
Evolutionary Learning of Local Descriptor Operators for
Object Recognition

Cynthia B. Perez
Centro de Investigación Cientifica y de

Educación Superior de Ensenada (CICESE)
Km. 105 Tijuana-Ensenada

Ensenada B.C., México
cbperez@cicese.mx

Gustavo Olague
Centro de Investigación Cientifica y de

Educación Superior de Ensenada (CICESE)
Km. 105 Tijuana-Ensenada

Ensenada B.C., México
olague@cicese.mx

ABSTRACT
Nowadays, object recognition is widely studied under the
paradigm of matching local features. This work describes a
genetic programming methodology that synthesizes mathe-
matical expressions that are used to improve a well known
local descriptor algorithm. It follows the idea that object
recognition in the cerebral cortex of primates makes use of
features of intermediate complexity that are largely invariant
to change in scale, location, and illumination. These local
features have been previously designed by human experts us-
ing traditional representations that have a clear, preferably
mathematically, well-founded definition. However, it is not
clear that these same representations are implemented by
the natural system with the same representation. Hence,
the possibility to design novel operators through genetic
programming represents an open research avenue where the
combinatorial search of evolutionary algorithms can largely
exceed the ability of human experts. This paper provides
evidence that genetic programming is able to design new fea-
tures that enhance the overall performance of the best avail-
able local descriptor. Experimental results confirm the va-
lidity of the proposed approach using a widely accept testbed
and an object recognition application.

Categories and Subject Descriptors
I.4.7 [Image Processing and Computer Vision]: Fea-
ture Measurement—feature representation, invariants; I.2.2
[Artificial Intelligence]: Automatic Programming—pro-
gram synthesis

General Terms
Algorithms, Experimentation, Performance, Theory

Keywords
SIFT, Local Descriptors, Object Recognition, Matching

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Montreal ’09 Montreal, Canada
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

1. INTRODUCTION
Object Recognition is a fundamental process of visual per-

ception that seems to be executed effortlessly by humans, as
well as by many biological vision systems such as insects. In
fact, we are constantly engaged in the process of recognizing
multiple objects from a given visual scenario without paying
too much attention to the internal mechanism of recogni-
tion. In this way, it is not easy to define the term ”object
recognition” in a simple, precise, and uncontroversial man-
ner. Recently, a number of researchers have proposed the
use of genetic programming (GP) to approach the challeng-
ing task of object recognition[4, 5, 6, 10, 11, 20, 24]. There
are several reasons to approach such study through a genetic
programming methodology. The first is to take advantage of
an unsolved and challenging problem in order to create and
study new genetic programming algorithms. Thus, the dif-
ficulty of the recognition problem is alleviated in benefit of
improving the GP technique, see [23, 24]. In fact, such idea
can be traced back to one of the earliest published work [6]
where the primary goal was proof of concept rather than exe-
cuting a rigorous experimental test. The work of Howard [6,
7] outlines the idea that genetic programming is able to de-
sign detectors that represent algebraic formulae and as a re-
sult the principles of detection can be discovered and reused.
Such idea is original to the genetic programming paradigm
in general and it represents a major advantage over other
approaches such as neural networks. The second strategy
is to investigate an application of genetic programming for
object detection where it is desirable to keep focused on the
standard GP methodology. The idea is to provide evidence
to other researchers that genetic programming offers a pow-
erful technique for knowledge discovery. This is the path
that we are following in this research. A third approach
is simply to make a combination of the first two. In other
words, provide a new kind of genetic programming variant,
while solving at the same time a problem of indisputable dif-
ficulty in the object recognition field. However, we believe
that currently it is too early to make such a contribution.

