4 20 × 20 40 9 4

S5 30 × 30 50 12 5

S6 30 × 30 65 9 6

S7 30 × 30 85 16 7

S8 30 × 30 100 16 8

S9 30 × 30 138 16 8

S10 30 × 30 350 36 26

S11 30 × 30 482 20 30

are set as follows: All of the mutation operators (i.e. Point-
mutation, inversion-mutation, IS mutation and RIS mutation)
rates are set to 0.1. The 1-point crossover rate is set to 0.6 and
2-point crossover is set to 0.4. All experiments are conducted
on computers with Core i5-11400 2.60-GHz CPU.

B. Comparative algorithms

In this work, we test the efficiency of GP by comparing it
with some bi-level optimization methods. For the upper-level
task assignment problem, the individual-based meta-heuristic
algorithms (TS, SA-VND [28]) and population-based meta-
heuristic algorithms (GA-TS and cluster-based GA (CGA))
are considered for comparison. For the lower-level recharging
scheduling problem, both enumeration and meta-heuristic
methods are too time consuming. Jia et al. [12] proposed
the removal-heuristic (RH) charging algorithm and compared
with greedy-heuristic (GH) and forward-heuristic (FH). Since
the complexity rank of these 3 heuristics is GH > RH > FH,
but the effectiveness rank of them is RH > GH > FH. From
the perspective of effectiveness and efficiency, this paper only
considers the comparison of two heuristic algorithms, RH
and FH. Overall, by combining the algorithms of the upper
and lower levels, we get 8 combinations and compare them
with GP.

For the fairness of the comparison, we provide the same
setting for the common parameters of compared algorithms
and the same number of the evaluations. The GA parameters
of population size NP, crossover probability Pc and mutation
probability Pm are set as 50, 0.6 and 0.1, respectively. The
TS parameters of candidate set length is set as 50, taboo table
length is set as 10. The other parameter settings of compared
algorithm such as SA-VND all follow their original works.

C. Experiment Results

The comparison of the 9 methods over 10 independent
conducted on 11 instances are shown in Table IV, where each
row represents a instance. Firstly, we test the algorithms’
capacity to find feasible solutions. The details are given in
Table III. Then the values of feasible solutions found by each
algorithm are analyzed and compared.
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TABLE III
THE NUMBER OF EXPERIMENTS FOR COMPARATIVE ALGORITHMS TO

FIND THE FEASIBLE SOLUTION

CGA CGA TS TS SA-VND SA-VND GA-TS GA-TS GP
FH RH FH RH FH RH FH RH

S1 10 10 10 10 10 10 10 10 10

S2 10 10 10 10 10 10 10 10 10

S3 10 10 10 10 10 10 10 10 10

S4 10 10 10 10 10 10 10 10 10

S5 8 8 10 10 10 10 10 10 10

S6 3 0 10 9 8 10 9 10 10

S7 9 0 10 10 10 10 10 10 10

S8 5 0 10 10 10 10 10 10 10

S9 4 0 10 5 9 4 10 9 10

S10 0 0 10 9 9 3 10 10 10

S11 0 0 10 0 0 0 10 5 10

1) Comparison of Ability to Find Feasible Solutions:
In Table III, we show the number of trials for all al-

gorithms to find a feasible solution on each instance. As
we can see, all algorithms can produce feasible solutions
when the task number is small than 40 (S1-S4). When the
problem scale increases, the search space becomes huge,
some algorithms start to degenerate. Among them, the CGA
divides tasks into l groups, where l is the number of
UAVs. Tasks within each group are completed by one UAV.
However, grouping strategy is not adoptable for TAPCS
problem because sometimes tasks in groups that are too
far away from the UAV or charging stations may make it
difficult to find a feasible solution. In Table III, CGA-FH
can only find a few feasible solutions on S5-S9 instances.
Even on S10-S11 instances, it has failed. Similarly, CGA-
RH is failed from the 6th instance. It can be seen that CGA
algorithm based on clustering and grouping is not suitable
for solving the TAPCS problem. TS-RH has successfully
provided feasible solutions in most instances, but it also fails
the largest one (S11). SA-VND-FH and SA-VND-RH are
also in a situation where just a few or no feasible solutions
can be found. In addition, for the same upper-level algorithm,
the ability to find a feasible solution varies greatly when
experimenting with different lower-level charging methods.
FH is still effective in large instances (such as TS-FH),
while RH makes the algorithm unable to find a feasible
solution. It can be seen that the charging algorithm has a very
important impact on the final solution. However, compared
with these algorithms, only two algorithms, TS-FH and
GP have clearly demonstrated their advantages in different
instances. They have found feasible solutions successfully
in all instances. This comparison preliminarily implies that
Γ(·) evolved by the GP algorithm can stably find feasible
solutions in different instances.