Traditionally, most research on object recognition involves
four stages: preprocessing, segmentation, feature extraction
and classification that cover the whole visual chain. Re-
cently, an approach based on local features adopts a simpli-
fied methodology for object recognition, where the prepro-
cessing and segmentation stages are eliminated by only fo-
cusing on local and relatively small amounts of image infor-
mation [18]. The Scale Invariant Feature Transform (SIFT)
proposed by Lowe [13] provides a rich set of local feature vec-

tors that are said invariant to image translation, rotation,
scaling; and are partially invariant to illumination changes
and affine or perspective projection. Previous research [20]
on local feature detection has introduced genetic program-
ming as a suitable strategy that synthesizes interest point
detectors. As explained by Lowe the scale invariant features
are efficiently identified by using a stage filtering approach.
The first part of the approach identifies key locations in scale
space by looking for locations that are maxima or minima
according to a difference of Gaussian function. Each point
is used to generate a feature vector that describes the local
image region sampled relative to its scale-space coordinate
frame. SIFT is based on a model of the behavior of com-
plex cells in the cerebral cortex of the mammalian vision
system. Thus, it is appealing to use the idea that a genetic
programming approach can synthesize novel mathematical
expressions that improve the general SIFT behavior. This
could be compared with the evolution of complex cells in an
artificial cerebral cortex.

This paper is organized as follows: first, we recall a well
known and accepted testbed used for comparison of local
descriptors. Then, we outline the genetic programming ap-
proach that was implemented by correctly framing the prob-
lem statement through two essential aspects: the fitness
function and the search space. Finally, we provide a com-
plete set of 30 new results that are better than the current
state-of-the-art according to the test. Also, we present a
set of examples of an object recognition task using the best
evolved operator.

2. PROBLEM STATEMENT

2.1 Testbed for Local Descriptors
Nowadays a new image recognition paradigm is applied

using a set of invariant local features that are computed
from an image sample and later are matched against a large
database of images. This idea was first proposed by Schmid
and Mohr [18] who showed that image matching through
local features could be extended to general image recog-
nition problems. They computed Harris corners to select
interest points and instead of matching with a correlation
window, they used a rotationally invariant descriptor. To-
day, this approach achieves widespread acceptance and SIFT
is considered as the best representative algorithm due to
its robustness against scale changes. However, the SIFT
acceptance was significantly helped by the work of Miko-
lajczyk and Schmid [14] who designed a testbed for local
descriptors. A performance evaluation of local descriptors
was implemented through an experimental evaluation of in-
terest region descriptors in the presence of real geometric
and photometric transformations. This testbed is available
through internet1, with the binary code of all descriptors, as
well as their complete data set used for evaluation. Today,
this testbed is widely accepted as a standard performance
evaluation. Thus, we decide to use it within our genetic
programming approach in order to synthesize novel math-
ematical expressions that can outperform previous results
using a widely accepted and standard testbed.

The test is based on the number of correct matches and
the number of false matches obtained for an image pair, see
Fig. 1. The idea is to create a Recall vs 1-Precision space

1http://www.robots.ox.ac.uk/ vgg/research/affine.

using a set of metrics computed from the contingency table.
Thus, the true positive (TP) refers to the correct matches
being detected by the system; while, the false positive (FP)
denotes the set of false matches being detected by the sys-
tem. On the other hand, the false negative (FN) and true
negative (TN) represent the correct and false matches not
detected by the system respectively. In this particular prob-
lem the true negatives are never computed; therefore, it is
better to work on the Precision-Recall space rather than the
ROC (Receiver Operating Characteristics) space [1].

FP

TP

TN

FN Error Type II

Reference Image Transformed Image

Error Type I

Detected

Not detected

Figure 1: Interpretation of matching features.

The test consists on counting the matching of two regions
A and B; if the distance between their descriptors DA and
DB is below a threshold t. Thus, each descriptor from the
reference image is compared with each descriptor from the
transformed one in order to compute the number of cor-
rect and false matches. The value of t is varied to obtain
the curves of Recall vs 1-Precision. Recall is the number
of correctly matched regions with respect to the number of
corresponding regions between two images of the same scene
using an overlap error. This overlap error measures how well
the regions correspond under a homographic transformation
according to the ratio of intersection and union of A and
B. Hence, the authors assume that a match is correct if
there is a 50% of overlapping between regions and the dis-
tance between both descriptors is below a given threshold.
Furthermore, 1-Precision is computed as the number of false
matched regions with respect to the total number of regions
being matched. Notice that the false matches are computed
from total matches minus the correct matches.

The above evaluation is used to create a set of graphs in
the Recall vs 1-Precision space. Later, they compare visu-
ally a set of graphs computed with several descriptors in
order to decide which is the best descriptor. A perfect de-
scriptor would give a recall equal to 1 for any precision. In
practice, recall increases while the threshold is relaxed at
the cost of admitting a higher level of noise and decreas-
ing the precision. Horizontal curves indicate that the recall
is attained with a certain precision that is limited by the
image properties. A drawback of the proposed approach is
that it implies a subjective visual interpretation of the pos-
sible curve shapes; i.e., a problem occurs when two or more
graphs overlap. Moreover, if we want to improve a local
descriptor through optimization it is necessary to define a
figure-of-merit function.

2.2 Performance Evaluation
The aim of our research is to show that genetic program-

ming is a powerful methodology that is capable of improving

local descriptors that later could be used for object recogni-
tion tasks. In general, to apply evolutionary computing we
need to devise a well defined fitness function together with
the representation of the problem. In this work, we pro-
pose to use the F-measure as the fitness function in order
to compare several descriptors [15]. This measure is widely
used in the information retrieval community as a perfor-
mance evaluation criterion [21]. The F-measure is based on
the harmonic mean and it gives the best balance between
precision and recall metrics. The general formula is defined
in the following equation:

Fα(p, r) =
(1 + α) · (p · r)

(α · p + r).
(1)

where p is precision {p : 0 ≤ p ≤ 1}, r is recall {r : 0 ≤ r ≤
1}, and {α : 0 ≤ α ≤ ∞}. Note that in the case of α < 1
the variable with a higher weight is p, while for the case of
α > 1 the variable with a higher weight is r, and when α = 1
the precision and recall are well balanced. At the time of
writing, we are not aware of any work using the F-measure
method for evaluating the performance measurement of lo-
cal descriptors. In fact, there is only one previous work that
attempts to improve local descriptors using statistical learn-
ing [22]. That work proposes the area under the ROC curve
as the merit function; however, in our case is very cum-
bersome to use that criterion. Other criteria could be the
true negative rate, true positive rate, weighted accuracy, G-
mean, precision, and recall to mention but a few. However,
we claim that the F-measure already offers a measure that
is simple and reliable in the estimation of local descriptor
performance.

2.3 Structure Representation
The idea of image descriptors has a long tradition in com-

puter vision. The simplest descriptor is a vector of image
pixels, where cross-correlation can be used to compute a
similarity score between two descriptors. We can find other
descriptors that are based on histograms, spatial-frequency
techniques and image derivatives. Today, many researchers
have a special interest in SIFT given its ability to detect ob-
jects under partial occlusion, invariant to rotation, scale and
robust against a substantial range of affine distortion, noise,
illumination change, and that a large number of keypoints
could be extracted at near-real time performance. Zhang
has recognized the complexity of improving such descriptor
through a genetic programming approach [23]. Therefore,
to keep the complexity low he has preferred to represent its
descriptors with a set of primitive operators; other authors
have used a similar approach, see [5, 6, 10, 11, 12].

In order to devise a structure representation that can be
improved with genetic programming we have reviewed the
main aspects of SIFT. The idea is not to improve the whole
algorithmic process; a task beyond the capacity of genetic
programming, but to identify a key aspect that could en-
hance the overall performance of SIFT descriptors. SIFT
consists of four stages and the local image descriptors are
computed in the last stage. Such description of information
is based upon image gradients of a patch of pixels within
a local neighborhood. This patch is centered on the key-
point location, rotated with respect to the dominant orien-
tation and scaled to the appropriate size. We propose in
this work to name the gradient magnitude normally used in
SIFT and its variants as the SIFT operator. We will use the

acronym RDGP (Region Descriptor Operators with Genetic
Programming) to indicate our evolved SIFT operators, see
Fig. 2.

We will observe in the experiments that in fact this simple
change has resulted in a set of operators that significantly
outperforms other state-of-the-art SIFT versions. Since the
publication of SIFT many authors have attempted to im-
prove it using several ideas. For example, Ke and Suk-
thankar [8] proposed PCA-SIFT in order to represent SIFT
features in a more compact way using the normalized gradi-
ent patch instead of the standard SIFT representation. Bay
et al. [2] also designed a descriptor called SURF, which
is a SIFT version specially designed for real time applica-
tions. Mikolajczyk and Schmid [14] suggested a descriptor
called GLOH, which is a SIFT variant where the local region
used to build the histogram is computed with polar coordi-
nates and PCA was also employed. Dalal and Triggs [3]
proposed also a SIFT variant called HOG that is based on
evaluating well-normalized local histograms of image gradi-
ent orientations in a dense grid. Tola et al. [19] introduced
a SIFT version named DAISY with the idea of computing
fast dense matching in the case of wide baseline configura-
tions using graph-cuts. In the experiments we compare our
evolved descriptors against binary versions of SIFT, GLOH,
and SURF using several keypoint detectors that are nor-
mally used to improve their overall performance. In all cases
the new evolved descriptors are much better according to the
standard testbed.