2) Comparison of the Objective Values:
In Table IV, the best min and mean values are highlighted.

we mark ”-” to denote that the algorithm can not find feasible
solution. The performances are compared with GP using
Wilcoxon rank-sum test if the algorithm can find feasible
solutions in all 10 independent runs. The significance level

is set to 0.05 with Bonferroni correction. If the algorithm
cannot find all feasible solutions, we can conclude that it is
worse than GP. From the results, we can get the following
information.

• According to the statistic test, on small-scale instances
(S1-S7), GA is only worse than CGA-RH and SA-VND-
RH on S4. On the other small-scale instances, GP either
performs equally well as the compared algorithms or
significantly outperforms them.

• On middle-scale instances (S8-S9), GP has updated
the best solutions and achieves significant results, per-
forming better than all other algorithms. Although the
average value of feasible solutions achieved by CGA-
FH on S9 outperforms that of GP, it is worth noting that
only 4 out of 10 experiments conducted by CGA-FH
resulted in feasible solutions. Such a limited success rate
reveals a significant inadequacy in CGA-FH’s ability to
find feasible solutions, leading to a reliability rate of
merely 40%.

• On large-scale instances (S10-S11), GP demonstrates a
significant performance improvement over other algo-
rithms, resulting in an average objective value reduction
of 30% or more. This shows that the rules evolved
by GP can find solutions that may not be apparent
or intuitive to human designers can. The flexibility in
choosing between tasks and charging stations makes
GP more advantageous in solving complex large-scale
TAPCS problems.

3) Comparison of the heuristic charging algorithm:
To further illustrate the difference between the rules found

by GP and human-designed heuristic algorithm, we show the
solutions generated by FH, RH and GP on S1, as shown in
the Fig. 3. The order in which tasks are executed and the
placement of charging stations are closely tied to the chosen
charging algorithm. In terms of FH, it’s understandable that
the placement of charging stations may not be optimal as it
only recharges UAV when UAV can not go to the next task.
From Fig. 3 (a), it can be seen that once the UAV completes
task t12, it will give priority to completing task t10, and go to
charging station c1 to charge because the remaining battery
power is not enough to go to the next task. In Fig 3 (b),
using RH, the UAV opts to complete task t10 before heading
to charging station c1 for a recharge. This decision is based
on the cost-saving analysis, which shows that removing the
charging station between tasks t3 and t10 yields greater cost
savings compared to removing the station between t10 and
t15. Fig. 3 (c) showcases the superiority of the Γ(·) as it
considers the UAV’s current battery power and other relevant
information. This allows for a more flexible and efficient
determination of the flight route, ultimately resulting in the
optimal solution.

In the feasible solution obtained by the UAV heuristic
navigation model based on the GP rule, we attempted to re-
move the charging station in the solution. We then employed
the FH and RH charging strategies to reconstruct the route.
However, despite our efforts, we were unable to obtain a
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TABLE IV
COMPARED FEASIBLE RESULTS OVER 10 INDEPENDENT RUNS ON 11 INSTANCES

CGA-FH CGA-RH TS-FH TS-RH SA-VND-FH SA-VND-RH GA-TS-FH GA-TS-RH GP

S1
best 1487.77 1573.06 1654.58 1651.3 1691.17 1543.18 1467.62 1477.30 1423.87

mean 1607.49 l 1698.75 l 1789.52 ↑ 1846.22 ↑ 1818.60 ↑ 1795.53 ↑ 1605.82 l 1633.26 l 1592.81
std 66.83 137.99 106.86 95.74 134.92 104.52 73.4 127.66 108.58

S2
best 1456.74 1327.24 1198.84 1141.92 1265.26 1185.95 1149.89 1096.85 1144.72

mean 1520.58 ↑ 1396.99 ↑ 1427.01 ↑ 1284.78 ↑ 1462.2 ↑ 1286.62 ↑ 1207.29 ↑ 1136.79 l 1158.01

std 36.03 53.94 113.74 73.04 117.7 86.62 59.09 52.85 19.04

S3
best 1113.08 1150.62 1247.16 1182.7 1246.29 1183.52 1207.58 1090.82 1095.56

mean 1195.01 l 1211.44 ↑ 1346.6 ↑ 1243.97 ↑ 1358.52 ↑ 1230.31 ↑ 1390.18 ↑ 1221.55 l 1146.37
std 41.12 26.47 71.78 71.37 73.41 28.62 122.77 103.72 52.66