π

π

*

*

(c)Gradient
magnitude

(d)Gaussian
weight

(e)Weighted
gradient

(h)Gaussian
weight (j)RDGP descriptor

xsize

size

y

size

size

x

y

Image

(g) RDGP
operator

θ

π

2

θ

π

2

(f)SIFT descriptor

=

x

y

=

(i) Weighted
RDGP operator

x

y

(b)Region(a)Image from DoG

Figure 2: Local image descriptor operator used
within SIFT: c) gradient magnitude g) RDGP.

3. EVOLVING SIFT OPERATORS WITH GP
In this section, we explain our genetic programming method-

ology that synthesize SIFT operators from a set of struc-
turally complementary operators that are combined to pro-
duce structural or functional properties not present in any
individual component. It is widely accepted that genetic
programming is able to create composite operators even
from scratch [12, 16, 17]. However, we believe that the choice
of well selected function and terminal sets is of paramount
importance for the final result [20]. We are interested in
obtaining synthetic operators that could be simple in struc-
ture, and at the same time each operator should be able to
improve the overall performance of SIFT.

3.1 Search Space
Historically, differential operators have been used through

a set of image derivatives computed up to a given order to
describe the properties of a point neighborhood. The prop-
erties of local derivatives (local jet) were investigated by
Koenderink and Van Doorn [9] and later produced a number
of approaches such as: steerable filters and differential in-
variants that compute derivatives by convolution with Gaus-
sian derivatives. We decide to use such ideas to establish our
functional and terminal sets as follows:

FuncSet =
n

+, |+ |,−, | − |, ∗,÷,
√

It,

It

2
, log2(It), DxGσ, DyGσ, Gσ

o

TermSet = {I, Dx, Dxx, Dyy, Dxy, Dy}

(2)

where I is the input image and It can be any of the terminals
in T , as well as the output of any of the functions in F ;
Du symbolizes the image derivatives along direction u then
Du = I∗Gu(σ=1); Gσ are the Gaussian smoothing filters with
σ = 1 or 2; DuGσ represents the derivative of a Gaussian
filter with image blur σ.

3.2 Fitness Function
An appropriate fitness function is decisive to the GP pro-

cess success. Thus, our fitness function is based on a well
balance precision and recall data as explained earlier:

Q = argmax
n

Fα(P x, Rx) =
Pn

i=1

(1 + α) · (pi · ri)

(α · pi) + ri

o

where Q : Fα(P s, Rs) ≥ Fα(P t, Rt)

(3)

with n representing the number of thresholds. Precision
data from an image pair are denoted by P x = (p1, p2, ..., pn)
and recall data by Rx = (r1, r2, ..., rn); where x represents
a possible solution and s, t ⊆ x. The ranking order of Q is
ascendent where the highest value of Q corresponds to the
descriptor with the best performance. It is also possible to
use the mean of Q instead of the total sum of Fα.

4. EXPERIMENTAL RESULTS
This section describes the implementation setup, the train-

ing and testing sets, and the results of our proposed GP
algorithm. The section is divided in two parts: first, we
describe the process of learning and testing using the stan-
dard testbed; second, we present the application of our best
evolved descriptor in an object recognition task.

4.1 Learning and Testing SIFT Operators
We learn and test the evolved operators on real images

with different geometric and photometric transformations
and for different scene types. The implementation of the GP
approach was programmed on Matlab, using the GPLAB 2.
Also, the core platform of our algorithm is based on SIFT
features programmed in Matlab/C 3. Table 1 specifies the
GP runtime parameters used during the experimental tests.
The image sequence used for training was the Boat set with
combined image rotation and scale transformations. Scale

2http://gplab.sourceforge.net/index.html, GPLAB a ge-
netic programming Toolbox for Matlab.
3http://vision.ucla.edu/vedaldi/code/sift/sift.html

changes lie in the range of 2-2.5 and image rotation in the
range 30 to 45 degrees. We selected the pair of images with
the most significant change for training instead of the whole
sequence, because of the computational complexity of com-
puting the evaluation test for a single descriptor. Figure 3
shows the final results of the 30 experiments that were exe-
cuted; each GP experiment takes about 24 hours for training
while for testing it is about 6 seconds. We can observe that
the average performance is superior to all man-made de-
scriptors including SIFT, GLOH, and SURF. The SIFT and
GLOH descriptors are considered to achieve the best perfor-
mance from about 10 local descriptors according to Miko-
lajczyk and Schmid [14]. Also, we identify the second of
all thirty tests as the best evolved descriptor and we named
RDGP2. This operator was discovered in the last series of
genetic operations through a crossover that we can appreci-
ate in Figure 4. Table 2 shows the 30 operators written as
S-expressions using prefix notation, together with their final
fitness. It is clear from these results that we have found a
new local optimum, RDGP2, with the GP approach. We
will use the rest of the sequences in the testbed to verify
that the best evolved operator is still better than man-made
designs. Figure 5 shows final results of the testing including
the New York (rotation), Bark (rotation and scale changes),
Trees (blur changes), and UBC (JPEG compression) images.
Again, rotations are obtained by rotating the camera around
its optical axis in the range 30 to 45 degrees. Scale change
and blur sequences were acquired by varying the camera
zoom and focus, respectively. The JPEG sequence is gen-
erated with a standard XV image browser with the image
quality parameter set to 5 percent as in [14]. The images
are either of planar scenes or the camera position was fixed
during acquisition; therefore, they are always related by a
homography. We can appreciate that several detectors were
used in order to improve the man made descriptor designs
using the Hessian-affine, Harris-affine, and Hessian-Laplace
detectors. In all cases we keep the DoG detector originally
used in the SIFT descriptor as the detector used by RDGP2.
We observe that RDGP2 is the best operator, because it im-
proves the overall performance of the SIFT descriptor across
very different transformations.

Table 1: RDGP algorithm set up.
Parameters Description

Generations 50
Population size 50 individuals
Initialization Ramped Half-and-Half
Crossover 0.90
Mutation 0.10
Tree depth Dynamic depth selection
Dynamic max depth 7 levels
Real max depth 9 levels
Selection Stochastic Universal Sampling
Elitism Keep the Best Individual, 1/50

4.2 Object recognition aplication
As a further test we decide to implement an object recog-

nition application similar to one proposed by Lowe [13]. The
test consists of a set of photographs acquired with a SONY
Cyber-shot 7.2 MP digital camera using indoor and outdoor
scenarios of texture and non-texture objects, see Figure 6.
We compute the epipolar geometry using RANSAC (RAN-

Table 2: RDGP’s Operators Training Results.
Descriptor Fitness Individual’s Expression Descriptor Fitness Individual’s Expression

RDGP1 7.4158 sqrt(sqrt(Dx(sqrt(Dx(sqrt(Dxy(RDGP2 7.4859 sqrt(Dx(sqrt(dif(sqrt(Dxy(

image))))))) image)),Dxx(image)))))

RDGP3 7.1812 G2(G2(sqrt(Dx(Dy(Dx(Dx(RDGP4 7.3928 G2(absdif(G2(absdif(absdif(Dy

image))))))) (image),Dxx(image))),Dy(Log(Dx(

Dx(image)))))),Half(Dx(Dy(image)))))

RDGP5 7.4053 G1(sqrt(G2(sqrt(sqrt(dif(sqrt(G1(RDGP6 6.9470 sqrt(dif(sqrt(sqrt(dif(Dxy(

Dy(image))),div(Dxx(image)), image)),sqrt(Dxy(image))))))

absadd(Dx(image),Dy(image))))))))) ,sqrt(Dx(image))))

RDGP7 6.9666 sqrt(div(absadd(Dyy(image)),Dxx(RDGP8 7.1544 sqrt(sqrt(Dx(G2(Dxy(image))))))

image))),G1(Half(Dxx(image))))))