S4
best 1570.02 1592.89 1842.7 1673.96 1753.49 1609.5 1608.35 1420.94 1740.58

mean 1737.41 l 1720.30 ↓ 2009.36 ↑ 1786.28 l 1915.24 ↑ 1691.77 ↓ 1865.57 l 1745.68 l 1802.01

std 124.47 90.24 94.16 68.86 141.47 35.43 154.95 148.77 46.45

S5
best 2646.77 3245.38 3543.13 3310.78 2735.51 3310.35 3103.85 3226.45 2885.44

mean 4292.5 ↑ 3951.58 ↑ 4063.2 ↑ 3559.76 l 3451.34 l 3975.98 ↑ 3691.56 l 3411.66 l 3405.19
std 954.02 368.41 236.47 157.21 787.23 399.26 418.32 135.38 352.87

S6
best 3876.21

-
5234.83 4294.1 4545.33 4281.73 4129.41 3663.56 3410.86

mean 5170.55 ↑ 5603.64 ↑ 4636.02 l 5281.9 ↑ 4743.27 l 4512.78 ↑ 4338.73 l 4480.84

std 808.14 222.18 220.44 429.97 321.5 284.08 438.56 646.44

S7
best 3210.53

-
5407.4 4357.71 3404.33 3670.57 4363.69 3721.8 3252.44

mean 4423.58 ↑ 6148.92 ↑ 4632.47 ↑ 4310.78 ↑ 4518.23 ↑ 4715.42 ↑ 4025.39 ↑ 3572.57
std 887.44 370.35 226.67 730.36 592.31 290.38 283.96 261.42

S8
best 3446.43

-
6267.84 5001.56 3766.37 5083.43 5145.82 4050.82 3443.46

mean 3793.28 ↑ 6844.64 ↑ 5298.53 ↑ 5244.11 ↑ 5560.23 ↑ 5642.43 ↑ 4434.84 ↑ 3732.4
std 228.94 314.21 172.46 1139.05 328.55 293.92 267.46 278.69

S9
best 4552.25

-
9385.06 7424.79 4859.01 6809.73 7157.26 5916.33 4546.3

mean 4631.88 ↑ 10331.34 ↑ 7808.87 ↑ 6215.98 ↑ 7311.42 ↑ 7689.89 ↑ 6384.27 ↑ 5089.79

std 124.38 423.24 419.3 1091.01 570.25 272.26 329.61 308.53

S10
best

- -
16942.64 12895.49 10033.81 8922.75 12669.88 9980.31 8024.86

mean 17457.17 ↑ 13410.49 ↑ 10730.68 ↑ 9850.17 ↑ 13286.34 ↑ 10472.27 ↑ 8499.84
std 266.73 283.78 475.7 716.99 404.02 316.64 526.24

S11
best

- -
27625.14

- - -
20029.83 16861.53 7837.62

mean 28592.04 ↑ 21423.01 ↑ 17503.97 ↑ 10473.41
std 681.42 511.39 443.78 2416.27

w/t/l 8/3/0 9/1/1 11/0/0 8/3/0 10/1/0 9/1/1 8/3/0 5/6/0

Columns represent different algorithms and rows represent different instances. The ’-’ indicates that the solution optimized by this algorithm is infeasible.
↑ denotes that GP is significantly better than the compared algorithm, ↓ denotes that GP is significantly worse than the compared algorithm, and l
denotes that GP is equal to the compared algorithm. ”w/t/l” shows on how many instances GP wins, ties, or loses to the compared algorithm. When
the algorithm fails, it loses to GP obviously.

feasible solution. Further clarification states that the human-
designed heuristic charging methods have some limitations
and may miss a more reasonable task execution order and
recharging schedules.

V. CONCLUSION

The aim of this paper is to efficiently and effectively solve
the multi-UAV power inspection problem with charging sta-
tions. First, we formulated the problem as a task assignment
problem with charging stations (TAPCS) and mathematically
modeled it. We then proposed a new heuristic navigation

model in which all UAVs can follow a heuristic rule to
complete all tasks. To improve the effectiveness of rule, we
incorporate relevant information about the UAV and tasks
into the terminal set and adapt GP to evolve the optimal
rule Γ(·). Finally, the experimental results demonstrated the
effectiveness of the proposed method on 11 instances. In
the future, we plan to extend our study by investigating the
TAPCS problem model and the characteristics of complex
heterogeneous UAVs in real-world scenarios. This will allow
us to design more complex and efficient heuristic rules.
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Fig. 3. Solutions generated by FH, RH and GP on S1. The green triangles in (a), (b) and (c) represent the charging stations and the red dots represent
the tasks.
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