RDGP9 7.1557 sqrt(dif(Dxx(image)),Dy(Log(RDGP10 6.8833 G1(dif(sqrt(sqrt(Log(Dxx(image

sqrt(Dxx(image)))))))))))),Log(G2(Dxy(image))))))

RDGP11 7.3736 Half(G2(G2(sqrt(Dxx(Log(Dxy(RDGP12 7.1020 sqrt(dif(sqrt(Dxy(image))),Dy(Log(

image))))))))) Dxx(image))))))

RDGP13 6.9170 dif(absdif(Dxy(image)),div(Half(RDGP14 6.8704 absadd(Half(Dyy(image))),Log(absadd(

Dx(image)),absadd(Dx(image), sqrt(Dyy(image))),Dxy(Dyy(image)))))))

Half(Dy(image))))),Dxy(image)))

RDGP15 6.9203 absadd(absadd(Half(Log(RDGP16 7.1264 sqrt(div(dif(Dxx(image)),Dx(image)

Dyy(image)))),Log(Half(Log(),absadd(absadd(Dyy(Dy(image))),

Dx(image))))),Half(Dyy(image)))) Dyy(image))),Dx(image))))

RDGP17 6.8778 sqrt(Dy(sqrt(Log(Log(Dxx(RDGP18 6.9633 absdif(sqrt(G2(sqrt(sqrt(Dxx(

image))))))) image)))))),Dxx(image)))

RDGP19 7.1225 sqrt(Dy(add(Dxy(image)),Log(RDGP20 6.9024 div(Log(Dyy(image))),Log(G1(

Dxx(image)))))) Dx(G2(Dx(image))))))

RDGP21 6.8824 Log(Log(G2(Dxy(image))))) RDGP22 6.9230 absdif(Dx(image),sqrt(G2(

sqrt(Dxx(image))))))

RDGP23 7.0466 absadd(Dyy(image)),sqrt(add(RDGP24 6.8824 Log(Log(G2(Dxy(image)))))

Dyy(image)),Dxx(Dx(image))))))

RDGP25 7.0207 absdif(sqrt(absadd(absdif(sqrt(RDGP26 7.1978 sqrt(absdif(dif(Dy(Log(Dxx(

Dxy(image))),sqrt(Dyy(image)))), image)))),Dyx(image))),G2(Dx(

Dxx(Dy(image))))),Dxx(image))) G1(Dxx(image)))))))

RDGP27 7.0570 sqrt(sqrt(absdif(Dx(image),sqrt(RDGP28 7.0433 sqrt(dif(sqrt(G2(absadd(Dxx(image)),

Dy(image))))) Dyy(Dxx(image))))))),Dy(image)))

RDGP29 6.9063 Half(absadd(absadd(Half(sqrt(RDGP30 7.0529 dif(sqrt(Log(div(Dxx(image)),

Log(Dxy(image))))),Dy(image)), Dxy(image))))),Dyy(image)))

absdif(sqrt(Dxy(image))),G2(

absadd(Dxy(image)),Dxx(

image)))))))

5 10 15 20 25 30
4

4.5

5

5.5

6

6.5

7

7.5

8

Number of Descriptors

F
itn

es
s

F
−

M
ea

su
re

RDGP−DoG Descriptors

Man−Made Descriptors
(GLOH−hesaff,SIFT−heslap,
GLOH−DoG,SIFT−DoG,SURF)

Maximum: 7.4859
RDGPs Average: 7.0725
Man−Made Average: 4.5703
Standard deviation(RDGPs): 0.1854
Standard deviation(MM): 0.4478

7.4859

5.1244

Figure 3: Man-Made and RDGPs Descriptors

sqrt

Dx

sqrt

Dyx

I

sqrt

Dxy

I

sqrt

Dyx

sqrt

Dxx

Dxx Dyy

+

I

sqrt

I

+

I

sqrt

Dx

sqrt

sqrt

Dxy

I

I

Dxx

Parent (a) Parent (b) RDGP2

Parent (a) Parent (b) RDGP2

Figure 4: Example of the RDGP2 operator.

dom SAmple Consensus) algorithm in order to identify the
inliers and outliers of the matched features. Figure 7 shows
green lines representing the correct matches; while, red lines
correspond to the false matches. It is easy to observe that
the total number of false matches is significantly reduced,
while keeping almost all correct matches. Table 3 provides
final results of the recognition tasks, where we can appre-
ciate the error percentage produced by RDGP2 and SIFT
descriptors. Thus, the RDGP2 descriptor could be seen as
performing a filtering stage over the bad matches.

5. CONCLUSIONS
This article presented a genetic programming method to

synthesize novel descriptor operators that surpass the over-
all performance of SIFT-like descriptors. We have demon-
strated the effectiveness of our GP approach through an ex-
tensive experimental study using a standard testbed and
an object recognition application. Finally, we would like to

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1−precision

re
ca

ll

Descriptors Performance for Rotation Changes (NewYork)

GLOH−hesaff= 4.3270
SIFT−harris= 5.6893
SIFT−DoG= 5.2918
GLOH−DoG= 6.0782
SURF= 5.4379
RDGP2−DoG= 11.1728

 Number of Regions
Detector Img1 − Img15
DoG 1080 − 1005
harris 1424 − 1253
hesaff 2120 − 2078
SURF 657 − 603

a) Rotation changes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1−precision

re
ca

ll

Descriptors Performance for Rotation + Scale Changes (Bark)

GLOH−heslap= 13.5464
SIFT−heslap= 6.2301
SIFT−DoG= 7.0021
GLOH−DoG= 7.6658
SURF= 3.3079
RDGP2−DoG= 15.0334

 Number of Regions
Detector Img1 − Img4
DoG 2054 − 1866
heslap 1160 − 1309
SURF 811 − 894

b) Rotation + Scale changes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1−precision

re
ca

ll

Descriptors Performance for Blur Changes (Trees)

GLOH−hesaff= 1.3454

SIFT−hesaff= 2.2035

SIFT−DoG= 0.4214

GLOH−DoG= 0.6927

SURF= 3.3130

RDGP2−DoG= 5.1599

 Number of Regions
Detector Img1 − Img5
DoG 3300 − 5790
hesaff 1057 − 1374
SURF 3318 − 3079

c) Blur changes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1−precision

re
ca

ll

Descriptors Performance for JPEG Compression (UBC)

GLOH−haraff= 3.3758

SIFT−hesaff= 3.8000

SIFT−DoG= 2.8942

GLOH−DoG= 2.9981

SURF= 5.0078

RDGP2−DoG= 6.1477

 Number of Regions
Detector Img1 − Img5
DoG 1494 − 1944
hesaff 1570 − 1647
haraff 1462 − 1646
SURF 1298 − 1339

d) JPEG compression

Figure 5: Performance evaluation of RDGP2, SIFT,
GLOH and SURF descriptors.

a) RDGP2 Descriptor

b) SIFT Descriptor

a) RDGP2 Descriptor

b) SIFT Descriptor

i) Book-Cork images ii) Book-Objects images

a) RDGP2 Descriptor

b) SIFT Descriptor

a) RDGP2 Descriptor

b) SIFT Descriptor

iii) Book-Books images iv) Mask-Objects images

a) RDGP2 Descriptor

b) SIFT Descriptor

a) RDGP2 Descriptor

b) SIFT Descriptor

v) Stop Sign-Costero Blvd. images vi) Pedestrian-UABC images

Figure 7: Matching descriptors from indoor and outdoor scenarios.

Table 3: Matching Error between RDGP2 descriptor and SIFT descriptor.
DETECTION STAGE MATCHING STAGE (using descriptors)

Descriptor Image Object Image Scene Total Corrects Incorrects Error (%)

Book-Cork
RDGP2 1588 1418 83 50 33 39.75 %
SIFT 112 55 57 50.89 %
Book-Objects
RDGP2 1588 2044 255 214 41 16.08 %
SIFT 318 240 78 24.53 %
Book-Books
RDGP2 1588 1576 169 146 23 13.61 %
SIFT 253 167 86 33.99 %
Mask-Objects
RDGP2 1375 2044 91 73 8 34.78 %
SIFT 138 84 40 68.96%
Pedestrian-UABC
RDGP2 189 1579 23 15 18 62.06 %
SIFT 58 18 52 81.25 %
Stop-Costero Blvd.
RDGP2 419 1603 29 11 18 19.78 %
SIFT 64 12 54 39.13 %

Costero Blvd.UABCBooks

ObjectsCorkStop

 Mask Book Pedestrian

Figure 6: Database used in the object recognition
application.

mention that the proposed technique opens a research av-
enue towards evolutionary learning of local descriptors.

6. REFERENCES
[1] S. Agarwal and D. Roth. Learning a sparse representation for

object detection. In Proceedings of the Seventh European
Conference on Computer Vision. LNCS: 2353, pages 97 –
101, 2002.

[2] H. Bay, T. Tuytelaars, and L. V. Gool. Surf: Speeded up robust
features. ECCV, 3951:404–417, 2006.

[3] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In CVPR - Volume 1, pages 886–893,
Washington, DC, USA, 2005.

[4] M. Ebner. An adaptive on-line evolutionary visual system.
IEEE Workshop on Pervasive Adaptation, pages 84–89, 2008.

[5] B. Gokberk, M. Irfanolglu, L. Akarun, and E. Alpaydin.
Learning the best subset of local features for face recognition.
Pattern Recognition, 40:1520–1532, 2006.

[6] D. Howard, S. C. Roberts, and R. Brankin. Target detection in
sar imagery by genetic programming. Advances in Engineering
Software, 30(5):303–311, 1999.

[7] D. Howard, S. C. Roberts, and C. Ryan. The boru data crawler
for object detection tasks in machine vision. EvoWorkshops.
LNCS: 2279, pages 222–232, 2002.

[8] Y. Ke and R. Sukthankar. Pca-sift: A more distinctive
representation for local image descriptors. In CVPR, 27 June -

2 July, Washington, DC, volume 2, pages 506–513. IEEE
Computer Society, 2004.

[9] J. J. Koenderink and A. J. V. Doorn. Representation of local
geometry in the visual system. Biological Cybernetics,
55(3):367–375, 1987.

[10] K. Krawiec and B. Bhanu. Visual learning by coevolutionary
feature synthesis. IEEE Trans. on Systems, Man, and
Cybernetics-Part B: Cybernetics, 35(3):409–425, 2005.

[11] Y. Lin and B. Bhanu. Evolutionary feature synthesis for object
recognition. IEEE Trans. on Systems, Man, and
Cybernetics-Part C: Apps and Revs, 35(2):156–171, 2005.

[12] Y. Lin and B. Bhanu. Object detection via feature synthesis
using mdl-based genetic programming. IEEE Trans. on
Systems, Man, and Cybernetics-Part B: Cybernetics,
35(3):538–547, 2005.

[13] D. Lowe. Object recognition from local scale-invariant features.
ICCV, pages 1150–1157, 1999.

[14] K. Mikolajczyk and C. Schmid. A performance evaluation of
local descriptors. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 27(10):1615–1630, 2005.

[15] C. B. Perez and G. Olague. Learning invariant region descriptor
operators with genetic programming and the f-measure.
International Conference on Pattern Recognition, December
8-11 2008.

[16] R. Poli, W. Langdon, and N. Freitag. A field guide to genetic
programming. Published via http://lulu.com and freely
available at http://www.gp-field-guide.org.uk, 2008.

[17] J. R.Koza. Genetic Programming. The MIT Press., 1993.

[18] C. Schmid and R. Mohr. Local grayvalue invariants for image
retrieval. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 19(5):530–534, 1997.

[19] E. Tola, V. Lepetit, and P. Fua. A fast local descriptor for
dense matching. In CVPR, 23-28 June, Anchorage, AK. IEEE
Computer Society, 2008.

[20] L. Trujillo and G. Olague. Synthesis of interest point detectors
through genetic programming. Genetic and Evolutionary
Computation Conference, pages 887–894, 2006.

[21] C. Van-Rijsbergen. Information retrieval. Ed.
Butterworth-Heinemann. Second Edition, 1979.

[22] S. Winder and M. Brown. Learning local image descriptors.
IEEE Conf. on CVPR, pages 1–8, 2007.

[23] M. Zhang. Genetic programming for object detection: A
two-phase approach with an improved fitness function.
Electronic Letters on Computer Vision and Image Analysis,
6(1):27–43, 2007.

[24] M. Zhang, V. B. Ciesielski, and P. Andreae. A
domain-independent window approach to multiclass object
detection using genetic programming. EURASIP Journal on
Applied Signal Processing, 2003(8):841–859, 2003.

